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Abstract.

Many spatial fields exhibit connectivity features that have an important

influence on hydrologic behavior. Examples include high-conductivity preferred flow paths
in aquifers and saturated source areas in drainage lines. Connected features can be
considered as arbitrarily shaped bands or pathways of connected pixels having similar
(e.g., high) values. Connectivity is a property that is not captured by standard geostatistical
approaches, which assume that spatial variation occurs in the most random possible way
that is consistent with the spatial correlation, nor is it captured by indicator geostatistics.
An alternative approach is to use connectivity functions. In this paper we apply
connectivity functions to 13 observed soil moisture patterns from the Tarrawarra
catchment and two synthetic aquifer conductivity patterns. It is shown that the connectivity
functions are able to distinguish between connected and disconnected patterns. The
importance of the connectivity in determining hydrologic behavior is explored using
rainfall-runoff simulations and groundwater transport simulations. We propose the integral
connectivity scale as a measure of the presence of hydrologic connectivity. Links between
the connectivity functions and integral connectivity scale and simulated hydrologic
behavior are demonstrated and explained from a hydrologic process perspective.
Connectivity functions and the integral connectivity scale provide promising means for
characterizing features that exist in observed spatial fields and that have an important
influence on hydrologic behavior. Previously, this has not been possible within a statistical

framework.

1. Introduction

Spatial variability is an intrinsic feature of natural hydrologic
systems. The characteristics of that variability often have a
substantial influence on the behavior of the system. Hydrolog-
ically important examples include soil moisture [Western et al.,
1999], surface runoff [Dunne et al., 1975], and hydraulic con-
ductivity in aquifer formations [Anderson, 1997]. From a sci-
entific perspective, we need to understand the different char-
acteristics present in spatial patterns to be able to understand
system behavior more fully [Koltermann and Gorelick, 1996].
From a practical perspective we often need to know which are
the important characteristics of a spatial pattern to make ac-
curate predictions. For example, predictions related to pro-
cesses such as erosion and salinization or estimates of the
optimum siting of groundwater wells are inherently dependent
on the spatial patterns of the underlying fields of hydrologically
important features. The different characteristics of spatial pat-
terns strongly influence flow paths. Therefore they become
particularly important when we are interested in transport
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problems such as contaminant plume migration [Anderson,
1997].

Spatial patterns of hydrologic processes can exhibit a range
of different characteristics, varying in a qualitative manner
from random to highly organized [Gutknecht, 1993; Bléschl et
al., 1993; Bloschl and Grayson, 2000]. Specific characteristics of
a pattern can be defined quantitatively. Some patterns have no
organization (white noise) or limited organization. Limited
organization may be associated with spatial correlations and
represents “continuity.” The way the spatial correlation
changes with distance between two points characterizes the
degree of spatial continuity of the variable studied [Journel and
Huijbregts, 1978, p. 13]. Correlations over large scales (i.e.,
large correlation lengths or integral correlation scales) are
characteristic of smooth, highly continuous patterns, whereas
patterns with large amounts of small-scale variability have little
continuity, i.e., they change suddenly and the correlation
lengths are small. We use the variogram and integral correla-
tion scale as quantitative measures of continuity in this paper.
Patterns with limited or no organization are referred to as
random. Other patterns are more highly organized. Organized
patterns can include connected features (i.e., connected thin
bands such as high-conductivity flow paths) or convergent fea-
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tures (i.e., a branching structure of drainage lines and hill-
slopes) [Bloschl and Sivapalan, 1995]. We focus on organiza-
tion characterized by connected features in this paper.

Specifically, we will use the term “connectivity” to denote
the extent to which connected features, such as arbitrarily
shaped bands or pathways having similar (e.g., high) values, are
present in a hydrologically relevant spatial pattern. We define
connectivity quantitatively by using connectivity functions and
the integral connectivity scale, which are described in detail in
section 3.

It is possible for the characteristics of a pattern to change
over time. For example, soil moisture patterns measured in the
Tarrawarra catchment in southeastern Australia exhibit both
continuity and connectivity during wet periods but only conti-
nuity during dry periods [Grayson et al., 1997; Western et al.,
1998b; Western et al., 1999]. Western et al. [1998b] discuss spa-
tial connectivity in greater detail. While there are well-
developed techniques for characterizing random patterns,
techniques for characterizing organized features of spatial pat-
terns (such as connectivity) are less well developed and tested
[Koltermann and Gorelick, 1996].

The proper representation of connectivity can be critically
important for hydrologic prediction. For example, incorporat-
ing connectivity into antecedent moisture patterns has a dra-
matic effect on simulated runoff [Bronstert and Bardossy, 1999;
Merz and Plate, 1997; Grayson et al., 1995], even if the conti-
nuity (the spatial correlation structure or variogram) is un-
changed [Grayson et al., 1995]. Similarly, simulation studies
suggest that transport in groundwater systems is strongly influ-
enced by the presence of connected bands of high hydraulic
conductivity, which lead to preferred flow paths [Desbarats and
Srivastava, 1991; Sdnchez-Vila et al., 1996; Gémez-Herndndez
and Wen, 1997]. When moving from flow to transport prob-
lems, the actual flow paths become vastly more important
[Anderson, 1997]. Thus it is essential to represent spatial vari-
ability in a way that captures the characteristics of the spatial
patterns that are the most important influences on system
response. This can either be done statistically or deterministi-
cally. In this paper we concentrate on characterizing connec-
tivity within a statistical framework.

There is a range of geostatistical tools available for charac-
terizing spatial patterns. Standard geostatistics (variogram
analysis) only represents continuity and is therefore not able to
distinguish between patterns with and without connectivity
[Grayson et al., 1995; Sdnchez-Vila et al., 1996; Gémez-
Herndndez and Wen, 1997]. It has been suggested that indicator
geostatistics are an appropriate tool for characterizing connec-
tivity [Journel and Alabert, 1988; Anderson, 1997]. In indicator
geostatistics, variograms of indicator variables are compared
for different thresholds, and a deviation from the expected
difference in spatial correlation between the thresholds is
sometimes taken as evidence of connectivity. Indicator vari-
ables are binary variables that represent the spatial pattern
thresholded at different values. However, Western et al. [1998b]
showed that indicator geostatistics could not distinguish be-
tween random and connected soil moisture patterns. They
capture differences in continuity at different thresholds (which
may be useful to know about) but not connectivity.

An alternative approach to capturing connectivity statisti-
cally is to use connectivity statistics. The concept of connectiv-
ity is most widely studied in the context of percolation [Grim-
met, 1989; Gould and Tobochnik, 1988; Stauffer and Aharony,
1991]. It has been suggested by Allard [1994] for analyzing flow

processes in petroleum reservoirs. Like indicator variograms,
connectivity statistics also summarize patterns of indicator
variables. However, they differ from indicator geostatistics in
that they consider the probability that separate points with
high indicator values are connected by any arbitrary continu-
ous path of high values, whereas indicator variograms only
consider the probability that two separate points have the same
indicator value. Here we examine three questions: (1) How
well do connectivity statistics distinguish between connected
and random patterns, (2) can these connectivity statistics be
related to differences in simulated hydrologic response, and
(3) how important is the connectivity from a hydrological per-
spective? This is done using high-resolution measured spatial
patterns of soil moisture from the Tarrawarra catchment
[Western and Grayson, 1998] and synthetic patterns of aquifer
conductivity. It should be noted that this paper is concerned
with continuous patterns, so the connectivity of features like
fracture networks (that often occur in rocks [Clemo and Smith,
1997; Gavrilenko and Gueguen, 1998]) will not be considered in
this paper.

This paper is organized as follows. First, we provide a de-
scription of the Tarrawarra catchment and the soil moisture
and aquifer patterns used in our analysis. Then we address
connectivity statistics and their calculation, and we discuss the
results obtained when they are applied to our data sets. Next
we discuss surface runoff and groundwater transport simula-
tions to explore how differences in connectivity are related to
hydrologic response. Finally, we provide a discussion and con-
clusions.

