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[1] We analyzed spatial and temporal variograms of precipitation, runoff, and groundwater
levels inAustria to examinewhether characteristic scales exist and, if so, how big they are. In
time, precipitation and runoff are stationary with characteristic scales on the order of a day
and a month, respectively, while groundwater levels are nonstationary. In space,
precipitation is almost fractal, so no characteristic scales exist. Runoff is nonstationary but
not a fractal as it exhibits a break in the variograms. An analysis of the variograms of
catchment precipitation indicates that this break is due to aggregation effects imposed by the
catchment area. A spatial variogram of hypothetical point runoff back calculated from runoff
variograms of three catchment size classes using aggregation statistics (regularization) is
almost stationary and exhibits shorter characteristic space scales than catchment runoff.
Groundwater levels are nonstationary in space, exhibiting shorter-scale variability than
precipitation and runoff, but are also not fractal as there is a break in the variogram. We
suggest that the decrease of spatial characteristic scales from catchment precipitation to
runoff and to groundwater is the result of a superposition of small-scale variability of
catchment and aquifer properties on the rainfall forcing. For comparison, TDR soil moisture
data from a comprehensive Australian data set were examined. These data suggest that
in time, soil moisture is close to stationary with characteristic scales of the order of 2 weeks
while in space soil moisture is nonstationary and close to fractal over the extent sampled.
Space-time traces of characteristic scales fit well into a conceptual diagram of Blöschl
and Sivapalan [1995]. The scaling exponents z in T� Lz (where T is time and L is space) are
of the order of 0.5 for precipitation, 0.8 for runoff from small catchments, 1.2 for runoff from
large catchments, 0.8 for groundwater levels, and 0.5 for soil moisture. INDEX TERMS: 1829

Hydrology: Groundwater hydrology; 1854 Hydrology: Precipitation (3354); 1860 Hydrology: Runoff and
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1. Introduction

[2] Variability of hydrologic processes occurs over many
orders of magnitude, from pore-scale flow processes up to the
global cycling of water and energy, from rain splash effects
during less than a second up to changes in the hydrologic
balance over centuries and more as a result of climate
fluctuations and geomorphic processes. The wide range of
variability complicates the scientific analysis of hydrologic
processes, be it through theoretical analyses, measurements,
ormodel studies. One concept of dealingwith variability over
many orders of magnitude is the notion of characteristic
scales. The idea of a characteristic scale is that instead of
dealing with a spectrum of lengths and times one adopts one
typical length and time that is representative of a particular
process. Often a characteristic scale is an order of magnitude
figure, given as an integer power of ten, rather than a precise
number.

[3] While sister disciplines have an excellent track record
of capitalizing on the potential of characteristic scales, their
use in hydrology has been rare, even though their merits are
undisputed [Dooge, 1986; Seyfried and Wilcox, 1995;
Blöschl, 1999]. In fluid dynamics, atmospheric sciences
and ecology, characteristic scales are widely used to tag
processes for a number of purposes. Some of the most
obvious merits are summarized below.
[4] First, characteristic scales can be used for performing

order of magnitude or ‘‘back of the envelope’’ analyses.
Excellent examples in the context of mixing processes in
open waters are given by Fischer et al. [1979] and a range
of illustrative examples in the environmental sciences in
general are given by Harte [1988]. Second, characteristic
scales may facilitate the formulation of simple relationships.
For example, Prandtl’s [1925] suggestion of a ‘‘mixing
length’’ allowed him to determine the mean velocity distri-
bution of a fluid near the wall with the aid of only one
empirical constant. Third, characteristic scales are very
powerful when used in connection with dimensional anal-
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yses and dimensionless numbers. The classical example is
the Froude number, which is composed of two characteristic
velocities. A good overview for boundary layer meteorology
is given by Stull [1988] and a number of suggestions for how
to apply dimensional analyses to hydrology are given by
Dooge [1986]. Fourth, in a similar fashion, characteristic
scales play a central role in similarity theories which are well
developed in the atmospheric sciences [e.g., Haltiner and
Williams, 1980], based on the early work of Charney [1948],
and other disciplines such as soil physics [Miller and Miller,
1956]. In hydrology, similarity theories are at a very early
stage of development [Blöschl and Sivapalan, 1995]. Fifth,
characteristic scales are among the main input variables into
behavioral or structure-imitating space-time models [e.g.,
Rodrı́guez-Iturbe, 1986; Koltermann and Gorelick, 1996].
Sixth, characteristic scales provide a powerful tool for
planning and interpreting measurements. In order to capture
a particular process the space-time scales of the measure-
ment set up must be compatible with the characteristic scales
of the processes one is attempting to sample. The case is
excellently made by Smagorinsky [1974] for the example of
ocean dynamics and an example in the context of the spatial
distribution of soil moisture is given byWestern and Blöschl
[1999]. Lastly, and maybe most importantly, the identifica-
tion of characteristic temporal and spatial scales relevant to a
prescribed problem can provide a common framework be-
tween disciplines [Blöschl, 2001], as excellently illustrated
by Seyfried and Wilcox [1995] for mountain hydrology and
Hatcher et al. [1987] for the case of coral reef systems.
[5] In hydrology the various applications of characteristic

scales are still in their infancy but it is hoped that deriving
characteristic scales will foster the development of methods
similar to those in the sister disciplines. Characteristic scales
can be defined in a number of ways, either as deterministic
scales or as stochastic scales [Blöschl, 1996]. Deterministic
characteristic scales of hydrologic processes include storm
size and storm duration [e.g., Austin and Houze, 1972]; size
of saturation areas; residence times and response times from
catchments and hillslopes [Uchida et al., 2001]; hillslope
length and drainage density; and soil depth and aquifer
depth. An alternative is to derive stochastic characteristic
scales from a correlation analysis. Stochastic characteristic
scales were first proposed by Taylor [1921] as a measure of
the average correlation distance in turbulence and have
since then been widely used for characterizing space-time
variability in a number of disciplines [e.g., Vanmarcke,
1983; Christakos, 2000].
[6] In this paper we examine stochastic characteristic

scales based on correlation analyses in both space and time.
The correlation can be represented by the variogram (see,
e.g.,Webster and Oliver [2002] for a practical assessment). If
the variable under study is stationary in the mean the vario-
gram will flatten out at large distances while for nonstation-
ary variables the variogram will increase continually. Strictly
speaking, a characteristic scale only exists for a stationary
variable and can be defined as the distance (or time) where the
variogram flattens out. When deriving quantitative estimates
of the characteristic scale from the variogram one can use one
of various definitions of scale such as the integral scale
(average distance of correlation), the range (the maximum
distance of correlation), and the e-folding distance (the
distance where the variogram value is 1–1/e of its maximum

value) [Blöschl, 1996] which all give similar orders of
magnitude of the characteristic scale. For nonstationary
variables, approximate characteristic scales can be derived
if the variogram becomes flatter with increasing distance. If
the variogram increases as a power of distance a character-
istic scale does not exist, but this is another important case,
termed a fractal variogram. It is of the form:

g hð Þ ¼ ahZ ð1Þ

where h is the lag (i.e., either distance or time lag), a is a
parameter controlling the variance, and Z is the fractal power
of the variogram. Z is a measure of the ratio of large-scale
variability and small-scale variability. Fractal behavior is an
indication of long term persistence (or large spatial correla-
tions) also referred to as the Hurst phenomenon [Klemeš,
1974; Kirchner et al., 2000]. A variogram of the form of
equation (1) can be considered self similar as it satisfies

g hð Þ ¼ l�Zg lhð Þ ð2Þ

where l is a scale factor, i.e., lag dependent variance at one
scale is a constant multiple of that at another scale, and this
constant depends on the scale factor. Because of the self
similarity property, fractal variability lends itself to similarity
analyses (alternatively to the use of characteristic scales) and
many of the other analyses that can be done with
characteristic scales. It is therefore useful to ascertain whether
characteristic scales exists, and if not, if the variogram is
fractal and what the fractal power is. It is difficult to
accurately determine the fractal power Z [Gallant et al.,
1994] and to ascertain with certainty whether the variogram is
fractal or not [Kirchner et al., 2000] so a reliable analysis
must be based on a sufficiently large data set.
[7] Characteristic timescales can be derived from a vario-

gram analysis of time series. Characteristic space scales can
be derived from a variogram analysis of spatial patterns. It is
also of interest to examine the space-time behavior of
characteristic scales. Stommel [1963] was probably the first
to introduce diagrams showing a schematic relationship
between spatial and temporal process scales. He used the
diagram for characterizing ocean dynamics. Blöschl and
Sivapalan [1995] adapted the idea to hydrology and based
their Figure 2 on data from Orlanski [1975], Dunne [1978],
Fortak [1982], and Anderson and Burt [1990] as well as
heuristic reasoning. Their diagram has been widely used in
the literature to illustrate the existence of characteristic
space-time scales in hydrology in a qualitative way [e.g.,
Wilby, 1997; Quattrochi, 1997; Ambroise, 1999; Buchholz,
2000; Niehoff, 2002; Schulze, 2000]. In this type of diagram
two quantities are of main interest. The first is the charac-
teristic velocity of a process defined as the ratio of charac-
teristic lengths and times. The characteristic velocity is a
measure of the scales over which measurements become
decorrelated from one another and may be related to a
number of physical causes. It may be related to the celerity
with which a perturbation (such as a weather front) moves
through a system. It may correspond to particle velocities
(such as typical vertical velocities in convective cells), and
it may be related to the internal dispersion and disruption by
smaller-scale perturbations. Blöschl and Sivapalan [1995]
and Blöschl et al. [1995] suggested that typically, charac-
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teristic velocities are on the order of 10 m/s for rain
processes, 1 m/s for channel flow, 0.1 m/s for saturation
excess overland flow and less than 10�4 m/s for ground-
water flow. The second quantity is the slope of the space-
time traces on a double logarithmic plot, i.e., the scaling
exponent z in

