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Abstract

Over the past two decades there have been repeated calls for the collection of new data for use in developing hydrological science.

The last few years have begun to bear fruit from the seeds sown by these calls, through increases in the availability and utility of

remote sensing data, as well as the execution of campaigns in research catchments aimed at providing new data for advancing

hydrological understanding and predictive capability. In this paper we discuss some philosophical considerations related to model

complexity, data availability and predictive performance, highlighting the potential of observed patterns in moving the science and

practice of catchment hydrology forward. We then review advances that have arisen from recent work on spatial patterns, including

in the characterisation of spatial structure and heterogeneity, and the use of patterns for developing, calibrating and testing dis-

tributed hydrological models. We illustrate progress via examples using observed patterns of snow cover, runoff occurrence and soil

moisture. Methods for the comparison of patterns are presented, illustrating how they can be used to assess hydrologically im-

portant characteristics of model performance. These methods include point-to-point comparisons, spatial relationships between

errors and landscape parameters, transects, and optimal local alignment. It is argued that the progress made to date augers well for

future developments, but there is scope for improvements in several areas. These include better quantitative methods for pattern

comparisons, better use of pattern information in data assimilation and modelling, and a call for improved archiving of data from

field studies to assist in comparative studies for generalising results and developing fundamental understanding.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

In 1995, Hornberger and Boyer finished their report

to the IUGG on recent advances in watershed model-

ling, 1991–1994, by saying:

‘‘It may seem strange to end a review of modelling

with an observation that future progress is very

strongly linked to the acquisition of new data and

to new experimental work, but that, in our opinion

is the state of the science.’’

What Hornberger and Boyer [50] were responding to

was the fact that, while the technology of modelling had

advanced over the previous few years, the fundamental
development of modelling ideas had ‘‘run out of steam’’.

There had been some technical developments in relation

to the use of terrain data and development of distributed

models (as well as improvements in the availability of

remote sensing and chemical data) but most of these had

been in the application of ideas that had existed for
some time, their implementation being made possible by

the ever decreasing cost of computing power. Beven and

Moore [14] and Rosso [87] detailed some of these ad-

vances and explored the issues associated with what was

then a relatively new technology of distributed hydro-

logical models. But in essence, the problems that Hillel

[49] and Kleme�ss [63] had noted almost a decade ear-

lier––that progress was being stymied by a lack of ap-
propriate data––were still very real.

What brought us to this point in the early 1990s

where there was an explosion in the development and

use of spatially explicit hydrological models, which has

continued to today? There are at least two answers. The

first is technological––the ever increasing availability of

digital elevation data, GISs to manipulate spatial data
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of all sorts, and the decreasing cost of computing power.

The second is the rise in environmental awareness of the

broader community and its subsequent impact on re-

search into, and the management of, natural resources.

We now want to know not only what is the quantity and
quality of water in a stream, but also from where any

contaminants came and where best to invest scarce fi-

nancial resources to help rectify the problem. We now

need predictions of the hydrological (and ecological)

impacts of land use and climate change––predictions

that must at least account for the spatial variability we

see in nature, and more often provide spatial estimates,

if they are to be of any practical use. Natural resource
agencies have been amassing large amounts of spatial

data to complement the temporal data traditionally

measured, and are eagerly looking to use this for pre-

dictive spatial modelling of environmental response. In

principle, we have the tools available to undertake this

work and already, the spatial models and impressive

colour graphics that our GISs generate are attractive to

politicians and administrators [45]. But, as Hornberger
and Boyer pointed out, there are significant problems

with the representation of scale and heterogeneity, with

the extent to which some of these data sets and models

are appropriate for hydrological applications, and con-

sequently with the scientific credibility of predictions.

In recent times there have been a number of general

discussions on distributed catchment modelling, in-

cluding applications to practical problems [1] and a
comprehensive assessment of the current state of the art

[8]. But these have served more to consolidate the work

of the 1990s and propose new methodological advances,

rather than focus on new data sources. Nevertheless, the

calls of the 1980s and early 1990s for more research into

representing spatial heterogeneity, the collection of data

sets for the testing and development of distributed

models, and methods to how best deal with issues of
scale, have to some extent been heeded and it is these on

which we will focus in this paper. Specifically, we will

explore the use of spatial patterns of catchment response

that have arisen from detailed field studies for (i) des-

cribing the structure of heterogeneity and (ii) advancing

the testing and development of distributed hydrological

models.

We begin by briefly discussing some advances in
philosophical issues related to modelling, and a frame-

work for how to deal with the scaling issues that arise in

using data and models to understand processes, as well

as for predictive purposes. We then describe, through

example, the types of pattern information that are

available to the modeller and some general consider-

ations in their use. This is followed by a summary of

recent results related to characterising the structure of
heterogeneity that are based on recently completed field

studies. We then briefly present three case studies from

very different hydrological environments where pattern

information was used to test distributed models and

summarise what was learned from the use of observed

spatial patterns. Finally we discuss pattern comparison

techniques and propose some new approaches and av-

enues for further research that we believe will underpin
further advances in both our understanding of spatial

hydrological response and our predictive ability.

2. Advances in philosophy

The debate that had raged in the 1980s and early

1990s about the relative merits and capabilities of

physically based and conceptual models has largely
subsided. Problems with the use and interpretation of

distributed models are better understood [1,10]) and the

formalised testing procedures proposed for such models

(e.g. [84,85]) have illustrated that the earlier tendency

to believe the distributed output from models, having

tested only an integrated value such as runoff, was un-

sound. This has placed greater importance on the col-

lection and analysis of spatial response data to improve
model performance.

Fig. 1 (after Grayson and Bl€ooschl [46]) illustrates the
conceptual relationship between model complexity, the

availability of data for model testing, and predictive

performance of the model. We use the term ‘‘data

availability’’ to imply both the amount and quality of

the data in relation to its use for model testing. Having

data on spatial response is equivalent to ‘‘large’’ avail-
ability while just runoff data would imply ‘‘small’’

availability. We use the term ‘‘model complexity’’ to

mean detail of process representation. Complex models

include more processes and so are likely to have more

parameters.

If we have a certain availability of data (e.g. solid line

in Fig. 1), there is an ‘‘optimum model complexity’’

beyond which the problems of non-uniqueness become
important and reduce the predictive performance. There

Fig. 1. Schematic diagram of the relationship between model com-

plexity, data availability and predictive performance (after Grayson

and Bl€ooschl [46]).
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are too many model parameters and not enough data to

test whether the model is working, or is working for the

right reasons, which means that both the model struc-

ture and the model parameters cannot be identified

properly. We can use a simpler model than the opti-
mum, but then we will not fully exploit the information

in the data (e.g. intersection of solid and dashed lines).

For given model complexities (e.g. dashed and dotted

lines), increasing data availability leads to better pre-

dictive performance up to a point, after which the data

contains no more ‘‘information’’ to improve predictions

i.e. we have reached the best a particular model can do

and more data does not help improve performance (the
dashed and dotted lines flatten out as data availability

increases). In this case, we could consider a more com-

plex model to better exploit the information in the data.

The more common situation for practical applications

of distributed modelling is represented by the intersec-

tion of the dotted and solid lines, where we are using too

complex a model with limited data and so have identi-

fiability problems. Increased data availability is needed
to significantly improve the predictive performance.