2. Site and Data Description

We use two case studies in this paper. The first considers soil
moisture patterns from the Tarrawarra catchment and the sec-
ond a pair of hypothetical aquifers. Tarrawarra is a 10.5 ha
catchment located in southeastern Australia [Western and
Grayson, 1998]. The climate is temperate, and rainfall is spread
relatively uniformly through the year. Potential evapotranspi-
ration is high in summer and low in winter, which results in low
soil moisture during summer and high soil moisture during
winter. Depth average volumetric soil moisture in the top 30
cm of the soil profile was measured at points on a 10 by 20 m
grid using time domain reflectometry on 13 occasions between
September 1995 and November 1996. Each pattern consists of
~500 measurements. Figure 1 shows typical soil moisture pat-
terns from this data set. In summer the average soil moisture is
low and randomly distributed across the catchment (Figure 1a,
survey S3). As the catchment becomes wetter during the au-
tumn, relatively wet patches develop in the highly convergent
upper parts of the drainage lines due to the influence of sub-
surface flow (Figure 1b, S5). In winter, average soil moisture is
high and connected bands of relatively high soil moisture exist
in the drainage lines (Figure 1lc, S6). These wet bands are
connected to the catchment outlet. Table 1 summarizes the soil
moisture statistics of the 13 patterns. Further discussion of the
seasonal change in the characteristics of the spatial patterns is
provided by Grayson et al. [1997] and Western et al. [1999],
while indicator patterns are presented by Western et al. [1998b].
Figure 2 shows variograms for the three soil moisture patterns
in Figure 1. Western et al. [1998a] provide further analysis of
the geostatistics of these patterns and analyze the seasonal
changes in the spatial correlation of soil moisture. They found
high variability and short correlation lengths during wet peri-
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Figure 1. Soil moisture patterns from Tarrawarra showing

different degrees of connectivity. (a) random soil moisture
pattern February 23, 1996 (S3). (b) developing connectivity
April 13, 1996 (S5). (c) connected soil moisture pattern April
22, 1996 (S6). Note that each pixel represents a point mea-
surement of the volumetric soil moisture in the upper 30 cm of
the soil profile. Contours show the surface topography; con-
tour intervals are 2 m.

ods and low variability with longer correlation lengths during
dry periods.

The second data set used in this paper consists of a pair of
hypothetical two-dimensional aquifers [Bldschl and Sivapalan,
1995]. These patterns represent the distribution of hydrologic
conductivities in space (map views) and consist of 256 X 384
pixels covering an area of 6000 X 9000 m. The first pattern has
two sinusoidal high-conductivity preferential flow paths in a
lower-conductivity medium (Figure 3). The mean conductivi-
ties for the high-conductivity channels and the low-conductivity
medium are 10 and 0.1 mm/s, respectively, and the standard
deviation of the log conductivity of the entire pattern is 1.9.
This standard deviation appears to be typical of natural aqui-
fers [Gelhar, 1993]. The second pattern is a random pattern
generated using the turning bands method [Mantoglou and

Wilson, 1981]. It has the same probability density function and
variogram (Figure 4) as the first pattern but does not have any
connected features. Both patterns are approximately isotropic,
and both are approximately stationary. The pattern exhibiting
the preferential flow paths was constructed to resemble real-
istic paleochannels as are sometimes observed in fluvial depos-
its [Bierkens and Weerts, 1994; Scheibe and Freyberg, 1995;
Kupfersberger and Bloschl, 1995; Koltermann and Gorelick,
1996; Anderson, 1997]. It represents a scenario where the ac-
tual location of the sedimentary structure is known. The ran-
dom pattern, on the other hand, represents a scenario where
either no preferred channels are present or a scenario where
these channels are present in nature but cannot be detected
from the available data. If the aquifer in Figure 3a was sampled
by a few point data (e.g., pumping tests) and the conductivities
were interpolated by some sort of geostatistical simulation
method (e.g., sequential Gaussian simulation [Deutsch and
Journel, 1992]), one would typically obtain a random pattern
similar to the one shown in Figure 3b.

3. Connectivity Measures

3.1. Methods

We use connectivity statistics [Allard, 1994] to characterize
the connectivity of the spatial patterns. These connectivity sta-
tistics apply to indicator values Z, which are binary patterns
obtained by thresholding the original pattern. Z = 1 if the
original value is above the threshold, and Z = 0 otherwise. Let
G be the set of pixels making up the spatial pattern, and let A
be the set of pixels in G with Z = 1. Two pixels, x and x’ in
A, are connected (denoted by x <> x") if there is a continuous
path of neighboring pixels belonging to A(x;, ..., x,, € A)
between them (Figure 5). The connectivity function 7(/) rep-
resents the lag-dependent probability that a pixel (x) in 4 is
connected to any pixel (x + 4) in G that is separated from x
by the distance /. That is,

T(h) =P(xox +hlx €A, x + h € G). (1)

Note that this definition is consistent with that usually used in
percolation theory [Stauffer and Aharony, 1991; Gould and
Tobochnik, 1988]. The connectivity function and the indicator
variogram are similar in that they operate on indicator pat-
terns; however, they quantify different characteristics of the
patterns. The indicator variogram represents the lag-
dependent variance between Z(x) and Z(x + h). This is
related to the probability that Z(x) and Z(x + h) are the
same. Specifically, the indicator variogram value is 1 minus the
probability that z(x) and z(x + &) are the same. The differ-
ence between the two is that the indicator variogram does not
consider whether x and x + A are connected, whereas the
connectivity function does. More detailed discussion of the
connectivity approach is given by Allard [1994] and Allard and
Group [1993] and in the percolation literature [Grimmet, 1989;
Gould and Tobochnik, 1988; Stauffer and Aharony, 1991].
The behavior of connectivity functions (and related con-
cepts, such as cluster size) has been extensively studied for
random percolation processes in an infinite domain [Grimmet,
1989; Stauffer and Aharony, 1991]. When the proportion of
high (Z = 1) pixels is less than the critical percolation thresh-
old, 7(h) decays approximately exponentially (equation (2))
[Stauffer and Aharony, 1991; Grimmet, 1989]. The percolation
threshold is the threshold at which a cluster that spans the
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Table 1. Summary of the 13 Soil Moisture Patterns From Tarrawarra®
Percentiles, % vol/vol I, (Directional) Integral ~ 75% Indicator
Mean, Variance, Correlation  Correlation
Survey Date Pattern % vol/vol (% volivol)*>  50% 75% 90%  50%, m 75%, m 90%, m  Scale, m Length, m
S1 Sept. 27, 1995 C 37.7 24.1 38.1 39.6 44.6 222 110 41 44 30
S2 Feb. 14, 1996 R 26.2 10.6 26.6 28.4 29.8 100 38 9 27 25
S3 Feb. 23, 1996 R 20.8 5.31 20.8 22.1 23.7 56 19 9 22 20
S4 Mar. 28, 1996 R 239 7.06 24.0 25.8 26.9 180 18 6 28 25
S5 Apr. 13, 1996 T 352 12.3 35.8 375 38.6 230 41 15 34 30
S6 Apr. 22, 1996 C 40.5 14.6 39.5 43.0 46.0 235 140 66 28 30
S7 May 2, 1996 C 414 19.4 40.4 45.0 46.8 232 123 57 34 30
S8 July 3, 1996 C 45.0 14.0 45.6 47.0 48.6 240 155 25 30 35
S9 Sept. 2, 1996 C 48.5 13.9 482 50.4 53.8 166 72 21 30 35
S10 Sept. 20, 1996 C 473 15.2 474 48.9 523 206 83 23 31 30
S11 Oct. 25, 1996 C 35.0 19.2 349 374 39.3 199 78 30 30 30
S12 Nov. 10, 1996 R 29.3 10.8 29.5 313 334 191 83 23 38 25
S13 Nov. 29, 1996 R 239 6.28 242 25.5 26.6 198 28 13 39 30

“All soil moisture values are expressed as percentages using a volumetric basis. C, connected; R, random; T, transition; as determined by visual
inspection. Note that the integral connectivity scales I, are large for the connected patterns and small for the random patterns.

entire domain appears. For rectangular lattices, P, is ~0.5—-
0.6. The exponential parameter ¢ in (2) is called the percola-
tion process correlation (or connectivity) length.