T ¼ a Lz ð3Þ

where T is timescale, L is space scale, and a is a parameter.
In Blöschl and Sivapalan’s [1995] diagram, z is about 0.9
for most processes which implies slightly increasing
velocities with scale. They argued that these may result
from a slight tendency of channel flow velocities to increase
with catchments scale [Leopold and Maddock, 1953] and
the behavior of response times for catchments of different
sizes [Anderson and Burt, 1990]. It is interesting to compare
the diagram of Blöschl and Sivapalan [1995] to a
quantitative analysis of space-time rainfall variability of
Foufoula-Georgiou and Vuruputur [2000] based on radar
images of individual rainstorms. They examined fluctua-
tions of precipitation in time and calculated standard
deviations in space for different aggregation levels in space,
and derived space-time pairs of constant standard devia-
tions. To these pairs they fitted a relationship of the form of
equation (3) and obtained values of z = 0.5–0.6, i.e.,
significantly smaller values than those of Blöschl and
Sivapalan [1995].
[8] While characteristic scales are usually defined for point

processes in the literature it is also possible to examine
characteristic scales of aggregated processes by treating
runoff from catchments of a given size as a process associated
with a particular characteristic scale. Provided runoff can be
assumed to be a spatially homogeneous process the charac-
teristic scale will be intrinsic to one particular catchment size
but may be different for different catchment sizes. It is
interesting to examine the effect catchment size has on
characteristic scales, i.e., the effect of upscaling from small
to large catchments. As one moves up in catchment scale,
more and more spatial rainfall variability tends to get aver-
aged out due to aggregation effects which will be reflected in
a reduction of the variance of runoff and a tendency for
increased characteristic scales [Western and Blöschl, 1999].
As one moves up in catchment scale, it is also likely that
temporal variability decreases and characteristic temporal
scales increase because of longer flow paths. However, as
with other hydrologic characteristics such as extreme precip-
itation and floods, it is not quite clear what controls this
variance reduction and the changes in characteristic scales as
a function of catchment size [Blöschl and Sivapalan, 1997;
Sivapalan and Blöschl, 1998]. It is important to unravel these
controls in order to shed light on the space-time scaling
behavior of catchments and to better understand the role of
characteristic scales for catchments of different size.
[9] In the light of the above discussion the objectives of

this paper are twofold. The first is to estimate characteristic
space scales and timescales for the main variables of the
hydrological cycle (precipitation, runoff, groundwater level,
soil moisture) or, alternatively, identify their fractal charac-
teristics if no characteristic scales exist. The second is to
examine and understand the effect catchment size has on
characteristic scales for the case of precipitation and runoff.

Both objectives are addressed by extensive variogram
analyses of hydrologic data.

2. Data

[10] Most of the data used in this paper stem from a
comprehensive hydrographic data set of Austria. Austria
has a varied climate with mean annual precipitation ranging
from 500 mm in the eastern lowland regions up to about
3000 mm in the western alpine regions. Runoff depths range
from less than 50 mm per year in the eastern part of the
country to about 2000 mm per year in the Alps. Potential
evapotranspiration is on the order of 600–900 mm per year.
Mean daily runoff data for the period 1971–1997 were used.
Stream gauges with short records and catchments with
significant anthropogenic effects and lake effects were
excluded from the data set which gave a total of 654 stream
gauges available for the analysis. The runoff series were
divided into three classes according to catchment size: small
(3–70 km2), medium (70–250 km2), and large (250–
130 000 km2) (Figure 1b). The analyses were carried out
for each class separately. Some of the catchments are nested.

Figure 1. Network of measurement stations in Austria used
in this paper. (a) Precipitation gauges. (b) Centroids of gauged
catchments (small catchments shown as diamonds, medium
sized catchments shown as squares, and large catchments
shown as triangles). (c) Boreholes for groundwater levels.
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Initial test analyses showed that when excluding nested
catchments from the data set, the variograms changed only
very slightly, therefore nested catchments were retained in the
analysis. Daily precipitation data from 991 stations for the
period 1971–1997 were used (Figure 1a). In order to be able
to examine spatial aggregation effects, for each day catch-
ment precipitation was calculated by external drift kriging
interpolation of the point data for a total of 756 catchments.
Catchment precipitation series were again divided into three
size classes. In addition, we used one series of precipitation
from the Frankenfels precipitation station with hourly data
during a period of 7 years to look at the effect of temporal
aggregation. Weekly groundwater levels were used. Short
records were excluded which left a total of 3539 groundwater
stations for the analysis. These data stem fromporous aquifers
that are mainly located in the valley regions (Figure 1c).
[11] A similarly comprehensive soil moisture data set is not

available in Austria. For comparison and to complement the
Austrian data, soil moisture data from Australian and New
Zealand catchments have been used. The climate in these
catchments is not radically different from the Austrian catch-
ments, at least from the lower parts of Austria. The Australian
and New Zealand sites have 800–1600 mm mean annual
precipitation, 0–600 mm mean annual runoff depth and
potential evapotranspiration on the order of 800–900 mm
per year. Also, hillslope scales do not vary much from the
Austrian landscape, so the characteristic scales should be
similar within the accuracies of the overall analysis. The soil
moisture data stem from five small catchments, Tarrawarra,
Satellite Station, Point Nepean, Claydens, and Carrans
[Western and Grayson, 1998; Woods et al., 2001]. The sizes
of these catchments range from 0.1 to 1.5 km2. The soil
moisture data consist of separate temporal and spatial data
sets of depth-average volumetric soilmoisture in the 0–30 cm
layer. The temporal data were sampled at 19 different
locations with 30 min intervals over three years, using
Campbell Scientific CS615 sensors. The spatial data have
been sampled at between 285 and 589 points in each catch-
ment on a regular grid using Time Domain Reflectometry.
These patterns were collected on between six and eight
occasions for each catchment. Table 1 summarizes the data
used in this paper.

3. Method

3.1. Transformation of Data

[12] When performing a variogram analysis, it is useful to
first transform the data as, ideally, the analysis should be

done on a random variable that exhibits little periodicity
with a distribution close to normal [e.g., Sokal and Rohlf,
1995]. We therefore examined a number of transformations
to render the data more suitable to variogram analysis. For
runoff and precipitation, we examined four steps of trans-
formation, each of them being a transformation of the
previous one: (1) untransformed data (specific runoff
(m3 s�1 km�2)), precipitation (mm/day)), (2) logarithms
of data series, (3) seasonal effects removed from the above
series, (4) mean of each of the time series subtracted from
the above (hereafter referred to as case 1), and (5) the above
series divided by their standard deviation (hereafter referred
to as case 2). The last transformation produces time series
with zero mean and unity standard deviation. For ground-
water levels, we examined three steps of transformation:
(1) untransformed data (groundwater levels in m), (2) mean
subtracted from time series to remove the elevation effects,
(3) seasonal effects removed from the above series (hereaf-
ter referred to as case 1), (4) above series divided by their
standard deviation (hereafter referred to as case 2). Again,
the last transformation produces time series with zero mean
and unity standard deviation. For soil moisture, we exam-
ined two steps of transformation: (1) untransformed data
(soil moisture content in percent of total volume), (2) mean
over 6–8 occasions of each sampling point subtracted from
the spatial data to remove spatial organization; (3) seasonal
effects removed from the time series (hereafter referred to as
case 1), and (4) spatial data (as above) divided by their
temporal standard deviation for each sampling point; Time
series (as above) divided by their temporal standard devi-
ation (hereafter referred to as case 2). The last transforma-
tion produces spatial patterns of soil moisture for which
each point has zero temporal mean and unity temporal
standard deviation, and time series with zero mean and
unity standard deviation.
[13] For precipitation, the logarithmic transformation is

not directly possible, as the logarithm of zero is undefined.
Two possible alternatives were considered, treating zero
precipitation as no data and padding zero values with the
smallest measured precipitation (0.1 mm/day). We chose
the latter option as this option provides information on the
timescales of the interstorm periods. Initial test analyses
indicated that the absolute gamma values will be higher
when zero is treated as no data compared to padding them.
This is because there are less pairs in time or space with
equal (zero precipitation) values. However, the shape of the
variogram did not change much. In the hourly data series we
padded zero precipitation with 0.0041 mm/h which is

Table 1. Data Series Used in This Paper

Data Type Size Class
Size Range,

km2
Median Size,

km2
Number of
Stations

Extent of
Domain, km Time Resolution Period

Point precipitation point point 991 700 daily sum 1971–1997
Catchment precipitation small 0.5–80 36 252 700 daily sum 1971–1997
Catchment precipitation medium 80–273 135 252 700 daily sum 1971–1997
Catchment precipitation large 277–131000 818 252 700 daily sum 1971–1997
Point precipitation point point 1 – hourly sum 1988–1994
Runoff small 2.8–74 36 218 700 daily average 1971–1997
Runoff medium 74–252 128 218 700 daily average 1971–1997
Runoff large 253–131000 701 218 700 daily average 1971–1997
Groundwater level point point 3539 700 weekly instantaneous 1966–1998
Soil moisture time series point point 19 – half hour instantaneous 1998–2001
Soil moisture patterns point point 5*app. 400 0.3–1.4 6–8 occasions, instantaneous 1998–2000
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equivalent to 0.1 mm/day. Zero runoff occurred only at a
few instances and was treated as no data.
[14] The seasonal components of precipitation, runoff and

groundwater levels were estimated by a standard method of
moving average estimation (MAE) as used, for example, by
De Cesare et al. [2002]. First, we calculated average values
of each of the time series for each day of the year. These
average values were smoothed by using a moving average
procedure with a window of 21 days (precipitation and
runoff) and 49 days (groundwater levels). The seasonally
smoothed mean for a certain day of year was calculated as:

us ið Þ ¼ 1

2 � iavg þ 1ð Þ
Xiavg

j¼�iavg

1

nij

Xnij�1

k¼0

u iþ jþ int 365:25kð Þð Þ ð4Þ

where i is the day of the year, iavg is the number of days in
the past and future used in the moving averaging window,
2�iavg + 1 is the averaging window size, nij is the number of
years with a measurement at day i + j of the year, 365.25 is
the average number of days in a year, leap-years included,
and k is the year.
[15] The seasonal components of the soil moisture time

series were obtained by a Fourier fitting procedure. First the
average value of each time series was calculated for each
day and time of the year. These averages were then fitted by
a two-harmonic Fourier curve. A Fourier curve was used in
preference to the moving average described above due to
additional variability associated with the shorter time series
and the strong link between the soil moisture seasonality
and seasonality of potential evapotranspiration associated
with changing global radiation, which follows a sinusoidal
pattern.
[16] Although the variograms change with the different

transformations, they are mostly within an order of magni-
tude. For runoff and precipitation the data processed by the
last two transformations exhibit little skewness and the
deterministic or periodic parts in time and space have been
removed. We have therefore chosen to focus on these two
cases (cases 1 and 2) in the rest of this paper. The
groundwater level and soil moisture data exhibit only very
minor skewness and so the logarithmic transformation was
not needed. However, it was deemed appropriate to remove
the deterministic or periodic parts in time and space, so
again we focused on cases 1 and 2 in this paper.
[17] The difference between cases 1 and 2 for all data

types is that in case 2 the temporal variance is always unity
while this is not the case for case 1. We looked at both cases
as for some interpretations it is useful to keep the relative
variances in space and time (e.g., for finding space-time
pairs of scales) while for other interpretations (e.g., the
shape of the variograms) normalization is appropriate.