In practice, the ‘‘optimum model complexity’’ implied

in Fig. 1 does not mean an optimum model or parameter

set. Beven [13] introduced the term ‘‘equifinality’’ to

describe the situation where there are a large number of

models or parameter sets that equally well describe some

given data. He argues that equifinality is endemic in

environmental modelling and that the only way to sen-
sibly deal with it is to explicitly account for the uncer-

tainty that it introduces, and to focus attention on

seeking data that enables rejection or falsification of

models on the grounds that they fail to represent ob-

served behaviour of the system [7,9,10]. Beven uses the

terms ‘‘behavioural’’ and ‘‘non-behavioural’’ (following

the terminology of Hornberger and Spear [51,52]) to

describe models that ‘‘fit’’ or ‘‘do not fit’’ with obser-
vations. If there are few observations, many models will

be ‘‘behavioural’’ (since they will not be falsified by the

data), but there will be a great deal of uncertainty as-

sociated with their predictions. We believe that observed

spatial patterns of hydrological response can be a

powerful discriminator of ‘‘behavioural’’ and ‘‘non-

behavioural’’ models. But to compare observed and

simulated patterns, we must be sure that they are rep-
resenting the same thing––not only the feature of in-

terest, but also that the scales of observation and

simulation match, or if they do not match, the effects of

this mismatch need to be defined. These are not trivial

problems and some significant conceptual advances

have been made to assist in dealing with these scale

issues.

A persistent problem in hydrological modelling in
general has been how to deal with the different scales (in

both space and time) on which processes operate, data

are available and models are formulated. Bl€ooschl and

Sivapalan [16] proposed a framework for considering

these issues. They introduced the notion of a ‘‘scale

triplet’’ defined by spacing, extent and support. Spacing

refers to the distance (or time) between samples, extent

refers to the overall coverage of the data (in time or
space), and support refers to the averaging volume or

area (or time) of the samples. All three components of

the scale triplet are needed to uniquely specify the space

and time dimensions of measurements of a pattern. A

similar scale triplet can be defined for a model. Bl€ooschl
and Sivapalan [16] and Bl€ooschl [17] then examined

how the measurement spacing, extent and support will

change the true pattern to be reflected in the data; and
how will the model spacing, extent and support change

the data to be reflected in the predictions. The basic idea

is that there is some similarity between these two steps.

Generally, if the spacing of the data is too large, the

small-scale variability will not be captured. If the extent

of the data is too small, the large-scale variability will

not be captured and will translate into a trend in the

data. If the support is too large, most of the variability
will be smoothed out. It is clear that some sort of fil-

tering is involved, i.e. the true patterns are filtered by the

properties of the measurement that are reflected in the

data. These scale effects can be quantified (see [6,17,36])

and, maybe more importantly, a qualitative use of these

ideas provides a guideline for how to best match the

scales of observed and simulated patterns, and if this

match can not be achieved what will be the effect of the
scale mismatch on the pattern comparison.

3. Types of pattern information

In this section we provide an overview of the types of

information that are available to modellers and some

general considerations in their use. We can identify at

least three distinct types of pattern information (i) ‘‘lots
of points’’ (LOP) where there is a sufficiently dense array

of point measurements to be interpreted as a pattern; (ii)

binary data and (iii) surrogate data. Each will be de-

scribed through examples from field studies.

3.1. Lots of points

Developments in measurement technology have en-

abled the rapid measurement of a number of variables of

hydrological interest that in earlier days had been time

consuming. Volumetric soil moisture as measured by

time domain reflectrometry (TDR) is a classic example
where it now takes only seconds to measure moisture

over a depth of interest. These devices can be placed in

situ to enable detailed temporal patterns of soil moisture

to be obtained, or combined with GPS technology and

an all terrain vehicle with hydraulic insertion of the

TDR probes, to produce a tool for the rapid collection
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of spatial soil moisture patterns over small catchments

(e.g. [96]). This approach has been used at a number of

locations including the 10 ha Tarrawarra catchment in

Australia [110], the 50 km2 Mahurangi catchment in

New Zealand [121], at Nerrigundah in Australia [108], at
Weiherbach in Germany [4,24,69], at Dartmoor, En-

gland [76] and sampling associated with the Southern

Great Plains experiments in the United States [77]. Also,

the general interest in spatial patterns, and availability

of rapid position fixing via GPS, has made it more

common to collect patterns of even ‘‘traditional’’ data

such as snow depth or snow density. For example, the 26

ha upper sheep creek in the Reynolds creek watershed
has snow depth patterns measured over several seasons

[71,72] and Yang and Woo [122] and Young et al. [123]

collected patterns of snow-related variables in the Ca-

nadian Arctic. Along similar lines, McDonnell et al. [73]

measured a detailed pattern of soil depth to bedrock in

the 41 ha Panola catchment for use as input data to a

terrain-based model of water movement. While there

have been no major advances in the rapid measurement
of soil hydraulic properties, it has still been possible to

get LOP patterns in small catchments such as the 0.75

La Cuenca [31] or the 10 ha R5 at Chickasha [70,91].

Key considerations in the use of LOP patterns are

whether there are really enough measurements to justify

a pattern, and how representative the point measure-

ment is of a larger area (i.e. how the support for the

measurement relates to the support of the model, and
how the measurement error compares to any underlying

pattern in the field). There is no direct answer to the

question of ‘‘how many points constitutes a pattern?’’

since it depends on the scale triplet of the measurement

in relation to the process affecting the measurements and

on the measurement error characteristics in relation to

the variability of the field being measured, but one an-

swer is ‘‘sufficient to infer the spatial structure’’, al-
though this itself is open to interpretation (see later

discussion on uncertainty in variograms). Grayson and

Bl€ooschl [47] discuss several LOP patterns where more

than 100 points are generally available. The question of

‘‘representativeness’’ also relates to the scale triplet, and

to the ‘‘signal-to-noise’’ ratio of the measurement field.

It is common for some form of filtering of field data to

be undertaken so that the scale of measurement better
matches the model to which it is being compared and to

deal with the measurement error. This filtering generally

takes the form of interpolation methods of varying

complexity [4,22,56]. Simple interpolation methods

generally fail to distinguish between features of patterns

that are hydrologically significant, and ‘‘noise’’. More

sophisticated methods such as co-kriging and external

drift kriging [4,22,42] are improvements, but require
some understanding of the physical significance of un-

derlying patterns to provide sound results. One ap-

proach to filtering that takes account of hydrologically

significant patterns is to correlate the patterns with a

deterministic measure such as terrain characteristics.

This deterministic pattern is then removed from the

data, the residuals smoothed (since these are more

normally distributed and spatially random, choice of
method is less critical) and the smoothed residuals added

back to the deterministic pattern. The residuals repre-

sent a combination of the measurement error and the

‘‘sub-grid’’ variability resulting from the support of the

measurement being smaller than the model grid size.

This approach has been used with rainfall, where ele-

vation is the most important terrain feature (e.g. [43])

and soil moisture, where a compound terrain index was
used [111].

3.2. Binary patterns

The most widespread binary patterns in hydrology

are probably snow cover, derived from aerial photo-

graphs (e.g. [18]) or from satellite remote sensing (e.g.

[26,27,86,119]).

Similarly the inundation area of floods can be viewed

in photographs and various satellite sensors including

high-resolution synthetic aperture radar (SAR) (e.g.

[53]) or high-resolution optical instruments (e.g. Land-
Sat ETMþ), or for large areas lower resolution optical

instruments (e.g. AVHRR [81]; see also Jensen and

Calabresi [60], for examples from a range of platforms).

A binary pattern of particular interest to catchment

hydrologists is the pattern of saturated areas, however

observations of these have been relatively rare, de-

spite their obvious utility [12]. The pioneering work of

Dunne [29,30] mapped saturated areas in the field and
in very recent times, their utility has been ‘‘re-discov-

ered’’, with a number of mapping projects occurring

(e.g. [37,61]). These ideas have been extended by Pes-

chke et al. [82] who mapped the type of runoff genera-

tion mechanism that occurs for a given catchment state,

based on many years of field investigation in the 4.6

km2 Wernersbach catchment in Germany. The mecha-

nisms identified by Peschke et al. [82] as binary patterns
of presence/absence, were Hortonian overland flow,

saturation excess overland flow, interflow, recharge and

storage.

Binary patterns are a classic example of a trade off

between detailed patterns and information in an indi-

vidual measurement. The detail illustrated in Fig. 2

is clearly of great diagnostic use in comparing model

performance, still it says little about the actual volume
of a snow pack. Binary patterns are therefore particu-

larly useful when used in conjunction with other data.