7(h) = e M, )

For organized patterns, such as some of the Tarrawarra soil
moisture patterns used in this paper, 7(%) no longer decays in
an exponential manner. We propose here an integral connec-
tivity scale I, which we define in a similar manner to the
integral correlation scale used in traditional geostatistics and
fluid dynamics, which was originally introduced by Taylor
[1921].

I.= f 7(h) dh. 3)
0

1, represents the average distance over which pixels are con-
nected. For random fields that are fully characterized by their
probability density function and their variogram the two inte-
gral scales are directly related. However, for fields that exhibit
connectivity, this is no longer the case. For these fields, I, is
large if significant connected bands are present, while 7 is
small if they are not (i.e., the random case). For a given inte-
gral correlation scale the integral connectivity scale 7. will
increase with the degree of connectivity present in the pattern.
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Figure 2. Variograms for the soil moisture patterns from
Tarrawarra on February 23, 1996 (random), April 13, 1996
(developing connectivity), and April 22, 1996 (connected) (see
Figure 1).

As is the case with variograms, it is possible to impose
directional constraints on connectivity functions. In this paper
we consider omnidirectional connectivity and topographically
defined directional connectivity. Details of the computation

a)

001 01 1 10

Figure 3. Hydraulic conductivities of two hypothetical aqui-
fers with different degrees of connectivity. Values are in mm/s.
(a) Connected conductivity pattern. (b) Random conductivity
pattern generated using the turning bands method. Note that
both patterns have the same probability density function (pdf)
and variogram.
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Figure 4. Omnidirectional variograms for the aquifer con-
ductivity patterns shown in Figure 3.

methods used for each of these are given below. Omnidirec-
tional connectivity considers all directions. When calculating
omnidirectional connectivity, all pairs x and x’ (where x has
high moisture (or hydraulic conductivity)) are considered, and
the path can progress from pixel to pixel along either the
cardinal or the diagonal direction. Thus each pixel has eight
neighbors (unless it is located on an edge). Topographically
defined directional connectivity considers a subset of pairs x
and x’, for which x’ is either up or down gradient of x. In this
case the path was constrained so that it could only progress
downslope (starting from x) via the two neighboring steepest
descent pixels or upslope (starting from x) via any pixels which
flowed through x (as determined by the two steepest descent
directions). The gradients were defined using the digital ele-
vation model for the Tarrawarra catchment [Western and Gray-
son, 1998] for the soil moisture case and the mean (effectively
regional) head gradient for the groundwater case.

In this paper the connectivity functions were calculated us-
ing the following general steps. Pseudocode illustrating the
implementation of the algorithms used to perform each of
these steps is included in the electronic supplement.’

1. Step one is threshold the data into NO_DATA, LOW,
and HIGH on the basis of the desired percentile value (50%),
75%, and 90% were used here)

2. Step two is label each continuous cluster with a unique
label. We used a recursive algorithm to search by stepping
from neighbor to neighbor in each cluster, labeling pixels as it
goes. This process involves looping through all the pixels in the
map, and whenever an unlabeled HIGH pizxel is encountered,
it is labeled with a unique label. Then a recursive search algo-
rithm is used to check for any neighbors that are also HIGH
(and thus connected). These neighbors are labeled with the
same label as the original pixel, and the recursive algorithm is
called again to search the next set of neighboring pixels. Note
that the (potentially) global nature of connected regions re-
quires that the entire indicator map be accessible at one time
if this approach is used. Other approaches, including the
Hoshen-Kopelman cluster assignment algorithm [Gould and

'Supporting calculations are available via Web browser or via Anon-
ymous FTP from ftp://kosmos.agu.org, directory “apend” (User-
name = “anonymous”, Password = “guest”); subdirectories in the ftp
site are arranged by paper number. Information on searching and
submitting electronic supplements is found at http://www.agu.org/pubs/
esupp_about.html.

Figure 5. Definition of connectivity. The pairs of points (a,
a') and (b, b') are connected, but a is not connected to b.
The shaded cells represent Z = 1, and the white cells repre-
sent Z = 0.

Tobochnik, 1988] and an algorithm for mapping three-
dimensional connectivity [Deutsch, 1998], can use row-by-row
processing of the map.

3. Step three is calculate the connectivity function. The
approach to this step depends on whether omnidirectional or
topographic connectivity is calculated. (1) The first approach is
omnidirectional. This involves looping through all pixels [r, c]
in the map. For those above the threshold a subloop is per-
formed, which loops through all pixels [rr, cc], in the map and
results in pairs ([r, ¢], [rr, cc]). For each pair their separation
is determined, they are assigned to a separation bin, and the
number of pairs in that bin is incremented. The pixels are
connected if they have the same cluster label, in which case the
number of connected pairs in that bin is also incremented.
Once both these loops have been completed, the connectivity
for each bin is calculated as the number of connected pairs
divided by the number of pairs and the mean separation is also
calculated. (2) The second approach is topographic. This in-
volves looping through all pixels [r, c]. For those above the
threshold, the pixels that contribute flow to [r, ¢] and those
that [r, c] contributes to are mapped using a pair of recursive
routines. The flow paths are determined on the basis of the two
steepest descent directions. An alternative would be to prepare
two maps of pointers to downslope cells and to search these
recursively, which improves the computational efficiency but,
unlike the algorithms used, does not handle the problem of
identical slopes automatically. After the flow paths are
mapped, a subloop is executed as for the omnidirectional con-
nectivity functions described above. If a pixel [rr, cc] is on a
flow path to or from pixel [r, c], then the separation is calcu-
lated, the pair is assigned to a separation bin, and the number
of pairs in the bin is incremented. If both pixels in the pair have
the same cluster label, they are connected, and the number of
connected pairs in that bin is also incremented. Once both
these loops have been completed, the connectivity for each bin
is calculated as the number of connected pairs divided by the
number of pairs, and the mean separation is also calculated.

3.2. Results

Figure 6a shows omnidirectional connectivity functions cal-
culated for the 75th percentile indicator values from the 13 soil
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Figure 6. Connectivity functions 7(/) calculated for the 75th
percentile indicator data from the Tarrawarra soil moisture
patterns. (a) Omnidirectional connectivity and (b) directional
(downslope) connectivity. The solid curves are for connected
(wet) cases, the dashed curves with squares are for random
(dry) cases, and the dotted curves with diamonds are for tran-
sition cases. The connectivity function for a random pattern
generated using the turning bands method is also shown (dash-
dotted curve without markers). Cases S3 and S6 are empha-
sized with heavier lines.