3.2. Variograms

[18] The temporal variograms were calculated as the
average of the temporal variograms of the individual time
series:

ĝt htð Þ ¼ 1Xm
j¼1

2nj htð Þ

Xm
j¼1

Xnj htð Þ

i¼1

u xj; ti þ ht
� �

� u xj; ti
� �� �2 ð5Þ

where ht is the time lag, u(xj, ti) is the value of the
transformed variable at time ti and spatial location xj of

station j, m is the number of data series, and nj(ht) is the
number of pairs with time lag ht. For the longest time lags
the data were not exhaustively sampled to reduce computa-
tion time. Similarly, the spatial variograms were calculated
as the average of the spatial variograms of the individual
points in time:

ĝs hsð Þ ¼ 1

Xm0

i¼1

2ni hsð Þ

Xm0

i¼1

Xni hsð Þ

j¼1

u xj þ hs; ti
� �

� u xj; ti
� �� �2 ð6Þ

where hs = jhsj is the space lag, u(xj, ti) is the value of the
transformed variable at time ti and spatial location xj of
station j, m0 is the number of time steps, and ni(hs) is the
number of pairs with space lag hs.
[19] To each variogram we fitted visually a variogram

model with four parameters. The model is a combination of
a fractal model and a Weibull type model:

g hð Þ ¼ ahb 1� exp � h=cð Þd
� �� �

ð7Þ

where h is lag (in either space or time) and a, b, c and d are
the parameters. On a double logarithmic plot this variogram
model consists of two straight lines with a curve in between.
It is therefore possible to determine separately the slopes of
the variogram for short lags and long lags. The slope at
short lags is b + d, while the slope at long lags is b. Both
slopes can be considered as a fractal power of the variogram
but for different lag ranges. The exponential part reaches a
sill after a lag dependent on c, so c is a parameter
controlling the space (or time) scale. a controls the overall
level (or variance) of the variogram.
[20] For stationary or approximately stationary vario-

grams (where b is close to zero) a characteristic length or
timescale can be defined. One common possibility in geo-
statistics is to use the range, usually taken as the lag where
the variogram reaches 95% of its maximum value [Webster
and Oliver, 2002]. An alternative is to use the e-folding
distance in space or time. The e-folding distance is defined
as the distance (in space or time) where the variogram value
is 1–1/e of its maximum value. e is the Eulerian constant
(2.718). For an exponential variogram (b = 0 and d = 1) in
equation (7) the e-folding distance is one third of the range.
If the variogram is not stationary it is still possible to
calculate the range and the e-folding distance from the data,
but both will depend on the maximum lag over which the
data have been sampled. As the estimates of the range are
much more sensitive to the fitting procedure than those of
the e-folding distance, particularly if the variograms are not
strictly stationary, in this paper we chose the e-folding
distance as a measure of the characteristic space scales
and timescales. We estimated the e-folding distance as

g e-foldð Þ ¼ 1� 1

e

� �
s2 ð8Þ

where g is the fitted variogram model in equation (7) and s2

is the sample variance in either space or time. The sample
variance in time was found as the average variance of each
of the time series. The sample variance in space was found
as the average spatial variance for each time step.
[21] Some of the parameters of the variograms are

expected to be associated with significant uncertainty even
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though for most instances the sample size is relatively large.
Specifically, if either the small-scale fractal power, b + d, or
the large-scale fractal power, b, are estimated from a short
range of lags, one would expect them to be poorly defined
[see, e.g.,Gallant et al., 1994; Katsev and L’Heureux, 2003].
If the fitted variograms are not extrapolated much beyond the
range supported by the data, a lack of identifiability will not
result in significantly different variograms as alternative
models are similar over that range, but it is still very useful
to quantify the uncertainties associated with the estimated
parameter values, particular if one is to interpret the estimated
parameters in terms of their scaling behavior. We therefore
performed a split sample analysis and compared variograms
of independent subsets of the data. For each catchment size
class of runoff, we split the entire data set of 218 catchments
(Table 1) into five non overlapping groups of about 44 catch-
ments. In a similar way we split the time series of catchment
precipitation, point precipitation and groundwater levels into
five groups of approximately equal size. It was not possible to
perform the split sample analysis for soil moisture and the
hourly rainfall data because of the limited sample size.
Variogram models (equation (7)) were then fitted to the
sample variograms of each group by an automatic fitting
procedure based on weighted least squares of the logarithmic
variograms. This procedure resulted in five estimates of each
parameter value in each catchment size class. We calculated
the variance of each parameter value between the five groups,
sb
2. If the five groups produced similar values of a particular

parameter then sb
2 was small and hence the uncertainty of that

parameter was small. Conversely, large sb
2 indicated large

uncertainties. sb
2 can therefore be considered an estimate of

the error variance of the parameter estimate from one group.
The error variance associated with the parameter estimates
of the entire data set will be smaller than that of each group.
We used se

2 from equation (9) as a measure of the error
variance:

s2e ¼
1

m
s2b ð9Þ

where m is the number of groups, i.e., m = 5. For the
sample mean, equation (9) is strictly applicable as
the samples are independent. For the parameters of the
variogram (equation (7)), the e-folding distance and
the sample variance equation (9) is an approximation. We
examined alternative group numbers which resulted in
similar estimates of se

2. We therefore believe that
equation (9) is a reasonable approximation.

3.3. Regularization-Spatial Aggregation

[22] In order to study the spatial aggregation behavior of
precipitation and runoff we compared the sample variograms
for catchment precipitation and runoff to aggregated or block
variograms calculated by regularization from point vario-
grams. The idea of regularization is that the variogram will
change its shape when one aggregates or filters the original
data. Specifically, the overall level of the variogram (param-
eter a in equation (7)) will decrease and the e-folding distance
will increase with increasing aggregation area. Standard
procedures for calculating the regularized variograms exist
[e.g., Isaaks and Srivastava, 1989]. We used a simple
procedure proposed by Sivapalan [1986] and used by
Western and Blöschl [1999] and others which builds on the

probability density functions (pdf ) of the distances within the
aggregation area to calculate the aggregated variogram:

gagg h; að Þ ¼
Zrmax

0

g rð Þ � f2 r h; ajð Þdr �
Zsmax

0

g sð Þ � f1 s ajð Þds ð10Þ

where h is the lag, a is the side length of the aggregation area,
r is the distance between two randomly chosen points in each
of two aggregation areas A that are separated by a (center to
center) distance h, rmax is the maximum of r, f2 is the pdf of r,
g is the point variogram, s is the distance between two
randomly chosen points in one aggregation area A, smax is the
maximum of s, f1 is the pdf of s. f1 and f2 are functions of
the geometry of the aggregation area. For a square
aggregation area, analytical expressions are given by
Sivapalan [1986] and Ghosh [1951] and have been used
here. Sivapalan [1986] showed that the aggregated vario-
gram is only moderately sensitive to the shape of the
aggregation area, so a square shape should also be applicable
to natural catchments. The analytical expressions do not
cover the case of overlapping squares (i.e., h < a) for which
we evaluated the integral numerically. In calculating the
regularized variograms for catchment precipitation and
runoff we assumed a side length of the aggregation area
a =

ffiffiffi
A

p
where A is the median area of the catchments in each

size class as given in Table 1. We used point variograms
derived from untransformed precipitation data because the
aggregation of precipitation by catchments is consistent with
mass conservation, a requirement that is fulfilled by
aggregating the untransformed data but not fulfilled by the
logarithmic data. The regularized variograms were
then compared with variograms directly calculated from
(untransformed) catchment precipitation for each of the size
classes.
[23] For runoff, point time series were not available as the

minimum size of gauged catchments in the data set was a few
square kilometers. We therefore back calculated a hypothet-
ical point runoff variogram in the followingway.We assumed
that the point variogram can be represented by equation (7).
For a given parameter set we obtained the regularized vario-
grams for the three catchment size classes in a similar fashion
as for precipitation. We then optimized the point variogram
parameters by fitting the regularized runoff variograms to the
respective sample runoff variograms for all three catchment
size classes simultaneously. One would expect a simulta-
neous fit to all three variograms to yield a more robust
estimate of the point variogram than a fit to a single vario-
gram. The objective function we minimized consisted of a
weighted sum of the squared differences of the logarithms of
the sample variograms and the regularized variograms.