For example, snow cover patterns are complementary to

the measurement of discharge due to snow melt (e.g.

[19]). The latter provides a quantitative measure of the

change in water storage while the former indicates from

1316 R.B. Grayson et al. / Advances in Water Resources 25 (2002) 1313–1334



where it has originated. Similarly saturated areas, and

catchment discharge are complementary measures.

3.3. Surrogate patterns

Surrogate patterns are perhaps the most widely

available spatial data sources for catchment hydrology.

Surrogates are variables that show some (often limited)

degree of correlation to the pattern of interest but are

much easier to collect in a spatially distributed fashion.

Examples of surrogates include terrain [116], soil texture

to infer hydraulic properties (e.g. [34,83]) and remote
sensing data (where various characteristics of emission

or reflectance of radiation of different wavelengths are

correlated with features of interest such as vegetation

cover, surface temperature, or soil moisture). Terrain-

based wetness indices can also be thought of in this

context. Strictly speaking, virtually all measurements are

surrogates, but here we are referring to those where the

correlations are not extremely high. Like binary pat-
terns, there is often a trade off between the detail of the

pattern, and the correlation with the variable that is

being modelled.

Troch et al. [95] noted that analysis of individual

SAR scenes from operational satellites were too poorly

correlated with surface soil moisture to be a useful

surrogate, but Verhoest et al. [100] and Gineste et al. [41]

showed that multitemporal analysis of many SAR im-
ages could provide information on areas of the land-

scape that were continuously wet, providing a useful

surrogate for saturated areas. This is an excellent ex-

ample of where substantial analysis of pattern data was

needed to derive a usable surrogate pattern. In other

cases, models may need to be reformulated to be more

directly comparable to the surrogate measure. An ex-

ample is land surface schemes where the intention is to

compare satellite-derived ‘‘skin’’ soil moisture or tem-

perature with modelled values. Here the models must be

formulated with a shallow ‘‘skin’’ layer (e.g. [66]) rather
than the more common situation in catchment hydrol-

ogy of a depth integrated perhaps over the root zone.

The alternative to altering model structure to match

the observation is obviously to seek observations that

match the model structure. An interesting example of

this approach comes from the observations of T�ooth [94]

as applied to the equilibrium modelling of Salvucci and

Entekhabi [88] and Salvucci and Levine [89]. T�ooth made
field observations of natural time-integrators of sub-

surface flow conditions (e.g. presence of salt precipi-

tates) to provide a mix of quantitative and observational

surrogates for recharge and discharge, enabling a spatial

map of long-term recharge and discharge locations to be

derived. Such a pattern was ideally suited to comparison

with the equilibrium model [89] for which standard

measures such as time series of groundwater bores were
unsuitable due to limited temporal extents.

4. Characterising structure and heterogeneity

There are a number of ways in which one can gen-

eralise the detailed information obtained from exper-

imental studies designed around the collection and

analysis of spatial patterns of hydrological response.

Ideally one would like to obtain relationships that, ul-

timately, allow inference of spatial processes in a par-

ticular catchment without the need for detailed spatial

observations. If it is possible to obtain an accurate des-
cription of the spatial structure of, say, soil moisture for

a given climate, catchment state, geology, geomorphol-

ogy, etc. one can then hope to apply this description to

other catchments with similar conditions. Potential ap-

plications are designing experimental setups, interpo-

lating sparse point data, and defining the structure of

dynamic catchment models in terms of the representa-

tion of small-scale variability. In this section, we illus-
trate some recent advances in the characterisation of

structure and heterogeneity using data on spatial pat-

terns, in this case focussing on soil moisture.

A starting point is an examination of the spatial

statistical structure. Very detailed analyses of the TDR

soil moisture patterns collected in the 10.5 ha Tarra-

warra catchment in south-eastern Australia allowed the

derivation of variograms with a high degree of reliability
that would not have been possible with a few point data

[114]. The data suggested that exponential variogram

models, including a nugget, fitted the soil moisture

data variograms closely. The geostatistical structure was

found to evolve seasonally. High sills (15–25 (%V/V)2)

and low correlation lengths (35–50 m) were observed

Fig. 2. Snow cover patterns for the Schneealpe region of the Austrian

Alps, May 3, 2000. Brown is no snow, white is snow cover, (a) ob-

served from SPOT interpretation and (b) simulated by VUTS.
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during the wet winter period. During the dry summer

period sills were smaller (5–15 (%V/V)2) and correlation

lengths were longer (50–60 m). This seasonal evolution

is explained on the basis of the importance of lateral

redistribution of moisture during different seasons. The
availability of LOP patterns as opposed to a few point

data also enabled an analysis of the reliability of soil

moisture variograms. Western et al. [114] sub-sampled

transects from typical summer and winter soil moisture

patterns containing over 500 individual measurements

(Fig. 3a from (i) to (iv)) variograms are based on 44, 86,

164 and 296 points respectively (giving 16, 8, 4 and 2

estimated variograms respectively). i.e. if we had taken

just one sample, any of the variograms could have been

obtained. These comparisons indicate that very detailed

data sets (more than about 150 points in space) are re-
quired to reliably estimate variogram parameters that

are representative of the landscape. This adds a caveat to

the interpretation of variograms used for characterising

spatial structure and heterogeneity. It also imposes

practical limitations on the use of geostatistical methods

such as kriging which hinge on a reliable estimation of

Fig. 3. (a) Effect of sample size on the reliability of soil moisture variograms from Tarrawarra, May 2, 1996. (i) Based on 44 points, (ii) based on 86

points, (iii) based on 164 and (iv) based on 296 data points. (b) Variograms of snow covered area, i.e. a binary variable that is 1 for a snow covered

pixel and 0 for a snow free pixel. (i) Thin sections of snow (eight images for different snow types, pixel size is 0.1 mm); (ii) K€uuhtai aerial photographs

(nine scenes in 1989, pixel size is 5 m); (iii) Sierra Nevada AVHRR images (four scenes in 1998, pixel size is 1100 m). (c) Connectivity functions

calculated for indicator data from the Tarrawarra soil moisture patterns. (i) Seventy-fifth percentile indicator patterns for two occasions, pixel size is

10m� 20 m (ii) Connectivity functions sðhÞ for each occasion, (iii) normalised variogram for each occasion.
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the variogram, particularly of its correlation length (see

e.g. [57]).

It is interesting to compare the spatial correlation

found in the Tarrawarra catchment with correlations

obtained in other catchments around the world. Six

small catchment studies reviewed in Western et al.

[112,114] suggest that values of the correlation length

vary between 1 and 600 m and there is a tendency for
correlation length to increase with the catchment scale.

Studies at much larger scales (50–1000 km) [35,105]

from agricultural sites in the Former Soviet Union,

Mongolia, China, and the USA have found that soil

moisture variation could be represented as a stationary

field with a correlation length of about 400–800 km.

Vinnikov and Robock [105] and Entin et al. [35] noted

the existence of a smaller scale (<50 km) component to
the spatial variability that was unresolved by their data.

This scale dependence of the correlation length is il-

lustrated in Fig. 3b for the case of snow patterns from

three very different case studies [17]. Different lines in

Fig. 3b relate to different dates. The first set of vario-

grams (Fig. 3b(i)) was derived from a number of thin

sections obtained in the laboratory by scanning images

of snow crystals, i.e. binary images where 1 is ice and 0
is void. The correlation length (i.e. the scale where the

variograms flatten out) is on the order of 0.5 mm. The

second set of variograms (Fig. 3b(ii)) was derived from

aerial photographs of snow cover in the K€uuhtai catch-
ment, Austria, i.e. binary images where 1 is snow and 0

is no snow [18]. Correlation lengths are on the order of

100 m. The third set of variograms (Fig. 3b(iii)) was

derived from snow cover based on AVHRR images in

the Sierra Nevada region (K. Elder, personal commu-

nication). Correlation lengths are on the order of 30 km.