moisture patterns from Tarrawarra. The curves for the three
patterns in Figure 1 are identified separately, and curves from
dry periods (dashed curves with squares), wet periods (solid
curves) and transition periods (dotted curves with diamonds)
are indicated. The soil moisture patterns from wet periods
clearly show connected bands in the drainage lines, while the
dry patterns do not have connected bands in the drainage lines
[Western et al., 1998b] (Figure 1). One would therefore assume
that a significant amount of connectivity is present in the wet
patterns, while very little connectivity is present in the dry
patterns. Transition periods are when the pattern is changing
from dry to wet or from wet to dry and the connectivity is
developing or disappearing. Figure 6 indicates that there is a

variety of shapes for the connectivity functions for different
patterns. All patterns show an initial rapid decrease in connec-
tivity to a value between 0.33 and 0.65 at a separation of 10 m
(1 pixel). The connectivity then decreases more slowly. For
some patterns the connectivity continues to decrease to zero at
separations of 150-250 m (e.g., February 23, 1996, S3, which
was a dry period). Some other patterns have connectivity func-
tions that decrease at a moderate rate to zero at separations of
~350 m (e.g., April 13, 1996, S5, which was a transition peri-
od). The remaining patterns have high connectivity (7(h) ~
0.2) for separations up to 400-500 m, which is large compared
to the overall catchment extent, and then the connectivity
decreases rapidly to zero (e.g., April 22, 1996, S6, which was a
wet period). The difference in behavior is due to there being
one or two large connected patches combined with a few small
connected patches for the connected (wet) cases (e.g., S6),
while there are only small connected patches for the discon-
nected (dry) cases (e.g., S3). Once the separation approaches
the size of the largest patch, the connectivity rapidly ap-
proaches zero. Similar results were obtained for the 90th per-
centiles, although the values of connectivity were generally
lower as a consequence of the higher percentile. At the 50th
percentile the wet and dry patterns were less distinct. This is
because the 50th percentile indicator patterns reflect low and
high soil moisture values to the same extent, and hence the
connectivity function reflects the connectivity of both dry and
wet patches. Dry patches are not significantly connected, so the
presence of connectivity does not appear as distinctly at the
50th percentile.

In general, the connectivity functions distinguish between
the wet and dry cases quite well. The wet cases tend to exhibit
high-connectivity functions, even at large scales, while the dry
cases tend to have connectivity functions that rapidly approach
zero. However, there is still not a perfect distinction between
patterns where the flow paths are connected and disconnected.
For example, S2 (February 14, 1996) shows significant connec-
tivity up to a separation of 400 m, yet the pattern does not have
a connected wet band in the drainage line [see Western et al.,
1998b]. In this case the high connectivity at larger scales is due
to connected bands of relatively high moisture along the con-
tour rather than bands of moisture in the drainage lines. We
would not expect the connectivity in S2 to be significant from
a surface runoff perspective because the connectivity is not
cooriented with the surface flow paths.

To improve the discrimination between patterns with and
without connected high soil moisture bands in the drainage
lines, we looked at directional connectivity functions. The di-
rection was chosen to coincide with the direction of surface
flow paths, as indicated by the surface topography. Figure 6b
shows the directional connectivity functions for each survey.
Now the connectivity functions for the three dry patterns are
very similar to the connectivity functions for a random field,
which is also shown on Figure 6b (dash-dotted curve without
markers). The eight wet patterns show high connectivity. There
are two intermediate directional connectivity functions. The
first is for S5 (April 13, 1996), which represents the seasonal
wetting transition during which connected wet bands in the
drainage lines developed. The second is for S13 (November 29,
1996), which represents the seasonal drying transition during
which connectivity disappears.

Table 1 includes the integral connectivity scales / _ calculated
from the directional connectivity functions for all three per-
centiles. The important result is that the connectivity scales for
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the wet patterns are almost 10 times as large as the connectivity
scales for the dry patterns (75th and 90th percentiles). Com-
pared to the 75th percentile, the 50th percentile has longer
integral connectivity scales because the connected regions tend
to be larger due to the lower threshold. The 90th percentile has
shorter integral connectivity scales for analogous reasons. In
general, similar results were obtained for the seasonal pattern
of changes in integral connectivity scales for all three percen-
tiles, particularly for the 75th and 90th percentiles. There are
some subtle differences in the temporal pattern of changes in
the integral connectivity scale at the 50th percentile. These are
due to increased integral connectivity scales associated with
relatively wet south facing slopes during periods where there is
a strong aspect influence on soil moisture. The influence of
aspect on soil moisture at Tarrawarra is analyzed in greater
detail by Western et al. [1999].

We also calculated connectivity functions for the two syn-
thetic aquifers, one random and one with connected high-
conductivity flow paths (Figure 7). As is the case for the soil
moisture patterns, the omnidirectional connectivity functions
for the connected and the random cases are very different. For
the random aquifer the connectivity functions (dashed curves)
drop rapidly to zero at separations around 2000 m, while for
the connected aquifer, which exhibits paleochannels, the om-
nidirectional connectivity function (solid line) decreases rela-
tively slowly for separations between 600 and 9000 m. These
results are qualitatively very similar to those of the soil mois-
ture patterns in terms of capturing the connectivity. Clearly,
the hypothetical aquifers represent ideal random and con-
nected patterns, and hence the connectivity functions are very
different. It is interesting that at very short separations (shorter
than 500 m) the connectivity functions in Figure 7 are similar.
This is because 500 m is about the width of the paleochannels
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Figure 7. Omnidirectional and directional connectivity func-
tions 7(h) calculated for the 75th percentile indicator data
from the aquifer conductivity patterns shown in Figure 3. The
solid curves are for the connected case, and the dashed curves
are for the random case. The directionality of the functions is
shown in the labels.

Table 2. Integral Connectivity Scales for the Synthetic
Aquifers
Threshold

Pattern Direction® 50% 75% 90%
Organized omni 3272 746 247
Organized north 2268 366 230
Organized east 3403 946 266
Random omni 1113 397 215
Random north 1115 398 216
Random east 1091 400 213

“Here omni is omnidirectional. The mean hydraulic conductivity is
0.233 mmy/s, its variance is 0.434 (mm/s)?, and the 50th, 75th, and 90th
percentiles are 0.122, 0.240, and 9.08 mm/s, respectively. Note that the
integral connectivity scales I, are larger for the organized pattern than
for the random pattern when taken in east-west direction (east) and all
directions (omni), particularly for the 75% threshold where the pa-
leochannels are most apparent.

in Figure 3a, and at scales smaller than the width the pattern is
essentially random and hence similar to the random pattern in
Figure 3b. We have also calculated directional connectivity
functions for both the west-east and north-south directions for
the paleochannel case (Figure 7b). Here the regional (average)
head gradient across the aquifer was used to define the direc-
tions in a similar manner to the use of topography in the soil
moisture case. In real groundwater problems the regional head
gradient is usually known from well information in groundwa-
ter studies. In the east-west direction, extensive connectivity is
indicated by the connectivity function as would be expected
given the pattern of hydraulic conductivity. In the north-south
direction the connectivity is similar for both the random and
connected cases. The directional integral connectivity scales
(Table 2) for the paleochannel case correlate well with the
extent of the paleochannels in each direction.

The above results indicate that the omnidirectional connec-
tivity functions [Allard, 1994] discriminate between connected
and disconnected flow paths quite well. By taking into account
topographic information about expected surface flow paths in
the soil moisture case, it is possible to further improve the
discrimination between connected and disconnected patterns
of hydrologic relevance. Similarly, by taking the regional head
gradients into account, directional connectivity can also pro-
vide additional information in the groundwater case, which is
also hydrologically more meaningful.

4. Hydrologic Simulations
4.1.

In this section we use the Thales hydrologic model [Grayson
et al., 1995] to explore how differences in connectivity might
affect the surface runoff dynamics at Tarrawarra. The model
implementation is similar to that presented by Grayson et al.
[1995], with the numerical scheme modified to be an upwind
implicit scheme. The surface runoff response at Tarrawarra is
dominated by saturation excess overland flow [Western and
Grayson, 1998]. Therefore we used Thales to model saturation
excess runoff, kinematic overland flow, kinematic subsurface
flow, and runon infiltration in the catchment. Large infiltration
capacities were assumed, which means that all rainfall and
overland flow entering a model element infiltrates unless the
element is saturated. All soil parameters and surface flow re-
sistance parameters were assumed to be spatially uniform. The

Surface Runoff
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Table 3. Summary of the Rainfall Cases for the Rainfall-
Runoff Simulations at Tarrawarra®

Peak 6 min. Total Rainfall
Case Intensity, mm/h Depth, mm
1 43 (<1) 13.2(<1)
2 65 (2) 19.8 (2)
3 86 (5) 264 (5)
4 129 (30) 39.6 (40)

“The average recurrence interval (years) for each rain case is given
in parentheses. The same temporal pattern is used for each case
(Figure 8a).

ability of a daily version of this model to predict spatial soil
moisture patterns and runoff from the catchment was exten-
sively tested by Western and Grayson [2000]. The aim of these
simulations is to demonstrate that the connectivity function is
related to simulated hydrologic behavior and therefore pro-
vides a useful statistical summary of pattern characteristics. If
this can be established, it suggests that the connectivity statis-
tics could provide a useful basis for developing a parameter-
ization of subgrid variability in large-scale models or could be
used to simulate realistic patterns (i.e., patterns conditioned on
the connectivity function) of initial conditions for event-based
catchment models. Patterns of initial conditions are always
required to run these models, but they are generally not mea-
sured.