3.4. Space-Time Links

[24] In order to examine the space-time behavior of
characteristic scales we related the spatial variograms to
the temporal variograms. Specifically, our main assumption
here was to assume that space-time scale pairs characteristic
of a process are those scales where the spatial variogram
value is equal to the temporal variogram value, i.e.,

gt Tð Þ ¼ gs Lð Þ ð11Þ

where T is timescale, L is space scale, and the gt and gs
are the temporal and spatial variograms, respectively. The
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space scale and timescale were then plotted against each
other, which gave traces of space-time characteristic scales.
If the trace plots as a straight line in a double logarithmic
plot, space scale and timescale are related by a power
law (equation (3)). The ratio V = L/T is a characteristic
velocity, which is a measure of the scales over which
measurements become decorrelated from one another.
It may be related to a number of physical causes such
as the celerity with which a perturbation moves through
a system, to particle velocities or to the effects of internal
dispersion. Two points separated by a spatial lag L are able
to see the same perturbation only if the length of the
perturbation is at least L. Two points separated by a time T
are only able to see the same perturbation if it is moving
with a velocity less than V = L/T. The correlation in time
and space is then related to the possibility that two points
separated by a time T or a distance L are able to see the
same perturbation. As a natural system consists of a
spectrum of small to large perturbations, this possibility
will decrease with increasing lags in space and time as the
number of perturbations visible to both points is decreas-
ing. The gamma values of the variogram can in a similar
way be seen as related to the number of perturbations not
visible to both of the points. This applies to both stationary
and nonstationary processes. Equating the gamma values
in time and space for different gamma values can then be
seen as finding the average velocity for a perturbation of
size L. It is easy to illustrate this for precipitation. A front
can be seen as a large-scale perturbation in time and space,
while a thunderstorm is a smaller-scale perturbation. The
temporal and spatial variograms of precipitation reflect the
possibility of seeing these perturbations. Precipitation is
also one of the main perturbations for the other processes
we have examined here. Additionally, evaporation and
snow deposition and melting modulate the dynamics.
These perturbations are then filtered by the subprocesses at
and under the surface until they reach the catchment outlet
where the water flux is actually measured, removing the
small-scale components of the perturbations. The vario-
gram still shows the possibility of seeing a perturbation at
points separated in time or space, while the velocity found
from the method explained above shows the velocities of
the filtering processes. Foufoula-Georgiou and Vuruputur
[2000] derived space-time pairs of characteristic scales
from iso-lines of constant standard deviations for different
aggregation levels in space of rainfall fluctuations. This is
very similar to equation (11) as the variogram can be
interpreted as the lag dependent variance of the fluctua-
tions of a variable. The difference is that Foufoula-
Georgiou and Vuruputur used variance as a function of
aggregation area in space and as a function of lag in time
while here we examined variance as a function of lag in
both space and time.
[25] We compared the spatial and temporal counterparts

of the variograms for each data type, e.g., the spatial
variograms of runoff from small catchments to the
temporal variograms of runoff from small catchments.
The exception is hourly precipitation where spatial vario-
grams were unavailable, so we compared the temporal
hourly variogram with the spatial variogram from daily
point precipitation. The rainfall regime is similar which
justifies this comparison. However, because of the differ-

ent time resolutions one would expect some bias to be
introduced.

4. Results

4.1. Precipitation

[26] Spatial and temporal variograms of point precipita-
tion and catchment precipitation for three size classes are
shown in Figures 2a (case 1) and 2b (case 2). The temporal
variogram for hourly precipitation is also included. The

Figure 2. Variograms of precipitation. Spatial sample
variograms are shown as solid symbols, and temporal
sample variograms are shown as open symbols. Point
precipitation is shown as circles, small catchments are
shown as diamonds, medium sized catchments are shown as
squares, and large catchments are shown as upward pointing
triangles. Temporal variogram of hourly precipitation is
shown as downward pointing triangles. Fitted variograms
are shown as lines: point precipitation is shown as dashed-
dotted lines, small catchments are shown as solid lines,
medium catchments are shown as dashed lines, large
catchments are shown as dotted lines, and hourly temporal
variogram is shown as a long dashed line. (a) Case 1 and
(b) case 2 (see text).
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variograms of cases 1 and 2 are very similar. The only
significant difference is the overall level of the variograms
which is a result of the normalization in case 2. Tables 2
and 3 (nonitalic numbers) give the fitted variogram param-
eters (b, d ) for cases 1 and 2, respectively, as well as the
associated e-folding distances and variances. The italic
numbers in Tables 2 and 3 are the standard deviations se
of the estimation errors of the parameters.
[27] Figure 2 shows that the temporal variograms are

stationary and the e-folding distance of all daily variograms
(point, small, medium and large catchments) is about one
day. This means that very little temporal correlation exists
beyond one day. The variogram for hourly precipitation has
a significantly shorter e-folding distance (only 6 hours).
Given that the station used for the hourly variogram has a
similar rainfall regime as the daily stations, this difference
suggests that the e-folding distance from the daily vario-
grams may be biased. The daily sums of precipitation are
unable to resolve the shorter timescale fluctuations. On
closer examination of the daily variograms for catchments
of different sizes (Tables 2 and 3) there appears a slight
tendency for the e-folding distance to increase with catch-
ment size.
[28] In contrast, the spatial variograms for precipitation

are all nonstationary. They appear to consist of two fractal
parts. At large scales, the fractal power (i.e., the slope in the
double logarithmic plot) is on the order of 0.2 (b in Tables 2

and 3) while at small scales the fractal power varies
between 0.5 and 1.55 (b + d in Tables 2 and 3). There is
a clear difference between the spatial variograms of point
precipitation and those of catchment precipitation of the
different size classes. Point precipitation has the smallest
slope at small scales (b + d = 0.5) while catchment
precipitation for large catchments has the steepest slope at
small scales (b + d = 1.55). The other catchment size
classes are in between. These differences with catchment
size translate into differences in the e-folding distances
which range from about 45 km (point precipitation) to
about 65 km (catchment precipitation for large catchments).
This difference in the e-folding distances is larger than the
estimation standard deviation, so one would expect it to be
significant. There is also a significant decrease of the
spatial variance and hence the overall level of the vario-
grams with catchment size (Tables 2 and 3). All of these
changes of the spatial variograms with catchment size are
related to aggregation effects as will be discussed later in
this paper in the context of regularization. The temporal
variance is significantly larger than the spatial variance
(Table 2).

4.2. Runoff

[29] Figures 3a (case 1) and 3b (case 2) show spatial
and temporal variograms of runoff. Unlike the variograms
for precipitation there are some differences between cases 1

Table 2. Parameters of the Fitted Space and Time Variograms as in Equation (7) and Variance for Case 1a

Process

Space Time

Size b + d b s2 e-fold, km b + d b s2 e-fold, days

Precipitation point 0.50, 0.01 0.15, 0.02 1.67, 0.01 47, 1.4 0.85, 0.01 0.00, 0.00 3.41, 0.01 0.83, 0.00
Precipitation small 1.06, 0.06 0.21, 0.06 1.39, 0.02 59, 1.2 0.85, 0.00 0.00, 0.00 3.64, 0.03 0.93, 0.01
Precipitation medium 1.33, 0.07 0.23, 0.02 1.39, 0.02 66, 1.3 0.85, 0.00 0.00, 0.00 3.51, 0.04 1.00, 0.01
Precipitation large 1.54, 0.09 0.25, 0.06 1.14, 0.04 67, 3.2 0.85, 0.01 0.00, 0.00 3.32, 0.03 1.04, 0.01
Precipitation hourly 0.65 0.00 3.25 0.3
Runoff small 0.58, 0.12 0.08, 0.04 0.30, 0.01 18, 3.3 0.61, 0.01 0.01, 0.01 0.45, 0.02 13, 1.0
Runoff medium 0.68, 0.08 0.08, 0.03 0.23, 0.02 39, 2.8 0.61, 0.01 0.01, 0.01 0.34, 0.02 17, 1.0
Runoff large 0.93, 0.04 0.08, 0.03 0.15, 0.00 62, 1.9 0.66, 0.02 0.01, 0.01 0.23, 0.01 18, 1.2
Groundwater 0.62, 0.09 0.12, 0.04 0.25 m2, 0.01 m2 8.3, 1.0 0.82, 0.01 0.12, 0.01 0.29 m2, 0.02 m2 211, 22
Soil moisture 0.5 0.2 6.5 0.068 0.99 0.04 1.0 9.2

aHere b + d is the fractal power at small scales, b is the fractal power at large scales, s2 is the variance in either space or time, e-fold is the e-folding
distance which is a measure of the characteristic scale in either space or time. The nonitalic numbers are the estimates of the parameters, and the italic
numbers are the standard deviations se of the estimation errors of the parameters as of equation (9).

Table 3. Parameters of the Fitted Space and Time Variograms as in Equation (7) and Variance for Case 2a

Process Size

Space Time

b + d b s2 e-fold, km b + d b s2 e-fold, days

Precipitation point 0.50, 0.01 0.15, 0.01 0.48, 0.00 45, 0.9 0.85, 0.01 0.00, 0.00 1.00, 0.00 0.80, 0.00
Precipitation small 1.06, 0.04 0.21, 0.05 0.38, 0.01 53, 0.9 0.85, 0.00 0.00, 0.00 1.00, 0.00 0.90, 0.01
Precipitation medium 1.33, 0.04 0.23, 0.02 0.40, 0.01 63, 1.1 0.85, 0.00 0.00, 0.00 1.00, 0.00 0.95, 0.01
Precipitation large 1.55, 0.09 0.25, 0.06 0.34, 0.01 65, 2.3 0.85, 0.01 0.00, 0.00 1.00, 0.00 1.02, 0.01
Precipitation hourly 0.65 0.00 1.00 0.29
Runoff small 0.47, 0.05 0.06, 0.03 0.68, 0.02 28, 2.6 0.61, 0.01 0.01, 0.01 1.00, 0.00 16, 1.1
Runoff medium 0.57, 0.11 0.06, 0.03 0.66, 0.02 42, 3.7 0.61, 0.01 0.01, 0.01 1.00, 0.00 19, 0.8
Runoff large 0.77, 0.08 0.07, 0.03 0.63, 0.01 59, 1.5 0.61, 0.03 0.01, 0.01 1.00, 0.00 20, 0.9
Groundwater 0.76, 0.12 0.11, 0.03 0.81 m2, 0.01 m2 6.5, 1.1 0.85, 0.01 0.15, 0.00 1.00 m2, 0.00 m2 145, 5.0
Soil moisture 0.5 0.2 0.13 0.062 0.99 0.04 1.00 11

aHere b + d is the fractal power at small scales, b is the fractal power at large scales, s2 is the variance in either space or time, e-fold is the e-folding
distance which is a measure of the characteristic scale in either space or time. The nonitalic numbers are the estimates of the parameters, and the italic
numbers are the standard deviations se of the estimation errors of the parameters, as of equation (9).
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and 2, although the main difference is the overall level of
the variograms which is a result of the normalization in
case 2. The resulting parameters for cases 1 and 2 are
given in Tables 2 and 3, respectively.
[30] The temporal variograms for different catchment