While the variograms in Fig. 3b do not apply to the

same date and the same location it is reasonable to as-

sume that their general shape will be similar for other

dates and locations. Their main difference then is the
scale at which the snow cover data have been collected.

This example from snow hydrology clearly illustrates

that descriptions of spatial correlation lengths are con-

ditional on the measurement scale. In practice this

means that the results from particular studies may be

applicable to other studies of similar scale, but cannot be

transferred to different scales without correcting for the

measurement effects (e.g. by regularisation [109]) and in
cases where the scales are very different, this may not be

possible.

While spatial correlations are one important way of

characterising structure and heterogeneity, it is not

necessarily the most meaningful in a hydrological con-

text. Ideally one would like to capture those features

that are most relevant to the movement of water on the

surface and in the sub-surface. Western et al. [113] ar-
gued that connected features such as high conductivity

preferred flow paths in aquifers and saturated source

areas in drainage lines control the lateral movement of

water, so it is the connectedness that needs to be rep-

resented by statistical measures of heterogeneity. They

tested the utility of connectivity functions of Allard [3],

Fig. 3 (continued)
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Allard and Group [2], Gould and Tobochnik [44], and

Stauffer and Aharony [93] on thirteen observed soil

moisture patterns from the Tarrawarra catchment and

two synthetic aquifer conductivity patterns. The con-

nectivity function applies to indicator values, Z, which
are binary patterns obtained by thresholding the origi-

nal pattern. Z ¼ 1 if the original value is above the

threshold, and Z ¼ 0 otherwise [115]. This connectivity

function is described by

sðhÞ ¼ P ðx $ xþ hjx 2 A; xþ h 2 GÞ ð1Þ

where G is the set of pixels making up the spatial pattern

and A is the set of pixels in G with Z ¼ 1. Two pixels, x

and xþ h in A are connected (denoted by x $ xþ h) if
there is a continuous path of neighbouring pixels be-

longing to A (x1; . . . ; xn 2 A) between them. The con-

nectivity function sðhÞ represents the lag dependent
probability that a pixel (x) in A, is connected to any

pixel (xþ h) in G, that is separated from x by the Eu-

clidian distance h.

The potential of this connectivity function is illus-

trated in Fig. 3c. Fig. 3c(i) shows two soil moisture

patterns from Tarrawarra, a disconnected pattern (left,

23 February, 1996) and a connected pattern (right, 22

April, 1996). These are indicator patterns at a 75%
threshold, i.e. pixels with soil moisture larger than the

75% percentile are dark (i.e. Z ¼ 1) while pixels with soil

moisture smaller or equal the 75% percentile are grey

(i.e. Z ¼ 0). Fig. 3c(ii) gives the connectivity function

calculated from these patterns by applying Eq. (1).

For the disconnected pattern, the connectivity function

drops quickly with distance while for the connected

pattern, the connectivity function remains at around 0.2.
The connectivity function can be interpreted as the

percentage of pixels that are connected over a certain

distance. This means that, say at a distance of 150 m,

20% of the pixels are connected in the connected pattern

case while only 1% of the pixels are connected in the

disconnected pattern case. These differences will clearly

be important for lateral flow and transport processes

in catchments. For comparison, Fig. 3c(iii) shows the
variograms calculated for the same soil moisture pat-

terns, which have been normalised by their sill (i.e.

variance). These variograms are very similar to each

other, which illustrates that the connectivity functions

are able to distinguish between connected and discon-

nected patterns while variograms cannot. Western et al.

[113] provide a wider number of examples for the po-

tential of the connectivity function approach. They
discuss potential applications in hydrology such as in

interpolation and stochastic simulation and for the

derivation of bulk parameters to characterise hydro-

logically relevant spatial characteristics of patterns.

These advances in the quantification of spatial

structure and heterogeneity in soil moisture have been

made possible only because LOP field observations were

sufficiently dense. As more data sets of observed spatial

response become available, we anticipate further ad-

vances in this area, and the development and testing of

better tools for the representation of spatial structure in
hydrological applications.

5. Use of patterns with distributed modelling

There are several uses to which observed spatial

patterns can be put in distributed modelling. The most

obvious is as inputs such as precipitation, and for

model testing such as comparison of simulated and

observed snow cover. There is a more recent application

in catchment hydrology inspired from the meteorologi-

cal community, which has a long tradition of using

spatial data (albeit at a very large scale) to assimilate
into models such as operational weather prediction

models. With the rapid increase in remote sensing data

of relevance to hydrology, there is great scope for in-

creasing use of data assimilation (DA) methods with

hydrological models [55,74,98]. This is already being

done at the continental and global scale through pro-

jects such as LDAS (Land Data Assimilation Schemes

[127]), focussing on use of remote sensing data with
models of the land surface–atmosphere interaction.

Smaller scale applications do not seem to be operational

yet but there appears to be some scope in the near fu-

ture. DA seeks to update modelled states (and inputs)

with observations and so improve the predictive ability

of the model by being more sure about initial conditions.

For hydrological applications where runoff estimates at

the catchment outlet are sought, the complexity of DA
techniques may mean that their use will be limited, but

for applications where users are interested in output

patterns, the reduction in uncertainty of initial condi-

tions may justify their use. Analysis of the degree of

updating required can also help identify problems with

the model, although this has generally not been the

primary objective of DA.

Spatial patterns have been used more directly in the
development, calibration and testing of distributed

models, particularly in snow modelling, and for research

catchments. In an early application, Bl€ooschl et al. [19]
used photographs of snow cover to assess the perfor-

mance of a spatially distributed energy and water bal-

ance model of the snowpack. Along similar lines,

Wigmosta et al. [119] and Davis et al. [125] have used

snow patterns in analyses of alpine hydrology models.
Moore and Grayson [126] compared observed saturated

source areas to simulations from a distributed parameter

model in a small laboratory sand bed, while Whelan and

Anderson [118] simulated the spatial variability of

throughfall and compared it to measurements from an

array of ground collectors. As noted above, recent years
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have seen an increase in the availability of ground-based

pattern data from research catchments and from remote

sensing, up to the global scale. This has led to many

more examples of using patterns for developing and

testing distributed models. For example, in the Peschke
et al. [82] study mentioned above, detailed observed

patterns of runoff process types were used to test an

expert system for the identification of dominant hydro-

logical processes, based on catchment characteristics

and state variables as inputs. Kite and Droogers [62]

report a number of studies related to observations and

modelling of evapotranspiration. Summaries of several

recent case studies are reported in Grayson and Bl€ooschl
[46,47], where examples of catchments up to 10 km2 are

discussed, and Lakshmi et al. [65], who focus on larger

scale applications. It is important to note that in most

of these applications, the reason for modelling has not

been just in estimating runoff, but rather in estimat-

ing the details of the spatial hydrological response of

catchments. In the early days of distributed models,

many users assumed that good representation of an
output hydrograph implied that the distributed model

predictions were similarly good [20]. It is now more

generally accepted that if we are interested in spatial

model output, we need to test the models with spatial

information.

In this section, we present examples from three case

studies where pattern data has been collected and used

to develop and test models of distributed catchment
response. The studies were chosen to cover different data

types (surrogate, binary, LOP) and different hydrologi-

cal settings (alpine, tropical and temperate). Only brief

descriptions of the case studies are provided here since

the purpose of this section is to illustrate what can be

learned through the use of patterns rather than pursue

the nuances of the modelling exercises.

5.1. Snow patterns at Schneealpe

The first example comes from the work of Jansa et al.