Two sets of simulations were performed using the Tar-
rawarra catchment. The simulations differ in the way the initial
conditions were set. Setting initial conditions is a critical step in
the majority of detailed runoff event simulations as these mod-
els are not generally run over extended periods. Given that it
is known that the models are sensitive to the patterns used, it
is important that the patterns used are appropriate. The aim
here is to explore the relative importance of different param-
eters that can be used to characterize the spatial structure of
the patterns statistically and thereby understand what the most
important features of the patterns are. Identical probability
density functions (similar to survey 1) were used for the sim-
ulations in order to control for the effects of soil moisture
mean and variance. Thus differences in the simulations are
related to differences in the spatial arrangement of moisture
only.

The first set of simulations was based on the 13 measured
soil moisture patterns. These were transformed so that each
moisture pattern had the same soil moisture probability den-
sity function (pdf) as survey 1. The transformation was applied
to the soil moisture value for a pixel without shifting the pixel’s
location. This implies that the spatial arrangement of the mea-
surements was unchanged, which means that the indicator pat-
terns and the connectivity functions were also unchanged. Thus
the only difference between the 13 initial condition patterns is
in the spatial arrangement of the soil moisture. Three different
rainfall series were applied to each initial soil moisture pattern.
These are typical of rainfall patterns observed at Tarrawarra,
and each rainfall series has the same temporal pattern. They
differ from each other in intensity. The rainfall cases are sum-
marized in Table 3. The runoff response is summarized in
terms of the total and peak discharge for each case.

Figure 8 shows hydrographs for random (February 23, 1996,
S3, dashed curves) and connected (April 22, 1996, S6, solid
curves) initial moisture patterns for each of the three rainfall

cases. Figure 8a shows the 6 min rainfall intensities used to
simulate the hydrographs in Figure 8b. For Figure 8c the rain-
fall intensity was increased to 150% of that in Figure 8a; for
Figure 8d, it was increased to 200% of that in Figure 8a. There
is a clear difference between the random and connected cases.
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Figure 8. Simulated runoff hydrographs for the Tarrawarra
catchment for three different assumed storms. Connected
(April 22, 1996) and random (February 23, 1996) initial soil
moisture patterns are used in the simulations. Note that the
pdf of both initial moisture patterns has been transformed so
that they are identical. The 6 min hyetograph in Figure 8a was
used to simulate the hydrographs in Figure 8b, and it was
multiplied by 1.5, 2.0, and 3.0 for the simulations in Figures
8c—8e, respectively.
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Figure 9. The variation in simulated peak (Figure 9a) and total discharge (Figure 9d) with directional
connectivity scale I, for different assumed storms. The 90th percentile integral connectivity has been used.
Diamonds indicate rain case 1, squares indicate rain case 2, and triangles indicate rain case 3. Figures 9b and
9e show similar relationships with integral correlations scale. Figures 9c and 9f show similar relationships with
the 90th percentile indicator variogram correlation length.

The connected case produces runoff significantly earlier than
the random case because the drainage line is already close to
saturation. It also produces higher total and peak runoff rates
for the smaller rainfall bursts. Figure 8e shows a very intense
rainfall burst of 39.6 mm or 300% of case 1, which is equivalent
to a 30—40 year rainstorm for the Tarrawarra climate. For this
very intense rainfall the random case produces higher total and
peak runoff rates because full connectivity occurs earlier than
with the connected case.

Figures 9a-9c provide summaries of peak discharge as a
function of integral connectivity and integral correlation scales
and the indicator variogram correlation length, respectively,
for each of the three rainfall cases to illustrate the type of
information provided by the two statistical measures. We have
used the omidirectional connectivity at the 90th percentile for
Figure 9a and the 90th percentile indicator variogram for Fig-
ure 9c. Figures 9d-9f provide the same summary for total
runoff. The integral connectivity scale was calculated using the
omnidirectional connectivity functions (Figure 6b) and a dis-
crete version of (2). The integral correlation scale was calcu-
lated from the fitted variograms [Western et al., 1998a]. The
indicator variogram correlation length was estimated by fitting
an exponential variogram with nugget [Western et al., 1998b].
The larger the integral connectivity scale, the more dominant
the wet bands in the drainage line are. That is, random patterns
plot on the left side of Figures 9a and 9d, while connected
patterns plot on the right side. Wet cases also have a weak
tendency for high integral correlation scales, although there is
not a strong relationship between the correlation scale and the
presence of connectivity.

Figure 9 illustrates that the basic trends evident in Figure 8
hold when a larger sample of initial soil moisture patterns is
considered. The changes in peak and total discharge with con-
nectivity scale are quite significant. For the low rainfall case
(Figures 9a and 9c, diamonds) the peak and total discharge
increase from close to zero to 2 mm/h and 3.5 mm, respec-
tively, as the connectivity scale increases. In the intermediate
rainfall case (squares) the peak discharge increases by ~190%
from 2.4 to 4.6 mm/h, while the total discharge increases by
~190% from 4.0 to 7.5 mm. For the highest rainfall case
(triangles) the peak discharge remains almost constant at ~8

mm/h as the connectivity increases, and the total discharge
increases by 16% from 11.9 to 13.8 mm as the connectivity
increases. There is also some scatter around the general trends.
Similar patterns are observed in the relationships between
runoff and both the integral correlation scale and the indicator
variogram correlation length. Table 4 demonstrates that runoff
is more closely related to connectivity for all the events, pro-
vided an appropriate percentile threshold is chosen. The ap-
propriate percentile threshold reduces as the amount of rain-
fall increases because a greater proportion of the catchment is
saturating and contributing to the runoff. There is also a ten-
dency for smaller events (typical of most of those observed at
Tarrawarra) to be more highly correlated with both connectiv-
ity and correlation scales than for extreme events (Table 4).
There is no clear evidence that runoff behavior is more
strongly related to either one of the omnidirectional or topo-
graphic connectivity functions used here.

In the second set of simulations, patterns of initial soil mois-
ture with varying connectivity but similar variograms were con-
structed. This was achieved by generating a random pattern
with a similar variogram to survey 1 [Western et al., 1998a] using
the turning bands method. Weighted combinations of this ran-
dom pattern and the measured pattern from survey 1 were
calculated. Then the pdf of the combined pattern was trans-
formed to be the same as survey 1. Six different weightings
were used: 100% random, 80% random and 20% survey 1,
60% random and 40% survey 1, 40% random and 60% survey
1, 20% random and 80% survey 1, and 100% survey 1. Sixteen
realizations of each of these combinations were calculated.
Figure 10 shows the variograms and connectivity functions
(averaged over the 16 realizations) for the six different weight-
ings. Simulations were run on the three rainfall cases used in
Figure 8, and peak and total discharges (averaged over the 16
realizations) were calculated for each of the six weightings.
Average topographic integral connectivity scales at the 50th,
75th, and 90th percentiles were also calculated for the six
weightings.