sizes are almost stationary (b is very small) and the e-folding
distances are about two to three weeks. There is a slight
tendency for the e-folding distance to increase with catch-
ment size which appears to be significant given that the
estimation errors are small (Tables 2 and 3). This implies that
larger catchments tend to respond more slowly to precipita-
tion forcing than smaller catchments. This is certainly
consistent with streamflow analyses in various climates
[e.g., Melone et al., 2002]. The main difference of the
temporal variograms of the different size classes is their
overall level or temporal variance. The temporal variance

significantly decreases with catchment size, from 0.44 for
small catchments to 0.23 for large catchments. This means
that the variability of runoff depth strongly decreases with
catchment size. Again, this is consistent with common
experience as extreme events (floods and droughts) certainly
tend to become more moderate with catchment size if
measured in terms of runoff depths or runoff per unit
catchment area.
[31] The spatial variograms (Figures 3a and 3b) for

runoff are all nonstationary and appear to consist of two
fractal parts although the large-scale part is not as well
defined as with precipitation (Figure 2). At large scales the
fractal power is about 0.07 (b in Tables 2 and 3). The
associated estimation errors are relatively large (about
0.03). At small scales the fractal power varies between
about 0.6 and 0.9 (case 1) and 0.5 and 0.8 (case 2) (b + d
in Tables 2 and 3) and is better defined than at the large
scales. There is a clear difference between the spatial
variograms for the catchments of the different size classes
with the larger catchments exhibiting larger fractal power
or steeper slopes at small scales than the smaller catch-
ments. These differences with catchment size translate into
significant differences in the e-folding distance which
range from about 20 km (small catchments) to about
60 km (large catchments). These differences in the
e-folding distances are larger than those for catchment
precipitation where the e-folding distance increased by about
20% when moving from small to large catchments while the
e-folding distance tripled in the case of runoff. These
changes with catchment size are clearly related to aggrega-
tion effects. It appears, however, that catchment runoff
exhibits a stronger aggregation behavior than catchment
precipitation. This will be discussed later in this paper in
the context of regularization. Similarly to the temporal
variograms, the overall level of the spatial variograms or
spatial variance decreases significantly with catchment size,
from 0.30 for small catchments to 0.15 for large catchments
(case 1) which is, again, related to aggregation.
[32] The temporal variance is larger than the spatial

variance (Table 2) but in comparison with precipitation
the difference is smaller. It is also interesting that the
spatial variogram of runoff varies by one and a half orders
of magnitude (from 0.05 to 1 in Figure 3b) while the
spatial variogram of catchment precipitation varies by
almost three orders of magnitude (from 0.001 to 1 in
Figure 2b). This suggests that the variability of runoff
increases less rapidly with spatial scale than the variability
of catchment precipitation which is consistent with the
smaller fractal powers of runoff.

4.3. Groundwater Levels

[33] Figures 4a (case 1) and 4b (case 2) show spatial
and temporal variograms of groundwater levels and the
resulting parameters are given in Tables 2 and 3. The two
cases are similar with the exception of the fluctuation of
the spatial variogram at large space lags for case 1. These
fluctuations are an indication of spatial periodicity but
disappear when normalizing the data series (Figure 4b).
We believe that this periodicity is related to the geographic
position of porous aquifers in Austrian valleys, some of
which are regularly spaced (Figure 1).
[34] The temporal variograms are clearly nonstationary

and consist of two fractal parts. At large scales, the fractal

Figure 3. Variograms of runoff. Spatial sample vario-
grams are shown as solid symbols, and temporal sample
variograms are shown as open symbols. Small sized
catchments are shown as diamonds, medium sized catch-
ments are shown as squares, and large catchments are
shown as triangles. Fitted variograms are shown as lines:
small catchments are shown as solid lines, medium
catchments are shown as dashed lines, and large catchments
are shown as dotted lines. (a) Case 1 and (b) case 2 (see
text).

SKØIEN ET AL.: CHARACTERISTIC SCALES IN HYDROLOGY SWC 11 - 9



power is about 0.1 (b in Tables 2 and 3) while at small
scales the fractal power is about 0.7 (b + d in Tables 2
and 3). The e-folding distance in time is on the order of half
a year. This very long characteristic timescale is to be
expected as groundwater is of course a much more slowly
varying process than precipitation and runoff. The temporal
nonstationarity is also a reflection of the presence of long
timescale fluctuations.
[35] The spatial variograms of groundwater are also

nonstationary, as seen in Figure 4. The shapes of the spatial
variograms are similar to the shapes of the spatial vario-
grams of catchment precipitation and runoff with two fractal
parts. However, the turning point appears to occur at smaller
space scales (about 5 km, Figure 4b) than with catchment
precipitation and runoff (about 100 km, Figures 2b and 3b).
This translates into a relatively small e-folding distance in
space of only about 7 km in the case of groundwater levels
(Tables 2 and 3). This means that groundwater level
fluctuations in space are a relatively small-scale process as
compared to precipitation and runoff. However, the large-
scale fractal power is somewhat larger than that of runoff,

i.e., groundwater levels are slightly more nonstationary than
runoff in space.
[36] The temporal variance is slightly larger than the

spatial variance (Table 2) but in comparison with precipita-
tion and runoff the difference is much smaller. This, again,
is related to the very slow dynamics of groundwater systems
relative to other components of the hydrologic cycle.

4.4. Soil Moisture

[37] Figures 5a (case 1) and 5b (case 2) shows spatial and
temporal variograms of soil moisture and the resulting
parameters are given in Tables 2 and 3. The two cases are
similar apart from the overall levels.
[38] The temporal variograms are approximately station-

ary. The e-folding distance in time is on the order of one to
two weeks. This is similar to the characteristic timescales
found for runoff. This similarity is not surprising as the
timescale analysis of runoff tends to mainly capture pro-
cesses between events, such as moisture redistribution and
drainage, as mentioned above, which are also those pro-
cesses captured by the soil moisture data.

Figure 4. Variograms of groundwater levels. Spatial
sample variograms are shown as solid symbols and
temporal sample variograms are shown as open symbols.
Fitted variograms are shown as lines. (a) Case 1 and
(b) case 2 (see text).

Figure 5. Variograms of soil moisture. Spatial sample
variograms are shown as solid symbols, and temporal sample
variograms are shown as open symbols. Fitted variograms are
shown as lines. (a) Case 1 and (b) case 2 (see text).
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[39] The spatial variograms of soil moisture appear
nonstationary; however, the maximum extent does not
extend far beyond the hillslope scale and there is little
increase in variance for the three points with the largest
separations. This suggests that there is significant uncer-
tainty about how the variability might change at larger
scales. The moisture patterns appear to exhibit a single
fractal behavior without a characteristic scale, although the
fit is not very well defined by the data points. It should be
noted that random measurement error is about equivalent
to g = 2 in the spatial case, and this may artificially
increase the spatial variogram for smaller lags. The fractal
power (i.e., the slope in the double logarithmic plot) is on
the order of 0.5 (b + d in Tables 2 and 3). The slope at
larger scales (b) is associated with some uncertainty as it
has been extrapolated beyond the data points. The spatial
variograms cover only two orders of magnitude in space,
which is significantly less than for the other variables
examined here. The temporal variance is slightly larger
than the spatial variance (Table 2), as is the case for
groundwater levels, although they are not strictly compa-
rable because of the different extents over which the data
have been collected (Table 1).

4.5. Regularization-Spatial Aggregation

[40] The spatial aggregation behavior of precipitation
and runoff has been analyzed in more detail by making
comparisons with regularized variograms. Figure 6a shows
the results for the case of precipitation. The solid circles
are the spatial variogram of point precipitation similar to
that in Figure 2 but based on untransformed data. To this
data-derived variogram we fitted a variogram model
shown as a dashed-dotted line in Figure 6a. We then
applied the regularization procedure (equation (10)) to this
fitted point variogram to calculate aggregated or block
variograms. The size of the aggregation area (a in equation
(10)) used was 6, 11.6 and 28.6 km for small, medium and
large catchments, respectively, which are the square roots
of the median catchment sizes as shown in Table 1. The
three aggregated variograms so estimated are shown as
solid, dashed and dotted lines in Figure 6a. For compar-
ison, the variograms that have been directly estimated
from catchment precipitation are shown as symbols. The
solid diamonds, squares and triangles are the spatial vario-
grams of catchment precipitation for small, medium and
large catchment classes, respectively, all based on untrans-
formed data. As can be seen from Figure 6a, the regular-
ized variograms fit closely to their counterparts directly
derived from catchment precipitation. This suggests that
precipitation aggregates linearly in space and can be
represented by simple aggregation concepts as would be
expected.
[41] Figure 6b shows the results for the case of runoff, all

based on untransformed data. As point runoff data were not
available we back calculated a hypothetical point runoff
variogram by fitting the regularized runoff variograms to the
sample variograms of the three catchment size classes as
described in section 3.3. The three sample variograms are
shown as solid diamonds, squares and triangles and the three
regularized variograms fitted to them are shown as solid,
dashed and dotted lines, corresponding to small, medium
and large catchment classes, respectively. Figure 6b suggests
that the regularized variograms provide a reasonable and

consistent fit to all three sample variograms. It is now
interesting to examine the back calculated variogram of
hypothetical point runoff shown as a dashed-dotted line in
Figure 6b. The variogram parameters (equation (7)) of this
point variogram are b + d = 0.58 and b = 0.017, and the
variance and the e-folding distance are about s2 = 0.009
mm2 d�2 and e-fold = 0.7 km, respectively. This implies
that hypothetical point runoff varies over very short space
scales, much shorter than catchment runoff, and that its
variance is much higher than that of catchment runoff (s2 =
0.00190, 0.00085, and 0.00048 mm2 d�2 for the three
catchment size classes of untransformed data in Figure
6b). The point variogram for runoff is much flatter than
that for precipitation and the decrease of variance (as
represented by the overall level of the variograms in Figure

Figure 6. Comparison of regularized spatial variograms
with sample variograms for (a) precipitation (untransformed
daily precipitation) and (b) runoff. In Figure 6a the dashed-
dotted line is a fit to the point sample variograms (circles) of
precipitation. The other lines have been derived from
regularization and fit the sample variograms of catchment
precipitation (symbols) well. In Figure 6b the dashed-dotted
line relates to hypothetical point runoff and has been back
calculated by fitting the regularized catchment variograms
(other lines) to the catchment sample variograms (symbols).
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6b) with catchment size is larger than for the case of
precipitation (Figure 6a).