[58] and Bl€ooschl et al. [21] who applied the Vienna

University of Technology Snow model (VUTS) to the 90

km2 Schneealpe area in the Austrian Alps. VUTS is a

terrain based distributed model that couples heat and

mass flow within the snowpack using a multilayer model
at the grid scale [19]. Atmospheric data used to drive

the model include global radiation, air temperature,

humidity, wind speed and precipitation on an hourly

basis. Horizon shading, and aspect and slope depen-

dence of solar radiation input are accounted for and

wind drift is represented by a factor of the form:

F ¼ ðaþ bHÞð1	 f ðSÞÞð1þ eCÞP 0

f ðSÞ ¼ 0 S < c
S	c
d	c otherwise

�

where H is elevation, S is slope and C is terrain curva-

ture at the grid scale of the digital elevation model, a and

b are factors accounting for the elevation effect on pre-

cipitation and derived from analysis of local data, c, d

and e are calibration factors derived from analysis of
cover patterns [19]. A discussion of this approach is gi-

ven in Moore et al. [78].

Snow cover patterns for the years 1998–2000 were

derived from analysis of SPOT XS based on an unsu-

pervised isodata technique [59] separately for different

illumination classes. The classification produced 3-class

patterns of snow, no-snow and partial coverage. VUTS

was initially run with a standard parameter set and while
simulations were generally good, it appeared that im-

provements could be gained by refinement of the drift

factor. The parameters in the drift model are generally

calibrated globally, however the availability of detailed

spatial patterns made a more sophisticated approach

possible. Four SPOT-derived cover patterns were cho-

sen from each of the years 1998 and 1999. These

patterns were carefully chosen to span a wide range
of overall snow coverages. These eight patterns were

compared to the simulated patterns for the same dates

to derive a combined error map of cover for these two

years (Fig. 4a). This map represents the average percent

error in snow cover estimation and it was assumed that

this error stemmed largely from the representation of

snow drift. The parameters of the snow-drift model were

then individually calibrated for each pixel to minimise
the error. Fig. 4b shows the error pattern for the cali-

brated model and illustrates the significant improvement

over the pattern in Fig. 4a. Remaining error is due to

sources other than wind drift, or that cannot be ex-

plained by the structure of the wind drift model in

VUTS.

VUTS was then applied to a different snow season

(2000) in a classical split sample test. Fig. 4c shows the
error map for this year and illustrates that, while there is

some deterioration in simulation compared to the fully

calibrated year, the revised snow-drift model is a major

improvement over the original form (Fig. 4a). Thus it

can be concluded that to a large extent, the pattern of

wind drift is ‘‘time stable’’ i.e. that from season to

season, the pattern of drift is very similar, and that

accounting for the spatial structure significantly im-
proves the simulated patterns. Of course it is still likely

that some structural errors remain, but the testing

would indicate that we can be more confident in the

results when using the revised parameter set. This is not

always the case when ‘‘local’’ calibration of this sort

is done. Lamb et al. [67,68] used spatial patterns of

groundwater levels to locally calibrate a version of

TOPMODEL but the uncertainty in catchment runoff
was little affected due to problems with the structure of

the model, i.e. the local calibration partially overcame

some of the structural problems with the model to better
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fit internal patterns, but did not get better runoff

estimates. In the Schneealpe, example, it could be sim-

ilarly argued that the local calibration of parameters
partly overcomes a structural problem, but in this case,

the main interest was in simulating spatial patterns ra-

ther than in bulk catchment runoff. While the use of

observed patterns had a minor effect on bulk runoff

from the area, it clearly improved the simulations of

spatially distributed snow water equivalent and snow

melt.

Analysis of the snow patterns also made it possible to
separate the effects of individual model parameters. For

example it was possible to unravel the effects of albedo

and threshold temperature on snow melt processes by

analysis of the cover statistics for slopes of different

aspects. This separation of effects is not possible to do

using just runoff data. It should be noted that a similar

approach was taken by Luce et al. [71] in the rangelands

of Idaho, where observed snow depth patterns were also

shown to be time stable.

5.2. Runoff patterns at La Cuenca

La Cuenca is a small (0.75 ha) catchment in the Rio

Pichis valley of central Peru. It is covered by rainforest

vegetation and was set up as a research catchment for

the study of spatial variability in soil properties and

runoff processes in a tropical environment [31–33,128].

Details of the example presented here can be found in

Vertessy et al. [103,104] but a brief description is given
below.

Over 700 undisturbed soil cores were used for mea-

surements of soil hydraulic properties of the three

dominant land units in the catchment. In addition, 72

overland flow detectors were installed across the catch-

ment and checked after more than 180 individual

storms, to indicate the spatial pattern of overland flow

occurrence. The terrain-based distributed model TO-
POG_SBM [28,101,102] was used to simulate runoff and

flow occurrence using four different approaches to the

representation of saturated hydraulic conductivity over

La Cuenca. The first was to assume a uniform value

equal to the median of all of the individual measure-

ments. The second was to assume the median value for

each of the three land units and apply these values

spatially, based on the map of land units. The third was
to randomly allocate deciles from the cumulative dis-

tribution of the total population of measurements. The

fourth was to randomly allocated deciles from the cu-

mulative distribution for each of the land units.

The simulated patterns of runoff occurrence were

then compared to the observed pattern from analysis of

the flow detectors (Fig. 5). These patterns, along with

plots of frequency distributions, clearly showed that the
simulations using the fourth of the representations of

saturated hydraulic conductivity, which combined a

deterministic and a stochastic pattern, was the only one

that adequately represented the observed pattern of

runoff occurrence. Standard data such as catchment

runoff provided complementary information on model

performance, but was insufficient to distinguish between

the spatial representations.

5.3. Soil moisture patterns at Mahurangi

The Mahurangi catchment in New Zealand is the site

of MARVEX (the MAhurangi River Variability Ex-

periment). The total catchment drains 50 km2 of steep
hills and gently rolling lowlands located 70 km north of

Auckland [121]. ‘‘Satellite Station’’ is a sub-catchment

of approximately 1 km2 in area, covered largely by

pasture and is one of several intensively monitored areas

within the MARVEX (see Woods et al. [121] for details

of the experimental set up). Six soil moisture patterns

Fig. 4. Bias in snow cover patterns based on residuals of comparisons

between observed (SPOT) and simulated (VUTS) patterns for the

Schneealpe region. (a) Pre-calibration using eight observed patterns in

1998–1999, (b) post-calibration using eight observed patterns in 1998–

1999, (c) validation using four observed patterns in 2000 (after Bl€ooschl
et al. [21]).
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were collected over the top 30 cm of soil (the root zone

for this vegetation) on a 40m� 40 m grid using the TDR

equipped all terrain vehicle discussed above [25,96,110].

In addition, runoff was measured at two points and
meteorological data was available locally. The six pat-

terns of soil moisture were compared to simulations as

part of the development of a new version of the Thales

terrain-based hydrological model, known as NetThales

[25]. Fig. 6 shows the observed and simulated patterns

for three occasions (Fig. 6a), along with residual maps

(Fig. 6b) and cumulative and frequency distributions of

the errors (Fig. 6c). Chirico et al. [25] outline in detail
how the patterns of soil moisture were used in con-

junction with analysis of standard runoff data to develop

and test the model structure of NetThales, including a

new representation of the sub-grid scale effects of sur-

face and sub-surface flow interaction. Patterns of soil

moisture provided information on the size of saturated

source area, and the extent to which they were affected

by terrain, assisting with the appropriate conceptuali-
sation of grid scale algorithms. Analysis of recessions

provided information of the effective celerity of surface

and sub-surface flows, and the hydrograph provided

data for volume balance comparisons. Further model-

ling and analysis of the patterns has indicated that soil

hydraulic properties appear to show significant temporal

variability, particularly during times of rapid change in

average soil moisture (e.g. Autumn and Spring transi-

tional periods). This is in line with the conclusions of
Western and Grayson [111] who analysed observed and

simulated patterns of soil moisture at the Tarrawarra

site in Australia, and suggested that dynamic changes in

cracks and macropores may explain such temporal

changes.