Figure 11 shows that for the small and medium rainfall
events both average peak and average total discharge increase
as the degree of connectivity increases. Each point represents
responses averaged over 16 realizations. For the largest rainfall
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Table 4. Coefficient of Determination for Relationships Between Runoff Behavior and
Integral Correlation Scale, the Indicator Variogram Correlation Length (From Fitted
Exponential Variograms), and the Integral Connectivity Scale for the Simulations

Using the 13 Observed Soil Moisture Patterns From Tarrawarra®

Peak Discharge, mm/h

Total Discharge, mm

Rain X 1 Rain X 1.5 Rain X 2 Rain X 1 Rain X 1.5 Rain X 2

Integral correlation scale 0.38 0.50 0.20 0.35 0.43 0.36
Indicator correlation length

50% 0.36 0.30 0.02 0.32 0.32 0.01

75% 0.40 0.35 0.00 0.40 0.33 0.02

90% 0.40 0.36 0.08 0.39 0.35 0.11
Integral connectivity scales

50% omni 0.25 0.46 0.29 0.31 0.45 0.26

50% topo 0.52 0.73 0.23 0.55 0.71 0.36

75% omni 0.48 0.31 0.01 0.49 0.36 0.22

90% omni 0.61 0.49 0.02 0.71 0.58 0.24

75% topo 0.48 0.31 0.02 0.50 0.35 0.04

90% topo 0.56 0.42 0.01 0.66 0.52 0.26

“Note that the soil moisture pdf was normalized to survey 1 for each simulation. Here omni is

omnidirectional, and topo is topographic.

event the average total discharge increases, but the average
peak discharge decreases slightly as connectivity increases.
Comparing Figures 9a with 11a and 9c with 11b indicates that
the changes in runoff response with connectivity scale are very
similar for the two different sets of simulations. In all but the
case of peak runoff for the largest event (which has only a small
variation in the runoff response) the connectivity scale explains
>90% of the variation in runoff response (Table 5). It is

——0.0
——0.6

——0.4
——1.0

—=—0.2

—=—(.8

—_— N N W W
wn O W O W
T T T T

Variogram (% m>3/m?)?
S

— o th

Connectivity (-)
SR
E-S N oo

o
o

<

300

0 100 )
Separation (m)

Figure 10. Average variograms and topographic connectivity
functions (75% threshold) for the initial soil moisture patterns
generated by weighting the observed pattern from survey 1
with a random pattern that was generated using the fitted
variogram for survey 1.

important to remember that the variograms are held constant
(i.e., integral correlation scale is the same) while the connec-
tivity is varied in this set of simulations.

4.2. Groundwater Solute Transport

In this section we use a finite element groundwater model
[Bloschl and Blaschke, 1992] to explore how differences in
connectivity might affect the transport dynamics of an aquifer.
The model is two-dimensional in the horizontal, while the
vertical dimension is lumped. Two sets of simulations were
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Figure 11. The variation in simulated (a) peak and (b) total
discharge with directional connectivity scale I, for different
assumed storms. The initial soil moisture patterns were gen-
erated by weighting the observed pattern from survey 1 with a
random pattern that was generated using the fitted variogram
for survey 1. Each symbol represents the average of 16 real-
izations with a constant weighting of observed and random
pattern. Diamonds, squares, and triangles indicate rain cases 1,
2, and 3, respectively.
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Table 5.

Coefficient of Determination for Relationships Between Average (Over 16

Realizations) Runoff Behavior and Integral Connectivity Scales for the Simulations
Using the Patterns With Varying Organization (Mix of Survey 1 and Random)*®

Integral Peak Discharge, mm/h Total Discharge, mm
connectivity
scales Rain X 1 Rain X 1.5 Rain X 2 Rain X 1 Rain X 1.5 Rain X 2

50% omni 0.99 0.98 0.16 0.99 0.97 0.98
50% topo 0.93 0.94 0.16 0.94 0.93 0.95
75% omni 0.90 0.87 0.43 0.87 0.83 0.86
75% topo 0.96 0.94 0.32 0.95 0.91 0.93
90% omni 0.12 0.07 0.87 0.08 0.04 0.06
90% topo 0.65 0.58 0.74 0.59 0.51 0.55

“Note that the soil moisture pdf was normalized to survey 1 for each simulation.

conducted for the aquifers in Figure 3. The first had flow from
west to east driven by prescribed heads at these boundaries,
with the northern and southern boundaries assumed to be
impervious. The second had flow from north to south and was
driven by prescribed heads with impervious eastern and west-
ern boundaries. The mean hydraulic gradient of the aquifer
was the same for both flow directions and was equal to 30/
9000 = 20/6000. The porosity was 0.1. The small-scale (within
element) dispersivity was set to zero, which means that disper-
sion only occurs at a scale that is resolved by the groundwater
model. Breakthrough curves were calculated for each aquifer
based on a step input of concentration at the upstream bound-
ary. A sharp transition between high and low conductivities at
the interface between paleochannels and the ambient medium
may cause problems in numerical transport algorithms. To
avoid potential problems with conventional particle tracking
(random walk) procedures [see, e.g., Cordes and Kinzelbach,
1992; LaBolle et al., 1996], an alternative approach for estimat-
ing the breakthrough curve was adopted [Bloschl, 1996]. Spe-
cifically, the flow system was solved twice. The first simulation
provided the flow velocities in each element. The second sim-
ulation was a conjugate simulation that builds on the symmetry
between the potential and the stream functions. The conjugate
case uses swapped contour lines and stream lines and uses
conjugate (swapped) boundary conditions as well as the in-
verse of conductivities. The conjugate case gives contour lines
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Figure 12. Breakthrough curves based on a step increase of
concentration at the western boundary with west-east flow and
at the northern boundary with north-south flow. The break-
through curves were computed using a finite element model
for the two aquifer conductivity patterns shown in Figure 3.

of heads, which can be interpreted as stream lines of the
original case. The algorithm then integrates numerically the
values of the velocities of the first (original) case along the flow
directions (i.e., stream lines) of the second (conjugate) case,
which yields arrival times and, as their cumulative distribution
function, the break through curve. It is clear that this approach
is very accurate and avoids the problems one encounters with
other methods when high-conductivity contrasts (discontinui-
ties) are present in the aquifer.

The breakthrough curves so estimated are shown in Figures
12a and 12b for both north-south and west-east flow directions.
For west-east flow in the connected aquifer with the high
conductivity paleochannels the median response (50% of con-
centration) occurs after 670 days (1.8 years), while in the ran-
dom case the median response occurs only after 18,900 days
(51.8 years). The large difference is due to the rapid flow
through the high-conductivity flow paths in the connected case.
Judged on the basis of standard geostatistical measures (e.g.,
the variogram, the integral correlation scale, and the probabil-
ity density function), these aquifers are statistically similar;
however, their connectivity functions are very different. From
a groundwater dynamics perspective the connectivity functions
clearly characterize an important feature of the spatial pattern
of conductivities. For north-south flow the break through
curves are very similar with the median response occurring at
~13,500 days (37 years). The connectivity in the north-south
direction is also similar for both cases.

Qualitatively, the groundwater results are similar to the soil
moisture cases, and the response dynamics are closely related
to the integral connectivity scales as calculated from Figure 7.
For the west-east direction in the connected aquifer, I, = 946
m, which translates into a fast median response (1.8 years),
while for the random aquifer, /, = 400 m, which translates
into a much slower median response (51.8 years). For north-
south flow in both aquifers the integral connectivity scale and
the breakthrough behavior are similar.

5. Discussion and Conclusions

Our results indicate that unlike more standard geostatistical
approaches, the connectivity function approach [Allard, 1994;
Allard and Group, 1993] is able to discriminate between spatial
patterns that exhibit very different connectivity characteristics.
In the case of the soil moisture patterns, there are clear dif-
ferences between wet and dry patterns in terms of the connec-
tivity along the topographically determined surface flow paths
that are detected by the connectivity functions. Indicator var-
iograms were unable to distinguish between the wet and dry
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patterns [Western et al., 1998b]. Rainfall-runoff simulations
showed that the runoff responses varied as the connectivity of
the moisture patterns varied when the pattern’s variogram was
held constant. Even when the variogram changes between pat-
terns, the runoff response was more closely related to the
integral connectivity scale than to the integral correlation
scale. The connectivity approach also distinguished between
the two synthetic aquifers, even though the patterns are essen-
tially identical in terms of their pdf, variograms, and anisot-
ropy. Our simulations also show that the different patterns
exhibit hydrologically different behavior. Therefore we can
conclude that the connectivity function is characterizing fea-
tures of the patterns that are hydrologically significant and that
the approach is superior to the more standard geostatistical
approaches in terms of capturing connectivity.