4.6. Links Between Space Scales and Timescales

[42] The characteristic space-time scales have been
derived as those scale pairs where the spatial variogram
value is equal to the temporal variogram value (equation
(11)). The variograms for case 1 for each of the variables
considered have been used (Figures 2a, 3a, 4a, and 5a), as
the relative variances in space and time should be reflected in
the scale pairs, so normalization by the variance is not
appropriate. The space scale-timescale traces are shown in
Figure 7. Each line shows the trace for one of the data types
representing one process. The traces have been slightly
extrapolated beyond the range covered by the data points

(Figures 2a, 3a, 4a, and 5a) but only to an extent we deemed
reliable given the fit of the variogram models to the vario-
grams estimated from the data. The box in Figure 7 shows
the minimum spacing and the maximum extent of the
available precipitation and runoff data, both in space and
time, i.e., 1 km to 700 km and 1 day to 30 years. The box
thus represents the space-time range over which the precip-
itation and runoff data are reliable without extrapolation. As
all of the precipitation data types lie outside the box, the
precipitation space-time scales obtained here need to be
interpreted with caution. However, the runoff traces are
well within the reliable range. The traces in Figure 7 have
been superimposed on the figure taken from Blöschl and
Sivapalan [1995] representing schematic relationships
between spatial and temporal process scales in hydrology.

Figure 7. Schematic relationship between spatial and temporal process scales in hydrology [from
Blöschl and Sivapalan, 1995] shown together with the space-time traces of characteristic scales obtained
in this paper. The rectangle indicates the minimum spacing and the maximum extent of the precipitation
and runoff data, both in space and time.
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It is now interesting to compare whether the traces obtained
from the variogram analysis fit to the schematic. In order to
assist with the interpretation two quantities have been
derived from the space-time traces. The first is the charac-
teristic velocity V=L/T where T is timescale and L is space
scale. The characteristic velocities are a measure of the
position of the traces in Figure 7 with high velocities plotting
on the bottom right-hand side and low velocities plotting on
the top left-hand side. The second quantity is the scaling
exponent z as in equation (3). The scaling exponent is
equivalent to the slope of the traces in Figure 7 as it is a
double logarithmic plot. The scaling exponents have been
obtained by fitting equation (3) to the traces over the reliable
scale range. The characteristic velocities for different space
scales and the scaling exponents are summarized in Table 4.
Values shown in brackets have been extrapolated and are less
reliable than the other values. For comparison, the same
quantities have been derived but for transformation case 2 to
examine the effect of the transformation (Table 5). Most of
the values are very similar although groundwater and soil
moisture characteristic velocities are somewhat larger for
case 2. This is related to the relative magnitudes of the spatial
and temporal variances which for these two variables do
change when normalized (Figures 4 and 5) while they do not
for precipitation and runoff (Figures 2 and 3).
[43] For precipitation the traces of space-time scales in

Figure 7 fall within those shown as fronts and squall lines in
the schematic. There seems to be little difference between
the traces for point precipitation and the traces for catch-
ment precipitation for catchments of different size classes.
For daily precipitation the characteristic velocities are of the
order of 3 to 10 m/s, which is slightly lower than what one
would expect from the literature. There is likely some bias
due to using daily precipitation sums, which can easily

account for these differences. The trace for hourly precip-
itation has larger characteristic velocities than that of daily
precipitation (about 5 to 30 m/s). Even though these traces
need to be treated with caution as they stem from a
combination of temporal hourly data and spatial daily data
they seem to be less biased when compared with the
schematic. The slopes or scaling exponents of the traces
of precipitation are all about 0.5 (0.6–0.7 for hourly
precipitation), which is lower than the 0.9 consistent with
the schematic. This implies that the characteristic velocities
increase significantly with scale. This might also be due to
the use of daily precipitation data because the greatest
smoothing occurs at the shortest timescales, which is likely
to result in a greater underestimation of velocities for the
short timescales and thus a lower scaling exponent.
[44] For runoff the space scale-timescale traces are slower

than the scales shown for channel flow in the schematic and
larger than the scales shown for subsurface storm flow and
saturation excess overland flow. As suggested by Blöschl
and Sivapalan [1995], their schematic shows individual
processes. Runoff, however, is the combined result of runoff
generation processes such as subsurface storm flow and
saturation excess overland flow and runoff routing in the
stream channel. The combined process will likely have the
largest of the timescales of the component processes because
runoff can be thought of as a system in series consisting of
runoff generation and routing. Also, the runoff generation
processes shown in the schematic are mainly related to
individual events while the temporal variograms have been
derived from continuous runoff data. This means that the
variograms will also capture slower processes between
events, such as moisture redistribution and drainage, and
hence exhibit somewhat slower scales than shown for the
events in the schematic. The characteristic velocities for

Table 4. Characteristic Velocities and Scaling Exponents z in Equation (3) for Case 1a

Process Size 0.01 km 0.1 km 1 km 10 km 100 km 1000 km z

Precipitation point (3.1) (10) 0.5
Precipitation small (3.7) (12) 0.5
Precipitation medium (3.6) (12) 0.5
Precipitation large (3.9) (13) 0.5
Precipitation hourly (5.5) 12 27 0.6
Runoff small (0.032) 0.040 0.069 (0.18) 0.8
Runoff medium (0.089) 0.075 0.082 (0.20) 1.0
Runoff large (0.190) 0.096 (0.19) 1.3
Groundwater level (velocities � 10�3) 0.39 0.68 0.80 (0.75) 0.8
Soil moisture (velocities � 10�3) 0.063 0.20 0.28 0.5

aNumbers in parentheses have been extrapolated beyond the data. Velocities have units of m/s.

Table 5. Characteristic Velocities and Scaling Exponents z in Equation (3) for case 2a

Process Size 0.01 km 0.1 km 1 km 10 km 100 km 1000 km z

Precipitation point (3.2) (10) 0.5
Precipitation small (3.4) (11) 0.5
Precipitation medium (3.5) (12) 0.5
Precipitation large (3.9) (13) 0.5
Precipitation hourly (5.3) 11 25 0.7
Runoff small (0.023) 0.041 0.072 (0.030) 0.8
Runoff medium (0.055) 0.066 0.081 (0.061) 0.9
Runoff large (0.165) 0.100 (0.089) 1.2
Groundwater level (velocities � 10�3) 0.56 1.1 4.3 (9.4) 0.8
Soil moisture (velocities � 10�3) 0.31 1.2 4.9 0.4

aNumbers in parentheses have been extrapolated beyond the data. Velocities have units of m/s.

SKØIEN ET AL.: CHARACTERISTIC SCALES IN HYDROLOGY SWC 11 - 13



runoff are on the order of 0.04–0.2 m/s which is slower than
what one would expect for channel flow (1 m/s) and similar
to what one would expect for subsurface storm flow and
saturation overland flow. The traces for catchments of
different size classes are significantly different in terms of
their slope. The smallest catchments have the smallest
scaling exponent (0.8), indicating increasing velocities with
scale, while the largest catchments have the largest scaling
exponent (1.3), indicating decreasing velocities with scale.
The differences between catchment sizes are much larger for
runoff than they are for precipitation.
[45] For groundwater levels, the space scale-timescale

traces are close to the scales shown for gravel aquifers in
the schematic. As would be expected the characteristic
velocities are much slower than those for the other
processes and are on the order of 5 � 10�4 m/s which
is about 50 m/day. This is faster than what one would
expect as an average flow velocity in all the aquifers from
which the data have been taken. It is likely that the
characteristic velocities here are related to the celerity with
which a perturbation moves through a system. Pressure
waves in groundwater systems move much (10 to
100 times) faster than flow velocities, particularly in
confined aquifers, which explains the difference. The slope
or scaling exponent of the trace of groundwater levels is
about 0.8, which is slightly lower than the 0.9 consistent
with the schematic. This implies that the characteristic
velocities increase slightly with scale.
[46] For soil moisture, the space scale-timescale trace

plots directly on those shown for unsaturated flow in the
schematic. The characteristic velocities range between 1 �
10�4 and 3 � 10�4 m/s which are about 0.3 to 1 m/hour.
The slope or scaling exponent of the trace is about 0.5,
which implies that the characteristic velocities increase
significantly with scale.

5. Discussion and Conclusions

5.1. Timescales

[47] Characteristic timescales exist for both precipitation
and runoff as the temporal variograms are stationary. Their
e-folding distances are on the order of 1 day and two to
three weeks, respectively. Soil moisture is only approxi-
mately stationary with a characteristic timescale of about
two weeks. As we move down into the subsurface the
temporal variograms become even more nonstationary and
the e-folding distance increases. The groundwater level
variograms exhibit an e-folding distance of about half a
year. This increase in the characteristic timescales can be
thought of as a filtering effect as the water moves on the
surface and into the subsurface which removes some of
the short term fluctuations and imposes a longer memory on
the time variations. This filtering, if linear, can be mathe-
matically represented by a convolution operation of routing,
both on the surface and in the subsurface, which will always
increase the characteristic scale [e.g., Dooge, 1973]. Even if
most of the hydrologic processes involved here are known
to be nonlinear, qualitatively, linear system theory provides
a nice framework for the increase in timescales as water
flows through a series of compartments.
[48] These filtering concepts can also be used to illustrate

the increase in nonstationarity as one moves down into the

subsurface. The fractal power of the variogram (b) can be
seen as the ratio of large-scale variability and small-scale
variability [e.g., Blöschl, 1996]. While the small-scale
variability of precipitation in time is very high, and practi-
cally removes our ability to see the long time variability
(b = 0), some of the small-scale variability is filtered out for
the other processes. For runoff, b is very small but greater
than zero, for soil moisture b is about 0.04, and for
groundwater levels b = 0.1. The slower processes are more
affected by the long time variability of precipitation. Indeed,
if one fits equation (7) to a variogram estimated from time
series of annual precipitation totals (not shown here), b is
about b = 0.1 for the Austrian data used here. This similarity
with the long term behavior of groundwater levels is quite
remarkable.
[49] It is interesting to relate these results to the huge