6. Calibration and testing––a role for pattern comparison

methods

Calibration and testing of hydrological models has

been an active area of research in recent years. The

greater use of complex models has increased the prob-

lems of balancing data availability, predictive perfor-

mance and model complexity (Fig. 1), which has led to
questioning of the classical calibration paradigm [48].

The last ten years have seen the development of several

new methods for the calibration and testing of models

using time-series data. Sorooshian and Gupta [92] and

McLaughlin and Townley [75] present reviews of ap-

proaches to calibration and automated optimisation in

surface and groundwater models respectively. They

highlight a range of problems such as the presence of
multiple optima, strong correlations between parame-

ters, and the subjectivity associated with choice of ob-

jective functions. Many researchers have noted that it is

common for a large number of parameter sets to give

similar fits to observed data. Gupta et al. [48] propose

methods that consider the multiobjective nature of cal-

ibration, and that allow for explicit consideration of

model error, with a recent application provided in Boyle
et al. [23]. Mroczkowski et al. [79] have illustrated the

value of different types of time-series data for model

testing and calibration. Beven and Binley [11] proposed

an alternative approach to deal with problems of con-

straining predictive uncertainty, identifying ‘‘behavio-

ural’’ parameter sets, and defining the value of

additional data, all within the framework of Bayesian

uncertainty estimation. Their GLUE procedure has
been applied to many cases (e.g. [10,38,39,124]) includ-

ing one where information on saturated area was in-

corporated with more common runoff estimation to

constrain predictive uncertainty [37]. The information

on saturated area was obtained from a combined anal-

ysis of SAR data and terrain modelling, but in this case,

just the total area saturated (rather than information on

the spatial pattern) was used. Nevertheless, the value of
some information on spatial response was shown to

be high in terms of ability to reject non-behavio-

ural parameter sets. The Metropolis algorithm, another

Fig. 5. Spatial patterns of overland flow frequency at La Cuenca,

Peru. (a) Simulations using TOPOG and four different representations

of saturated hydraulic conductivity: set 1 (uniform), set 2 (organised),

set 3 (random), and set 4 (random & organised). (b) Observed patterns

from runoff detectors (redrawn with permission from Cambridge

University Press).
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Bayesian approach, has also been applied recently for

assessing hydrological model uncertainty [64].

One of the main points to have been illustrated in

recent work on model testing and calibration is that

different types of observed data, and different periods

within a given time series, contain information that tests
different parts of a model. For example Wagener et al.

[106,107] show the value of different parts of a hydro-

graph in constraining uncertainty in predictions using

their DYNIA (DYNamic Identifiability Analysis) ap-

proach, and Boyle et al. [23] split the hydrograph into

different sections with separate objective functions for

each. The same argument applies to the use of spatial

patterns. There are particular times and places when the
‘‘information content’’ of a pattern may be greatest. For

example, in the Schneealpe example above, Jansa et al.

[58] used patterns of snow cover from periods where

cover was rapidly changing in their model testing, be-

cause these periods highlighted model sensitivity to

snow melt. Patterns in early Winter highlighted thresh-

old air temperature effects, while those in late

Spring highlighted albedo effects. Similarly Western and

Grayson [111] showed that patterns of soil moisture
from periods of transition from dry Summer to wet

Winter conditions (and vice versa) were useful for cha-

racterising effective soil hydraulic properties, while

transitions from wet to dry periods were particularly

useful for testing evapotranspiration components of

their model, where aspect effects were most pronounced.

The recent advances in calibration and testing meth-

odology have highlighted the importance of information
in addition to standard runoff data. Grayson and

Bl€ooschl [47] illustrate that spatial patterns provide

powerful tests for distributed models, have the ability to

Fig. 6. Patterns of soil moisture in the root zone from the satellite station sub-catchment of the Mahurangi River, (a) observed patterns from TDR

and simulated patterns using NetThales for three occasions, (b) residual maps for each occasion, (c) pdf and cdf of errors for each occasion.
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efficiently identify ‘‘behavioural’’ from ‘‘non-behav-

ioural’’ models, and can provide independent informa-

tion that is complementary to more traditional data

sources. But as yet, pattern information has not been

fully used with any of the newer calibration or testing
methodologies. This is due, at least in part, to the lack of

standard methods for the comparison of observed and

simulated patterns of hydrological response. Here we

briefly describe the present state of the art and propose

some pattern comparison methods that provide infor-

mation of interest in hydrology.

The methods presented in this section have been se-

lected because the results from them can be interpreted
hydrologically, thus enabling identification of model

components that are performing poorly and perhaps

improvements in hydrological understanding. They are

all quite simple, and there is clearly scope for more so-

phisticated approaches, perhaps drawn from pattern

recognition science. Nevertheless, even these simple ap-

proaches can be powerful discriminators of model per-

formance and could be used in first attempts to combine
pattern information into the newer calibration and

testing frameworks.

Visual comparison is the most common method used

in studies to date and provides a qualitative assessment

of model performance. It is simple and exploits the great

capability of the human brain to detect and interpret

patterns, and bring a large amount of accumulated

knowledge about model and system behaviour to bear.
Areas of consistent difference between two patterns can

often be identified and qualitative associations can be

made with the model components that may be causing

errors. The disadvantage of this method is that it does

not provide a quantitative measure of model perfor-

mance, nor is it possible to test hypotheses about specific

behaviour (e.g. is a ‘‘consistent’’ difference between two

patterns statistically significant?). Thus, it is not possible
to extend the method to automated techniques and

makes inter-model comparisons rather subjective. Nev-

ertheless, visual assessment is probably the most pow-

erful comparison method, provided the time is available

to consider patterns in detail. This may not be possible

in modelling involving large areas or comparisons be-

tween simulations using a large number of parameter

combinations.
Point-by-point comparison methods include scatter-

plots of simulated and observed ‘‘pixel’’ values, R2 (co-

efficient of determination) and E (coefficient of efficiency

[80]) values from these plots, and the mapping of dif-

ferences (residuals) between observed and simulated

patterns (e.g. Figs. 4a–c and 6b). These techniques

provide information about bias (mean error), random

simulation errors (error variance) and in the case of
residual maps, any spatial organisation that may be

present in the errors. The mean error and the error

variance are similar to statistics used in traditional

model evaluation using time series; however, they can be

applied in a spatial context to test internal model pre-

dictions. The scatterplots also provide information on

how errors are distributed across the range of simulated

values. For example soil moisture may be represented
well under wet conditions but poorly for low moisture

values, indicating problems with evaporation or soils

components of the model. R2 and E values provide

quantitative measures for use with automated schemes.

For binary patterns, the proportion of pixels correctly

and incorrectly identified provides similar information

to the scatter plots for continuous variables.

The spatial correlation structure (variogram) of er-
rors can be computed from maps of the residuals, pro-

viding information about the spatial scale or correlation

length of the errors (e.g. [116]). If the correlation length

of the errors is small relative to the model element scale,

it can be concluded that the errors are due to either

measurement error or to small-scale variability not re-

solved by the model. Since the model does not aim to

represent these features, it can be concluded that the
model is performing as well as can be expected (as-

suming there is no bias and a sufficiently small error

variance). If the correlation length of the errors is sig-

nificantly longer than the model grid scale, it can be

concluded that there are patches where the errors are

similar; i.e. there is some problem with the structure of

the model that causes certain parts of the landscape to

be better represented than others. A careful analysis of
the simulated response and an understanding of the

model structure gives guidance on potential model im-

provements. For example hillslopes may be consistently

too dry compared to gullies, indicating problems with

lateral redistribution in the model; or areas of land with

particular soils may be consistently in error, indicating

problems with the parameterisation of soil hydraulic

properties.
An extension of the point-by-point approach, which

accounts for measurement error and sub-element vari-

ability that is not represented by the model, is to smooth

the observed pattern and then compare it with simula-

tions on a point-by-point basis. For the smoothing,

geostatistical techniques such as kriging provide a con-

venient method because properties of the ‘‘smoothing

filter’’ can be set to mimic the expected small-scale
variability [22] by making the nugget of the variogram

equal to the sum of measurement error and sub-element

variability that is not represented by the model. Point-

by-point comparison between the �smooth� observed and

simulated patterns should then represent the large-scale

variability between observed and simulated patterns

(e.g. [111]).