It is possible to relate the differences in connectivity to the
differences in hydrologic behavior by considering the processes
controlling the system’s behavior. In the groundwater case it is
clear that the rapid transport is due to high flow velocities
through the well-connected high-conductivity zones. The dif-
ference in median breakthrough time between the connected
and disconnected cases is more than an order of magnitude
(1.8 and 51.8 years, respectively, for west-east flow), which is
very significant from a practical perspective. It is important to
realize that while the aquifers used in the example are artificial,
they are related to real groundwater systems in that the con-
nected case provides an idealization of paleochannels which
are important features of many alluvial aquifers.

A somewhat related analysis of groundwater transport has
been performed by Scheibe [1993], who examined a number of
hypothetical aquifers exhibiting realistic sedimentary struc-
tures. Scheibe [1993] characterized the conductivity patterns of
these aquifers by a number of statistical measures, including
connectivity measures, and related these to the transport dy-
namics of these aquifers. While Scheibe’s [1993] results are
qualitative in nature, he did find that the connectivity measures
were related to the early breakthrough times and to the mean
velocity with highly connected patterns being associated with
earlier breakthrough. This is consistent with the results in this
paper. Gémez-Herndndez and Wen [1997] also found significant
differences in transport behavior for patterns with qualitatively
different connectivity features; however, they did not quantify
the degree of connectivity.

In the case of soil moisture the high-connectivity patterns
produce more runoff, in terms of both peak flows and total
discharge, for small rainfall totals (Figures 8, 9, and 11), while
in some cases (Figures 8e and 11) the low-connectivity patterns
can produce higher peak discharges for large rainfall totals.
This behavior can be explained as follows. Both the random
and connected cases start with statistically similar moisture
contents. This means that both start with the same proportion
of the catchment saturated (or with any specified saturation
deficit). When the rain begins, the connected case produces
runoff at the catchment outlet early because most of the wet
areas are in the gully and there is little runon infiltration
downstream of the saturated source areas. In the random case
the saturated source areas are mainly on the hillslopes, and
there is a much greater opportunity for runon infiltration be-
fore the overland flow leaves the catchment; hence the total
runoff is less. In most cases the saturated area connected to the
outlet is larger at the time of the peak rainfall rate for the
connected cases, and this leads to larger peak runoff. However,
after a large amount of rainfall, the opposite can be true. As

rainfall continues, more of the saturated source area runoff is
contributing to an increase in the total saturated area in the
random case, whereas more is leaving the catchment as over-
land flow in the connected case. Therefore, compared to the
connected case, the total saturated area can grow more quickly
in the random case. Once this increasing saturated area con-
nects to the catchment outlet, the random case produces
greater discharges. If the simulations are continued until the
rainfall totals are sufficient to saturate the majority of the
catchment, the behavior of the random and connected cases
eventually converges.

While the differences in runoff behavior for soil moisture
patterns with different connectivity are not as dramatic as for
the groundwater case, they are still significant (190% for both
peak runoff and total runoff in moderate events), and the
underlying trend is clearly evident against the random scatter.
The scatter appears to be related to the proximity of wet
patches to the drainage lines, which varies randomly (at least in
part) between patterns. This variation influences the runoff
behavior at the catchment outlet by affecting the connection of
saturated areas to the catchment outlet. Some of this random-
ness is due to measurement error, and some is likely to be due
to small-scale variability, which is not averaged out by the point
measurements. It is also likely that varying antecedent forcing
combined with the catchment dynamics leads to complex vari-
ations in the details of the observed patterns.

We expect that this randomness will be scale dependent. At
larger scales some of the randomness might be averaged out
owing to more representative integration within the channel
network. However, any scale effects will also depend on what
happens to the spatial variability in moisture at larger scales.
Other sources of variability will also arise at larger scales,
including differently shaped subcatchments and variability in
geology, soils, vegetation, and land use.

Somewhat similar results have been obtained for catchment
runoff by Grayson et al. [1995]. They used antecedent soil
moisture patterns that were identical in terms of their pdf and
variograms in simulations of runoff from a hypothetical catch-
ment based on the Coweeta topography and found that simu-
lated runoff varied substantially between connected and dis-
connected antecedent patterns. Rainfall characteristics
influenced the runoff in their simulations in a similar way to
ours. This is related to the representation of similar processes
in the study of Grayson et al. [1995] and in this paper. In both
cases, saturation excess runoff and runon infiltration were the
dominant mechanisms. In contrast, Merz and Plate [1997] ex-
amined the effect of connectivity of the patterns of initial soil
moisture on simulated runoff for a catchment where Horto-
nian (infiltration excess) overland flow is the dominant mech-
anism. They found that for small events and for large events,
there is only a minor effect of the spatial arrangement of soil
moisture on simulated runoff, while there is a substantial effect
for intermediate events. For small events, only the sealed parts
of the catchment (i.e., mainly the roads) contribute to runoff.
For large events the source areas are widely spread over the
catchment, and one would therefore not assume the spatial
arrangement of soil moisture to be important for runoff gen-
eration. However, for intermediate events where rainfall in-
tensity is of the same order of magnitude as saturated hydraulic
conductivity, there is a substantial effect on runoff of up to
double the runoff peaks and 3 times the event runoff volumes
in the connected case as compared to the disconnected case.
While Merz and Plate [1997] found the rainfall intensity relative
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to soil hydraulic conductivity to be important in controlling the
effect of the connectivity on runoff, in this paper, event rainfall
depth relative to saturation deficit is likely to be an important
parameter as the saturation excess mechanism prevails. It is
also important to note that this paper goes beyond the previous
work mentioned above in using observed spatial soil moisture
patterns (as opposed to assumed patterns) and in quantifying
connectivity by the connectivity function and the integral con-
nectivity scale (as opposed to qualitative descriptions of con-
nectivity).

We believe that the effect of connectivity on hydrologic
response demonstrated here for two examples (catchment run-
off and groundwater transport) is also valid for a much wider
range of hydrologic processes, ranging from small-scale macro-
pore flow in soils to the large-scale response of river basins.
The link between the soil moisture case and the groundwater
case is fundamentally to do with the provision of efficient flow
paths. In an aquifer a flow path is efficient if the flow resistance
is low, and in the soil moisture case a flow path is efficient if the
losses to runon infiltration are low. The actual shape of these
flow paths is not important; it is the fact that they are con-
nected. A long and winding road is better than no road at all.
This provides an insight into the reason why traditional
geostatistical approaches fail in this context. They fail because
there is an underlying assumption that the relationship be-
tween points is determined by their Euclidian separation
alone. The connectivity functions work because they account
for connected paths of arbitrary shape.

The importance of an efficient flow path also provides a
criterion for determining whether or not directionality is im-
portant when considering connectivity functions. Where flow
paths are aligned with the connectivity, the connectivity plays
an important role. This is illustrated in the groundwater exam-
ple where west-east transport was greatly affected by the (west-
east oriented) connectivity but the north-south transport was
not. Use of directional connectivity functions allowed these
two cases to be easily distinguished in a quantitative manner.
In the case of soil moisture the surface flow paths are deter-
mined by the topography. The topographically determined
flow paths do not necessarily coincide with connected high soil
moisture bands in a pattern. For example, where the underly-
ing geological formations are dipping into a hillslope, bands of
different soil moisture may develop across the hillslope due to
different soil characteristics. This means that directionality is
likely to be more important, although the omnidirectional con-
nectivity functions do still distinguish between the patterns
quite well, whereas the variogram-based approaches do not.
Thus it is likely that consideration of directionality will be
important wherever the feature being considered does not
control the flow path. This is the case in the soil moisture
example where the soil moisture controls the runoff generation
and the topography determines the flow path. Of course, there
is a strong tendency for these two to interact to produce con-
nectivity of soil moisture that coincides with the topographi-
cally determined flow paths.