body of hydrological literature on time series analysis [see,
e.g., Fleming et al., 2002]. For many variables, short
records will indicate stationary behavior although, as the
record length increases, there is evidence for nonstationarity
[e.g., Kirchner et al., 2000], particularly if one examines
extremes as in the classical paper of Hurst [1951]. The
stationary behavior of precipitation is also partly due to our
choice of examining continuous time series of precipitation.
If the time variability within events is examined, most
analyses find nonstationary behavior, which can be well
explained by different fractal concepts [e.g., Seed et al.,
1999].
[50] The effect of catchment size on the temporal e-folding

distance of both precipitation and runoff is small. For
precipitation there is a slight tendency for temporal e-folding
distances to increase with catchment size (0.83 days for
points, 1.04 days for large catchments). We used daily data
and it is possible that the effect would be larger if we used
higher resolution precipitation data. The precipitation anal-
yses of Seed et al. [1999], for example, showed that the
temporal e-folding distances for big grid elements (128 �
128 km) were significantly longer than for small grid
elements (4 � 4 km) although their work focused on
individual storms rather than continuous series. While the
overall levels of the variograms (i.e., the variances) of
runoff decrease dramatically with catchment size the
increase in the temporal e-folding distance is relatively
small. Apparently, the tendency of slower response times
with increasing catchment area that one would expect,
only slightly changes the relatively constant temporal
variability of the precipitation forcing, as precipitation
becomes runoff. This implies that the slowest process
(i.e., that which controls the extent of temporal smoothing
of precipitation) is related to generation of runoff rather
than routing of runoff. This is supported by the similarity
in e-folding timescales for runoff and soil moisture. It is
likely that this behavior would change when one moves to
the very big catchments around the world in which routing
times of months occur.

5.2. Space Scales

[51] Characteristic space scales do not exist for point
precipitation as the spatial variograms are clearly nonsta-
tionary and approximately fractal. This is consistent with a
substantial body of literature on the fractal behavior
of rainfall processes [e.g., Lovejoy and Schertzer, 1985]
although some authors state that spatial rainfall variability
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may exhibit a more complex behavior than that suggested
by the power law in equation (1), e.g., multifractality
[Gupta and Waymire, 1990]. As one moves from point
precipitation to catchment precipitation, a break appears in
the variograms which is more pronounced for large catch-
ments than it is for small catchments. Clearly, the averaging
over a catchment area imposes a characteristic spatial scale
on precipitation. These aggregation effects are consistent
with spatial regularization methods, i.e., simple linear
aggregation or filtering in space. The main effect of the
aggregation by catchments is to filter out the small-scale
variability (i.e., the variograms get steeper at short lags), to
reduce the overall variance (i.e., the overall level of the
variograms decreases), and to increase the e-folding dis-
tance. The spatial variograms of runoff are similar to those
of catchment precipitation in that they exhibit a break, and
consist of a steep part at short lags and a flatter part at large
lags. Again, catchment size appears to impose a character-
istic spatial scale. When moving from small catchments to
large catchments the characteristic scales of runoff increase
from about 20 km to about 60 km. The characteristic space
scale of back calculated point runoff is much smaller
(0.7 km) which is consistent with this catchment scale
effect. These differences in the e-folding distances are larger
than those for catchment precipitation where the e-folding
distance increased by about 20% when moving from small
to large catchments while the e-folding distance tripled in
the case of runoff.
[52] Catchment runoff exhibits a stronger aggregation

behavior than catchment precipitation. Woods et al. [1995]
performed a similar analysis of spatial variance of runoff
although their catchment sizes were smaller (<10 km2) than
in this paper. They found that the variance between catch-
ments decreased faster than with the inverse of catchment
area. A decrease of variance with the inverse of catchment
area would result if point runoff were an uncorrelated
random field. They interpreted the faster decrease as an
evidence of spatial organization. An alternative interpreta-
tion is that their fast decrease is a result of increasing
catchment response times with catchment scales, i.e.,
space-time aggregation effects. In this paper the spatial
variance of runoff does decrease strongly with catchment
size, but it is less than with the inverse of catchment area
(e.g., s2 = 0.3 for a medium catchment size of 36 km2 and
s2 = 0.15 for a medium catchment size of 701 km2, Table 2).
Hypothetical point runoff may therefore be spatially corre-
lated which is consistent with the results from the regular-
ization analysis.
[53] It is also of interest to compare the spatial vario-

grams of runoff obtained here with the theoretical vario-
grams of Gottschalk [1993]. The main difference between
the variograms of Gottschalk and those derived here is that
Gottschalk [1993] took into account the spatial network
structure while this has not been done here. He suggested
that the organization of the landscape into catchments
implies that the spatial runoff field is nonhomogeneous
and can be better described by a tree-structure than by a
homogeneous random field. With this type of spatial
structure, the variograms are no longer second order
stationary but will change with location. Gottschalk
[1993] assumed an exponential spatial variogram for
hypothetical point runoff applicable to the average runoff

from a number of events. He then plotted the correlation
against distance along the river rather than lag as has been
done here. When going from points to catchments the
shape of the variograms changed in a similar fashion as it
does in this paper. The overall level of the variograms
decreased (i.e., better correlations) and the spatial e-folding
distances increased (i.e., correlations over longer distances)
as catchment size increased. It would be interesting to
apply the method of Gottschalk [1993] to the data used
here to see how much the effects of nonhomogeneity will
change the spatial variogram shapes.
[54] As one moves from catchment precipitation to run-

off, the spatial e-folding distance decreases for the small
catchments and it is still shorter for groundwater levels
(59 km, 18 km and 8 km for catchment precipitation, runoff
and groundwater levels, respectively, Table 2). This means
that the characteristic spatial scales of the processes
decrease as the water moves through the hydrologic system.
We suggest that this is the result of a superposition of the
small-scale variability of catchment and aquifer properties
on the rainfall forcing. Both soils and aquifer characteristics
tend to by highly variable at small scales [see Roth et
al., 1990; Gelhar, 1993, p. 292]. These smaller scales are
then imposed on the spatial variability of the water fluxes.
[55] It is interesting to contrast this reduction of spatial

scales with the increase in temporal scales by catchments
and aquifers discussed above. The main reason for this
difference is that, in the time domain, the routing processes
can be thought of as a convolution which will always
increase the characteristic scales as the water flows on the
surface and through the subsurface. This aggregation in time
also effectively results in a smoothing of the precipitation
forcing of the system in space as a consequence of the
space-time correlations in the precipitation field. However,
this space-time smoothing of forcing is dominated by a
second spatial effect. The most important effect in the space
domain is not a convolution that takes place for a given
catchment area but rather it is the transformation of rainfall
to rainfall excess and recharge which can be represented, for
example, by a multiplicative or additive operation [see, e.g.,
Woods and Sivapalan, 1999]. In addition to this spatially
variable point scale transformation, processes such as lateral
flow can add spatial variability at small spatial scales, as is
the case with soil moisture on hillslopes. If a large-scale
random field (precipitation) is combined with a small-scale
random field (soils) the resulting field will exhibit interme-
diate scales and this is what we see for runoff and ground-
water levels. As one moves from small to large catchment
runoff the spatial scales increase because of aggregation
effects.
[56] The e-folding distance we found for soil moisture is

much smaller than that for the other processes. This fits into
the above reasoning of soil characteristics imposing short
space scales. However, it should be noted that the overall
extent of the data used here was much smaller than that of
the other variables which may bias the estimated character-
istic scales toward smaller scales [e.g., Blöschl, 1999]. It is
also worth comparing the fractal shape of the spatial vario-
grams found here to reviews of Western et al. [1998, 2002].
Most of the variograms compiled by Western et al. suggest
stationary spatial soil moisture variability with characteristic
scales on the order of tens to hundreds of meters. It is
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possible that part of the difference between the results of
this paper and those of Western et al. [1998, 2002] is related
to removing the spatial organization of the soil moisture
patterns here, as we focused on the random part of the
variability rather than on the deterministic part. The spatial
organization imposed by the landscape may exhibit a
characteristic spatial scale [Western et al., 1999], which
however will not be apparent if only the random component
is examined. Also it should be recalled that the shape of our
variograms at the largest lags suggests some uncertainty in
the interpretation of stationarity. However, where interme-
diate extents of up to tens of km have been examined,
fractal behavior has been observed [Rodrı́guez-Iturbe et al.,
1995]. This may suggest that the underlying soil moisture
variability is indeed nonstationary, which may however not
appear in the variogram analysis because of the limited size
of an individual case study. It should be noted that soil
moisture is a bounded variable, so one would not expect the
variogram to increase without bounds. Indeed, Entin et al.
[2000] found stationary behavior at scales above hundreds
of kilometers.

5.3. Links Between Space Scales and Timescales

[57] The space-time traces of characteristic scales as
derived from equating the variogram values of the spatial
variograms and those of the temporal variograms fit well into
the schematic diagram of space-timescales proposed by
Blöschl and Sivapalan [1995]. The characteristic velocities
for precipitation and runoff are on the order of 10 and 0.1 m/s
respectively. The characteristic velocities of both groundwa-
ter levels and soil moisture range between 10�4 and 10�3m/s.
There are order of magnitude differences between the differ-
ent processes, and it is these one means to capture when
characterizing processes by characteristic scales as discussed
in the introduction. There are some minor differences
between the schematic and the traces found here which can
all be explained on the basis of process reasoning and data
characteristics. The traces for daily precipitation are slightly
slower than those in the schematic, which may be related to
biases imposed by using daily precipitation data. The traces
for hourly precipitation are slightly faster than those in the
schematic, which may be due to biases introduced by
combining hourly temporal variograms and daily spatial
variograms. For example, Seed et al. [1999] showed that
hourly precipitation is less well correlated in space (shorter
e-folding distances) than daily precipitation, so the assump-
tion made here may overestimate the characteristic velocities
slightly.
[58] The characteristic velocities of runoff found here are

somewhat slower than those suggested by the schematic of
Blöschl and Sivapalan [1995]. As suggested earlier in this
paper this is likely to be due to both the processes and the
scales considered. The schematic focuses on single events
while we examined continuous series and the schematic also
represents individual processes while we examined runoff
as the combination of a number of processes. Our analysis
utilized daily flow data and most catchments were less than
1000 km2, thus the routing times for surface runoff would
generally be less than a day. However the temporal scales of
runoff are much longer than a day. This means that the
temporal pattern of flow is dominated by the temporal
behavior of precipitation forcing and runoff generation