To gain further insight into which hydrological pro-
cess representations may or should be improved in the

model, errors can be analysed to ascertain whether there

is any relationship with topographic or other spatial

R.B. Grayson et al. / Advances in Water Resources 25 (2002) 1313–1334 1325



variables (e.g. soil type, vegetation) by plotting the ob-

served and simulated values (or residuals) against such

variables for each location. These relationships may

provide hydrological insight into the cause of the errors.

For example, consistent errors associated with topo-
graphic aspect may imply problems with components of

the model influenced by radiation exposure.

A limitation of the methods above (except visual

comparison) is that they do not provide any information

on lateral shifts––i.e. where the basic shape of patterns is

correct but their location is shifted. Because water flows

through the landscape along pathways that are domi-

nated by the topography, pattern shifts may be associ-
ated with particular terrain features. Transects of

simulated and observed variables can be examined to

search for shifts between the simulated and observed

patterns. The transects can be placed such that they

follow surface flow trajectories, elevation contours, or

other directional features where shifts might be expected

due to the model structure and physics of the problem.

For example in a snow model, observed and simulated
snow depth plotted for a transect down a hillslope may

provide information on how well temperature lapse

rates are represented or how well sloughing or avalan-

ching is simulated.

Transects provide information about shifts in one

dimension only. Methods developed for pattern recog-

nition applications may also be applied to determine the

lateral shifts in two dimensions. Optimal local alignment
(OLA) is a method that provides information on space

shifts between two patterns. The method is a form of

particle image velocimetry (e.g. [40,120]) and is based on

cross-correlations between ‘‘windows’’ within the overall

domain. A field of shift vectors can be calculated in the

following way. Initially the whole domain is divided into

sub-areas (or windows). Then correlation coefficients

between point-by-point comparisons of the observed
versus simulated patterns are calculated for corre-

sponding sub-areas. The relative position of the two

corresponding sub-areas is then changed (i.e. shifted)

and correlations are again calculated (i.e. a cross-cor-

relation analysis). This is repeated over a defined range

of shifts in each direction. The optimum shift (i.e. op-

timum alignment) is where the correlation is highest.

This approach has the potential to identify model mis-
matches in the direction of the hillslopes as well as other

shifts such as those associated with biases due to aspect,

the way soil parameters were imposed, or georeferencing

problems. To use this method successfully it is necessary

to have small sub-areas but there is a tradeoff between

having sufficient points in each sub-area for reliable es-

timation of correlations and obtaining detailed spatial

information (high resolution) in the resulting vector
field. In applications in image particle velocimetry, the

size of the data sets can be such that the approach des-

cribed above becomes computationally intractable.

Willert and Gharib [120] describe a method using fast

fourier transforms that significantly speeds up the

computation of correlations.

It is important to note that shift vectors can be

computed only when there is variability apparent in
both the observed and simulated fields. This means that

for binary patterns, vectors can be computed only for

the edge areas. Also if model predictions are uniform for

a particular period, the method will fail.

7. Application of pattern comparison methods

To illustrate some of the points made above, the
pattern comparison methods are applied to two different

data sets where the methods can be interpreted from a

hydrological perspective [117].

7.1. Data sets

The data sets were chosen to be representative of

different types of data that may be encountered in hy-

drological modelling. The descriptions are brief since the

comparisons are simply for illustrative purposes and are

not intended to formerly test the models used for the

simulations. The first data set is of a binary variable,
flood inundation, while the second is a continuous

(bounded) variable, root zone soil moisture.

The patterns of flood inundation are taken from the

work of Horritt and Bates [53]. Measured inundation is

derived from analysis of SAR images taken over the

Thames River [15,54]. The simulated inundation is

produced by the model of Bates and De Roo [5], which

combines a one-dimensional kinematic wave channel
flow model with a two-dimensional diffusion wave so-

lution for floodplain flow. The resolution of the SAR

data was higher than that of the model so the former

was aggregated to match the model element scales. Two

simulated patterns were chosen from an ensemble of

model results for illustrative purposes (P. Bates, per-

sonal communication). Fig. 7a shows the observed in-

undated area resulting from the SAR analysis while Fig.
7b and c show the simulated inundation from the two

model runs.

The measured root zone soil moisture data sets used

here are described in detail by Western and Grayson

[110] and are of soil moisture measured in the top 30 cm

of soil over a 10 ha, undulating pasture catchment in

south eastern Australia referred to previously. One

pattern was chosen from a relatively wet period (Octo-
ber, 1996) to illustrate the methods. Fig. 8a shows the

observed pattern, topography and the location of tran-

sects used in the analysis. The simulations used for

comparison were produced by the Thales model and are

described in detail in Western and Grayson [111]. Thales

uses a contour based element network, which does not
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match the measurement grid (10 m� 20 m), hence

simulated results were interpolated onto the measure-

ment grid for the comparisons below (Fig 8b).

7.2. Results and discussion

7.2.1. Flood inundation example

Fig. 7a can be visually compared to Fig. 7b and c.

Clearly the inundated area is underestimated in Fig. 7b,

particularly for the western half of the reach. Fig. 7c

shows some minor underestimation in the north-eastern

section but does well at identifying the small off shoot

from the main river channel. The general impression of

this comparison is quantified in the results in Fig. 7f and

g. These tables show that, normalised by flooded area,

run 50 successfully identifies 86% of the flooded pixels

whereas run 49 correctly identifies only 38%. Neither

run simulates many pixels as being wet that are actually
dry, with most of the erroneous pixels being predicted as

dry when in fact they were wet––i.e. both runs under-

predicted total inundated area.

The maps of residuals (Fig. 7d and e for runs 49 and

50 respectively) show how these errors are distributed

spatially. Most of the underprediction of run 49 occurs

to the north of the river, except in the far western end

where errors occur on both sides of the river. The overall

Fig. 7. Pattern comparisons of flood inundation on the Thames River, England. (a) Observed pattern from SAR analysis, (b) simulated inundation

for run 49, (c) simulated inundation for run 50, (d) residual maps and OLA vectors from run 49, (e) residual maps and OLA vectors from run 50, (f)

table of errors for run 49, (g) table of errors for run 50, (h) transect 2 for run 49, (i) transect 2 for run 50.

R.B. Grayson et al. / Advances in Water Resources 25 (2002) 1313–1334 1327



underestimation of run 50 is quite evenly distributed

spatially.

The transect 2 comparison (Fig. 7h and i) provide

little information in addition to the residual maps for

this simple binary pattern, although perhaps makes the

magnitude of the errors easier to identify.

The simple patterns of flood inundation are amenable
to OLA analysis and the resulting shift vectors are

shown in Fig. 7d and e. Areas where the model under-

estimates inundated area have shift vectors pointing out

onto the floodplain, and vice versa. Fig. 7e shows that

for the eastern end of the reach, the simulated area lies

too far south although the small magnitude of the shifts

indicate overall good model performance. As mentioned

above, shift vectors can be computed only where there is

variability in both the modelled and measured pixels in

the windows. This is apparent in the large areas where

the model underestimates inundated area in run 49 and

no shift vectors are computed.