We have demonstrated that connectivity statistics can cap-
ture hydrologically significant features of spatial patterns and
have discussed the process considerations that support the link
between connectivity and hydrologic behavior. An obvious
question now is how one would use the connectivity statistics in
practical hydrologic applications. We envisage four potential
applications and associated issues: (1) estimation of connectiv-
ity statistics from data, (2) estimation of spatial patterns from

point data (i.e., interpolation and stochastic simulation), (3)
use of the integral connectivity scale as a bulk parameter to
characterise hydrologically relevant spatial characteristics of
patterns, and (4) scale dependence of the connectivity statistics.

5.1.

Unlike traditional geostatistics where the variogram can be
estimated from a number of point values in the domain, the
estimation of the connectivity function requires that the pat-
tern must be exhaustively known. This is because in the case of
the variogram the spatial (Euclidean) distance between pairs
of points (along with the point data values) determines the
variogram, while in the case of the connectivity function it is
also the spatial arrangement of the underlying pattern that
determines the connectivity function. In most practical cases,
including those that the soil moisture and groundwater exam-
ples in this paper stand for, an exhaustive spatial pattern will
not be known. To obtain realistic values for the connectivity
function in such cases, one possibility is to use “proxy” or
“soft” data. For example, in groundwater hydrology the spatial
arrangement of geologic formations as seen in outcrops or in
underground mines [see Williams, 1988] is an important piece
of information for obtaining an idea of the spatial structure of
the subsurface. This type of soft information can be used to
estimate, at least approximately, the connectivity function be-
cause the connectivity function builds on indicator values (ei-
ther 0 or 1) similar to those used in indicator geostatistics
[Journel, 1983] where soft information has been widely used in
the past [e.g., see Anderson, 1997]. If soft data are not avail-
able, an alternative is to transpose values of the connectivity
function or the integral connectivity scale from studies one
would think exhibit similar behavior, in very much the same
way as is done currently in many practical applications. For
example, values of dispersivity and hydraulic soil properties are
transposed from one study site to another.

Estimation of Connectivity Statistics From Data

5.2. [Estimation of Spatial Patterns From Point Data
(Interpolation and Stochastic Simulation)

Here, again, the fact that the connectivity approach depends
on the spatial arrangement of the pattern between data points
(unlike traditional geostatistics) is important. Because of this a
simple extension of the more commonly used geostatistical
techniques (such as kriging and sequential indicator simula-
tion) to accommodate the connectivity function is probably not
easily possible. However, a number of pattern generation tech-
niques are more flexible, and it is straightforward to accom-
modate the connectivity function in them. For example, simu-
lated annealing [Srivastava, 1994; Deutsch and Cockerham,
1994] is an iterative method of generating patterns that mini-
mizes the difference between statistics of the pattern to be
generated and the statistics of a training image. The choice of
the control statistics is critically important in creating realisti-
cal looking patterns. If one uses, say, indicator variograms as
control statistics, the simulated pattern will be similar to that
generated by indicator based stochastic methods such as se-
quential indicator simulation [Deutsch and Journel, 1992]. One
can now use the connectivity function (or the integral connec-
tivity scale alone) as the control statistics. If one prescribes a
connectivity function, there is no need for a training image.
Simulated annealing will then generate patterns with realistic
connectivity features. Simulated annealing can be used both
for interpolating between point values if data are available
(conditional simulation) and for generating spatial patterns
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with realistic connectivity features if no data are available
(unconditional simulation). It should be noted that while sim-
ulated annealing approaches are computationally very de-
manding, one can expect that they will become more widely
used in the future with the current trend of decreasing com-
puting costs.

5.3. Use of the Integral Connectivity Scale as a Bulk
Parameter to Characterize Hydrologically Relevant Spatial
Characteristics of Patterns

There are a number of disciplines that have a long history in
using the integral correlation scale as a bulk descriptor of
spatial (or temporal) variability. Examples include fluid dy-
namics [Taylor, 1921; Prandtl, 1925], where the concept of an
integral correlation scale was first conceived, and there are
numerous applications in various areas of hydrology [e.g., Ro-
driguez-Iturbe, 1986; Dagan, 1989; Gelhar, 1993]. Common to
all of these approaches is that instead of the full spatial com-
plexity, they use only one number (the integral correlation
scale) as a key parameter. One can envisage, say, a stochastic
groundwater theory that builds on the integral connectivity
scale rather than on the integral correlation scale. In this ex-
ample the integral connectivity scale will be dependent on the
mean flow direction (as in the example in Figure 7), which
perhaps makes the usage of the integral connectivity scale
more difficult but certainly makes it more appealing from a
physical perspective. Another potential application is the use
of the integral connectivity scale as a bulk parameter to char-
acterize subgrid variability in large-scale surface hydrological
problems, such as the description of the land surface in atmo-
spheric global circulation models and numerical weather pre-
diction models. One would expect that at these very large
scales the connectivity of hydrologic patterns will also be very
important from a hydrologic perspective.

5.4. Scale Dependence of the Connectivity Statistics

In this paper we have used fixed pixel sizes (10 X 20 m in the
soil moisture case and 23.4 X 23.4 m in the groundwater case)
to estimate the connectivity function. It is quite obvious that
the connectivity function will change as the pixel size changes.
This is similar to standard geostatistics where the pixel size is
termed block size or support, and their effect on the probabil-
ity density function and the variogram can be estimated by
regularization techniques. In fact, estimating the effect of pixel
size (or support) has been one of the main motivations for the
emergence of geostatistics [Journel and Huijbregts, 1978]. Reg-
ularization techniques have been used in various areas of hy-
drology, including precipitation [Rodriguez-Iturbe and Mejia,
1974; Sivapalan and Bloschl, 1998], surface hydrology [Western
and Bloschl, 1999], and of course, groundwater hydrology [e.g.,
see Wen and Gomez-Herndndez, 1996]. One can envisage sim-
ilar regularization techniques for the connectivity function ap-
proach, which would provide a means of obtaining the connec-
tivity function valid at a small pixel size from a connectivity
function valid at a large pixel size and vice versa. This scale
effect is related to the issue of near connectedness. For exam-
ple, two large wet patches with a single dry pixel in between are
not strictly connected, but they may have a similar impact on
runoff response to the case where the single pixel is in fact wet
and only one large connected region exists. Similarly, in the
groundwater case, high-conductivity bands that are nearly con-
nected may have a similar effect on groundwater dynamics as
fully connected bands. Clearly, in both cases the apparent

presence of near connectedness is scale dependent. As one
aggregates a number of neighboring pixels to a large pixel, the
single low-conductivity pixel (or the single dry pixel in the soil
moisture case) will disappear, and the nearly connected bands
will appear as one large band. However, as one keeps aggre-
gating, the connected band will also disappear at some level of
aggregation. The effect of near connectedness can therefore be
dealt with in the context of the scale-dependent nature of the
connectivity function. Another scale-related issue is that of
stationarity. We have assumed that the connectivity function
depends only on the scalar 4, i.e. the spatial field is stationary.
This is a common assumption in geostatistics and Western et al.
[1998a, 1998b] have demonstrated that the soil moisture pat-
terns are stationary. The synthetic aquifer patterns are also
stationary. For application to nonstationary patterns some fur-
ther development of the technique, such as incorporating a
detrending step or using locally defined indicator statistics,
would be required. This is also the case with standard
geostatistical techniques [Isaaks and Srivastava, 1989]. The
four issues discussed above will provide fertile ground for fur-
ther research into the application of connectivity concepts in
hydrology.
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