processes at daily and longer timescales, not by the routing
of surface runoff, in catchments of this size. Comparisons of
the small, medium and large catchments show that neither
the scales of the temporal forcing or the filtering of that
forcing depend on catchment size. However there is a
significant increase in the spatial scales as one moves from
small to large catchments. This combined with the spatially
independent temporal scales leads to the apparent increase
in velocity with spatial scale.
[59] In general there is a fundamental difference in how

the landscape modifies the meteorological forcing in space
and time. It removes temporal variability and adds spatial
variability. The landscape can be conceptualized as a
collection of parallel (vertical stores) that interact laterally
to some extent via different flow paths, including overland
and shallow subsurface flow paths determined by, and thus
limited to the scale of, the topography as well as deeper
groundwater flows through aquifers, typically at somewhat
larger scales. There are also spatial differences in these
stores due to variations in soil and vegetation properties.
The stores act in time to filter out variance in the forcing,
especially at smaller temporal scales.
[60] These storage effects increase the characteristic

timescale from about 1 day for rain to 10 days for soil
moisture and a hundred days for groundwater, which also
becomes nonstationary as a consequence. The runoff
response timescales are a mix of the soil moisture and
groundwater response timescales because runoff is influ-
enced by both soil moisture and groundwater. The soil
moisture affects the partitioning of rainfall into infiltration
and runoff, as well as the subsurface storm flow and
interflow processes. The groundwater affects the base flow.
However spatial differences between the stores mean that
this temporal filtering is spatially variable. Milly and
Wetherald [2002] showed how storage in the saturated
zone and in surface waters acts as a low-pass filter that
damps small-scale variability in the time domain, but
leaves large-scale variability unmodified from that of
runoff production. The strength of the filter, in their paper
quantified by an effective water residence time, varied
widely from one catchment to another.
[61] In addition there are lateral interactions between

these stores. Some of these, such as subsurface lateral
flow, also add to the spatial variability of the soil moisture
field and hence the runoff field, by moving water from dry
upgradient (hilltop) to wetter downgradient (valley) loca-
tions. The end result of this landscape variability is to add
smaller-scale spatial variability to the large-scale spatial
forcing, thus resulting in a mixing of the spatial scales of
the landscape and of the forcing and a reduction in the
characteristic spatial scales from about 50 km for precip-
itation to about 10 km for groundwater. There is little
reduction in the spatial scale of runoff compared with
rainfall because the data used here is an integral over the
catchment area. Back calculated characteristic space scales
of hypothetical point runoff are indeed much smaller
(about 1 km). Note that the characteristic spatial scale of
soil moisture is difficult to compare to the other fields due
to the different spatial extent of the data sets. These
decreases in spatial scale are more than an order of
magnitude less than the increases in temporal scale, thus
the changes in process velocity that are discussed below
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result more from temporal effects that are related to
residence times and flow velocities through the various
stores than from spatial effects.
[62] Most of the space-time traces of characteristic scales

plot as straight lines or approximately straight lines in the
double logarithmic diagram indicating that space-time scales
are related by a power law of the form of equation (3). The
scaling exponents z found here are somewhat flatter than
those shown in the schematic of Blöschl and Sivapalan
[1995] and there are significant differences between the
processes examined here. We will interpret the scaling
exponents found here in the context of environmental
transport processes. Taylor’s [1938] hypothesis states that
instead of measuring spatial variability one can measure
temporal variability, and then calculate spatial variability by a
simple conversion factor, the characteristic velocity. Taylor’s
hypothesis holds if the diffusion of the process is signifi-
cantly smaller than advection, i.e., if a perturbation moves
sufficiently fast through the sensor that it does not change
too much during the time it passes the sensor. One way to
express this relationship is the Peclet number which is the
ratio of the advective term and the diffusive term in, say the
groundwater advection dispersion equation. If the Peclet
number is significantly larger than unity, then advection
dominates and one would expect Taylor’s hypothesis to
hold. In the context of the present analysis one can replace
spatial variability by temporal variability if and only if the
spatial and temporal variograms of a particular process have
the same shape. If they do have the same shape then z in
equation (3) must be z = 1 as timescale and space scale must
be proportional with a simple conversion factor, the charac-
teristic velocity. We argue here that, conversely, if z = 1 we
can expect that advection dominates over diffusion. On the
other hand if z < 1 then one would assume that diffusion
plays a significant role. Because of z < 1 the characteristic
velocity will increase with both space scale and timescale.
This may be due to diffusive processes that come into play
and contribute to changing the shape of a perturbation in
addition to advection. The combined effect of advection and
diffusion will give rise to larger characteristic velocities than
advection alone.
[63] In the light of this reasoning we will interpret the z

values found here. Precipitation gives a relatively small
value of z = 0.5 implying, if one accepts the interpretation
suggested above, that diffusion is quite important. For the
space-time scales examined here this is likely, as the
weather systems do change significantly within a day as
they move over Austria, as evidenced by weather radar
images. The value of z is also consistent with the range of
z = 0.5–0.6, found from radar data analysis by Foufoula-
Georgiou and Vuruputur [2000] even though they worked
at a timescale of minutes rather than days as is the case here.
For groundwater, z is significantly larger than the value for
precipitation (z = 0.8), which may suggest that advection
becomes relatively more important. All the groundwater
level data used here stem from porous aquifers with
significant lateral movement. Some of the aquifers are
in mountain valleys and the water flow follows the topo-
graphic gradient. Other aquifers such as the Südliches
Wiener Becken aquifer south of Vienna, again, has rela-
tively high flow velocities which result from significant
recharge in the upstream part adjacent to the mountains but

very little recharge in the lower flatter part of it. Soil
moisture on the other hand has a much smaller value
of z = 0.4–0.5, suggesting that advection is relatively
unimportant as compared to diffusion. This is consistent
with field observations in some of these catchments, which
indeed suggest that the lateral redistribution of soil moisture
is limited to a relatively short time of the year [Grayson et
al., 1997]. For the case of catchment runoff, z differs with
catchment size class. For the smallest size class z = 0.8,
implying that advection is relatively more important than
diffusion as compared to precipitation. As catchment size
increases, so does z, implying that the importance of
advection over that of diffusion increases even more. This
can be related to the longer stream distances and stream
routing times in larger catchments, which would suggest
that they more strongly impose the characteristics of
advection on the space-time variability of runoff than is
the case in smaller catchments. One can also speculate that
if one extrapolates the runoff traces in Figure 7 from large
catchments beyond small catchments to give a trace for
hypothetical point runoff, this trace would be flatter, per-
haps with a slope of z = 0.5–0.6. This slope is consistent
with diffusion being quite important relative to advection,
which is what one would expect for hypothetical point
runoff. However, this reasoning is somewhat speculative as
it does not explain the z values larger than unity for large
catchment runoff. Although the interpretations offered
above are of a general nature, it is believed that they may
contribute to a better understanding of macroscale space-
time hydrologic variability in the spirit of Dooge [1986].

5.4. Outlook

[64] The main strength of this paper, we believe, is that
space and time variograms have been examined over many
orders of magnitude, which is needed for a robust analysis
of the presence of characteristic scales. This has been
made possible by using a relatively comprehensive data set
for each variogram. However, the robustness has been at
the cost of lumping together a large number of stations for
the temporal variograms, and a large number of time steps
for the spatial variograms. This implies that many different
subprocesses have been lumped together. Ideally one
would like to derive characteristic scales for individual
processes separately, in order to be able to link process
and scale more closely. One example of this classification
in the context of scale is given by Skaugen [1997] who
classified precipitation events into two groups according to
their spatial characteristics. He then calculated variograms
for each of these groups separately. The groups had quite
contrasting properties. One of the groups exhibited sta-
tionary variograms with characteristic scales on the order
of 10 km while the other group exhibited nonstationary
variograms with characteristic scales of 100 km or more.
A process classification for runoff and catchment state has
been suggested by Blöschl et al. [2000] which should be
applicable to the problem studied here and will be pursued
in future work.
[65] Another obvious extension of the work in this paper

is to examine space-time aggregation effects. Although we
were able to fit spatially aggregated runoff variograms to
catchments of different size classes in a consistent way, a
more complete approach would involve both spatial and
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temporal aggregation effects by making use of catchment
size and catchment response times, respectively. For space-
time regularization more elaborate space-time variogram
models are needed such as those suggested by De Cesare
et al. [2001] and Christakos [2000].
[66] Some initial attempts at making use of characteristic

scales of hydrologic processes as those derived in this paper
do already exist. One example is network planning and the
examination of scale effects in the context of soil moisture
measurements [Western and Blöschl, 1999]. However, over-
all, we are still at a very early stage as compared to other
disciplines. It is hoped that the characteristic scales of
hydrologic processes as derived in this paper will contribute
to fostering a more wide spread use of characteristic scales
in hydrology.

[67] Acknowledgments. Our research work has been supported
financially by the Austrian Academy of Sciences project HOE18, and
the Cooperative Research Centre for Catchment Hydrology, Australian
Research Council (projects C39804872, A39801842). We would like to
thank the Hydrographic Office at the Federal Ministry of Agriculture,
Forestry, Environment and Water Management in Austria for providing
the Austrian data. We gratefully acknowledge the highly constructive
comments of two anonymous reviewers.

References
Ambroise, B., La Dynamique du Cycle de l’Eau Dans un Bassin Versant,
200 pp., Editions HGA, Bucharest, Romania, 1999.

Anderson, M. G., and T. P. Burt, Subsurface runoff, in Process Studies in
Hillslope Hydrology, edited by M. G. Anderson and T. P. Burt, pp. 365–
400, John Wiley, Hoboken, N. J., 1990.

Austin, P. M., and R. A. Houze, Analysis of the structure of precipitation
patterns in New England, J. Appl. Meteor., 11, 926–935, 1972.
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McMahon, Observed spatial organization of soil moisture and its relation
to terrain indices, Water Resour. Res., 35, 797–810, 1999.

Western, A., R. Grayson, and G. Blöschl, Scaling of soil moisture: A
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