For the patterns of inundated area, visual compari-

sons of simulated and observed patterns and residual
maps are simple enough to interpret visually. The shift

vectors from OLA are useful in indicating the direction

in which the model is in error. With simple patterns, this

may be determined visually, but as the patterns get more

complex, the information conveyed by the shift vectors

in conjunction with the residual map becomes more

useful. The quantification of the number of pixels in

Fig. 8. Pattern comparisons of soil moisture at Tarrawarra. (a) Observed root zone soil moisture from TDR, (b) simulated root zone soil moisture

from Thales, (c) residual map and OLA vectors, (d) point-by-point scatterplot, (e) residuals versus radiation index, (f) transect 2 soil moisture and

elevation.
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error is probably the best quantitative measure for au-

tomated optimisation, while the residual maps and OLA

vectors indicate more about the structural problems in

the model.

7.3. Soil moisture example

Visual comparison of Fig. 8a (observed soil moisture)

and b (simulated) show that the simulated soil moisture
is generally higher and less variable than that observed.

The general pattern of a dryer south-east quarter is

captured by the model but the magnitude of the differ-

ence is less than observed, and other dryer areas around

the northern and western boundary are not simulated.

The strong aspect effect of the dryer south-eastern (north

facing) hillslope is not well simulated, although the

overall wetter gully is represented, but the extent is
overestimated. With respect to the performance of the

model, the apparently �too wet� simulation may imply

problems with the evaporation estimation, or else drain-

age (either surface or sub-surface) is not well modelled.

The point-by-point comparison is shown in Fig. 8d

and supports the notion that the simulated pattern is too

wet overall, except for the wettest observations, which

are underestimated. The variance appears to be similar
for all except the highest values.

The pattern of residuals is shown in Fig. 8c and re-

inforces the likely problems with modelled drainage (or

evapotranspiration), particularly for the south eastern

hillslope. Fig. 8e shows the residuals plotted against

radiation index (a function of topographic aspect; [116])

and highlights the problem with poor prediction on the

north facing hillslopes in the south-east (radiation
index > 1). The overly dry gullies are apparent around

radiation index values of 0.975.

Transect 2 is identified in Fig. 8a and the observed

and simulated data plotted in Fig. 8f. The results show

the ‘‘too wet’’ simulation but generally match the pat-

tern of variability, although there appears to be shift in

pattern at the right end of the transect.

Results from the OLA (Fig. 8d) generally show ran-
dom shift vectors, indicating no consistent errors in the

model. The exception is in the south-east quarter where

there is a consistent ‘‘patch’’ of shift vectors upslope,

matching the shift error apparent in the transect data.

This is likely to be due to errors in the lateral redistri-

bution of water in this area, or problems with the

evapotranspiration estimates or both. The ability of

OLA to detect this spatial shift problem is encouraging,
and the ‘‘condensed information’’ contained in the shift

vectors would make analysis of large and complex pat-

terns more tractable, making it easier to detect areas of

consistent model problems compared to visual analysis.

More work is needed on how best to quantify the in-

formation in OLA analysis.

8. Conclusions and outlook

In the preceding sections we have illustrated the ad-

vances made in the use of spatial patterns of hydrological

response in relation to three main areas (i) characterising
the structure and heterogeneity of hydrological vari-

ables, (ii) using patterns (LOPs, binary and surrogate) to

test and develop distributed models, and (iii) specific

techniques for comparing patterns in a manner that as-

sesses hydrologically important characteristics of model

performance. While the use of observed patterns in

catchment hydrology is relatively new, the progress made

to date augers well for future developments. In this sec-
tion we propose several areas where we believe emphasis

should be placed in the coming years.

Geostatistical methods have been shown to be useful

in characterising some aspects of the structure and het-

erogeneity of observed patterns, such as soil moisture

and snow cover, but there are important hydrological

features that are not captured by conventional methods.

In particular, the connectivity of patterns (e.g. of wet
areas connected to a catchment outlet, or of high con-

ductivity flow paths in the sub-surface) has been shown

to be extremely important to simulating hydrological

response, yet methods for its characterisation are only

just being tested. In distributed modelling it is often

appropriate to stochastically generate patterns of pa-

rameters or other input information that preserve the

structure of an observed pattern but enable sensitivity to
alternate realisations to be assessed. While this is

possible with standard geostatistical characterisations,

methods that preserve connectivity measures are not yet

available. More generally, we may draw some confi-

dence for the future from the work done in precipitation

where the availability of detailed spatial observations

(from radar) has enabled new methods for generating

space–time patterns of rainfall that preserve the key
features of these intricate patterns (e.g. [90,99]). As more

data becomes available on other variables of hydrolog-

ical interest, we anticipate similar advances to occur.

There is also the potential for increased use of sur-

rogate patterns that identify the functional behaviour

of catchments. These provide rigorous tests of the

‘‘behavioural’’ nature of simulations of catchment re-

sponse and should minimise the problems of what
Kleme�ss [63] described as the right results for wrong

reasons (e.g. [97]). Although the use of observed patterns

of catchment dynamics does not necessarily improve

streamflow simulations at the outlet as there is the

danger of overfitting [67,68], it will improve the spatial

estimates of the hydrologic quantities within catch-

ments. These spatial estimates are increasingly of prac-

tical interest. Observed patterns of catchment dynamics
include saturated source areas and their dynamics, ob-

servations of runoff occurrence, and more detailed

patterns of runoff process types such as those of Peschke
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et al. [82]. This type of information generally requires

extensive field work and its utility is enhanced by in-

novative methods of comparison that enable the inclu-

sion of categorical information.

The pattern comparison methods presented are sim-
ple and there is clearly scope for more sophisticated

approaches. Nevertheless, even these relatively simple

methods are yet to become part of routine testing, and

are yet to be implemented in the more recent approaches

to model calibration and uncertainty prediction de-

scribed above. This is partly due to the newness of the

methods, partly to data availability and partly to com-

putational limitations. In time, each of these constraints
will lessen and the ability of patterns to rigorously test

and improve models will be more fully exploited.

An area where there has already been extensive use of

spatial data (largely from remote sensing instruments)

is in data assimilation. There are a number of specific

techniques used in data assimilation [74], but in appli-

cations to date, the information used is just the pixel

value (and some error estimate for the observation),
rather than any measure of the pattern structure. There

may be value in exploring different approaches to as-

similation of spatial data, particularly where there is a

chance of data errors in absolute values (such as may

occur if atmospheric corrections to remotely sensed

images are biased), while the underlying structure of the

pattern may be quite useful. For some applications it

may be more effective to assimilate, for example, the
observed and simulated pattern each normalised by their

means, enabling corrections to the spatial patterns to be

made, while maintaining the modelled means. Data as-

similation for catchment hydrological applications is

relatively new (e.g. [98]) but there appears to be the

potential for significant advances in our ability to un-

derstand and predict spatial hydrological response that

will arise from the application of data assimilation
methods.

Finally, we believe that there is a need for better

quality archiving and accessing of data, particularly

from research catchment studies, to better facilitate

comparative studies. The remote sensing community has

led the way with efficient archiving, access and retrieval

approaches, as have many operational meteorological

and hydrographic organisations. But this has generally
not been the case for data from individual research

catchments. Progress has been made in some major

programs such as the Southern Great Plains and similar

experiments, and the research community is better rec-

ognising the value of data via developments such as the

‘‘data notes’’ in Water Resources Research. Neverthe-

less, there are enormous amounts of data, including

detailed spatio-temporal patterns of hydrological re-
sponse, that have been collected as part of field projects

and post-graduate study programs that would be useful

to the wider hydrological community but are largely

inaccessible. We encourage everyone involved in or

planning such programs to build into their activities the

resources needed to make their information more widely

available and use vehicles such as data notes to publicise
their work.

As was made clear in the quote from Hornberger and

Boyer at the start of this paper, and we hope we have

illustrated through the examples discussed above, the

combined use of data and modelling is a key to progress

in hydrological science. The increased availability of

spatial data, both from ground-based studies and re-

mote sensing, as well as developments in modelling ap-
proaches and our deeper understanding of the role and

limitations of modelling, has heralded advances in our

ability to understand and predict spatial hydrological

behaviour. We hope this trend continues apace and

foresee a central role for the use of observed patterns of

hydrological response.
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