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Abstract 

Current approaches to constructing catchment intensity-duration-frequency (IDF) curves are dominated by the use of  
empirically-derived areal reduction factors (ARFs). In this paper we present an alternative methodology which is based on 
the spatial correlation structure of  rainfall. It represents an attempt to link current scientific theories of  space-time rainfall 
fields with design methods. The starting point is to derive the parent distribution of  catchment average rainfall intensity from 
that of  point rainfall intensity. The parameters of  the two parent distributions are related through a variance reduction factor 
which is a function of  the spatial correlation structure of  rainfall and catchment area. Assuming that the parent distribution is 
of  the 'exponential type', it is then transformed to an extreme value distribution of  the Gumbel type. The crucial step is to 
match the parameters of  the extreme rainfall distribution derived above, for the particular case of  zero catchment area, with 
those of  empirical point IDF curves which have also been fitted to the Gumbel distribution. With this match, the proposed 
theory then naturally generalises to yield catchment IDF curves for catchments of  any size, and for rainfall of  any spatial 
correlation structure. The new catchment IDF curves have the attractive property that, with a minimum number of  assump- 
tions, they can reproduce a range of  observed properties of  catchment rainfall. For example, not only the mean and the 
standard deviation of  extreme rainfall, but also its coefficient of  variation, decrease with increasing catchment area. We also 
find that computed ARFs using the new approach depend not only on catchment area and storm duration, but also on the return 
period. We estimate ARFs using the new methodology for two major observed storms in Austria, and find that these estimates 
compare favourably with our understanding of  the rainfall generating mechanisms associated with these two particular storm 
types. © 1998 Elsevier Science B.V. 

Keywords. Rainfall fields; Flood estimation; Areal reduction factors; Extreme value distributions; Catchments; IDF curves 

I. Introduct ion 

In tens i ty-dura t ion- f requency (IDF) curves  are 
w ide ly  used in f lood des ign est imation.  IDF curves  

are essent ia l ly  condi t ional  cumula t ive  distr ibutions 
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o f  rainfall  intensity, condi t ioned  on rainfall  duration. 

They  are es t imated f rom observed  rainfall  data by 

sub-div id ing  the rainfall  record  into intervals  o f  a 
g iven  duration. Annua l  m a x i m a  o f  average  rainfall  

intensities ove r  each o f  the selected intervals can 

then be ranked. Based  on these rankings one can 

then calculate,  using plot t ing posi t ion formulae,  the 

condi t ional  return per iod T corresponding  to each 
va lue  o f  intensi ty (the average  number  o f  years  

be tween  rainfall  events,  o f  the chosen duration, that 
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equal or exceed the particular intensity). For defini- 
tions, see Eagleson (1970) and Chow et al. (1988). 

The reciprocal of T is the conditional probability P 
that the annual maximum rainfall intensity for a spe- 
cified duration (averaged over the duration), will 
equal or exceed a specified magnitude; this can be 
written as: 

iI~ o" 1 = 1 - f t ( i l tr)di= 1 -F1(ieltr) (1) P{I  >-- ieltr} = -~ 

F/(ieltr) in Eq. (1) is the conditional cumulative dis- 
tribution function for intensity ie, given duration tr, 
which is a formal expression of the IDF curves. The 
IDF curves, as mentioned already, are usually based 
on time increments, rather than on complete storms 
(Eagleson, 1970; Chow et al., 1988). Gutknecht 
(1977) investigated the differences between storm- 
based and increment-based IDF curves using 
Austrian data. He concluded that, in general, storm- 
based analyses give lower rainfall intensities for a 
given duration and return period; however, the differ- 
ences are small. 

1.1. Catchment  I D F  curves and areal reduction 
factors  

The IDF curves described above apply to point 
rainfall. However, what is needed for most design 
applications are catchment IDF curves. Due to the 
smoothing associated with the spatial averaging of 
rainfall over the catchment area, the catchment IDF 
curves have both a lower mean and variance, i.e. they 
are lower and flatter in appearance, than the corre- 
sponding point IDF curves. 

Current practice for constructing catchment IDF 
curves is dominated by the use of areal reduction 
factors (ARFs) which are empirically-derived func- 
tions of  catchment area, A, storm duration, tr, and 
sometimes, the return period, T (U.S. Weather 
Bureau, 1957; Bell, 1976; Myers and Zehr, 1980; 
Pilgrim, 1987; Omolayo, 1993; Grebner, 1995; 
Srikanthan, 1995). Catchment IDF curves are then 
obtained by multiplying the rainfall intensities esti- 
mated from the point IDF curves by the ARF corre- 
sponding to A, tr and T. For very small catchments the 
ARF approaches one, and catchment IDF curves 
become identical to point IDF curves. With increasing 
catchment area, A, the ARFs fall away from unity, and 

catchment IDF curves become lower and flatter since 
both the mean and standard deviation of the con- 
ditional rainfall distributions are proportionately 
reduced due to the multiplication by the ARFs. This 
reduction is much sharper for short duration events, 
the rationale being that short duration events (e.g. 
convective) are small in areal extent. 

Two kinds of  ARFs are presently in use (Eagleson, 
1970; Blrschl and Sivapalan, 1995; Srikanthan, 
1995). (a) Fixed-area (also known as geographi- 
cally-fixed) ARFs relate rainfall at any arbitrary 
point, i.e. a point rainfall estimate, to the average 
over a catchment which is fixed in space. They are 
estimated by constructing from all available station 
rainfall data, the time series of catchment average 
rainfall (e.g. using the Thiessen polygon method), 
performing the same types of  extreme value analyses 
described above for constructing point IDF curves, 
and finally relating the catchment rainfall intensities 
to the point values, for the same return period and 
duration. (b) Storm-centred ARFs refer to a given 
storm. They represent the ratio of  average storm 
depth over an area (defined by the rainfall isohyets) 
and the maximum rainfall depth for the storm (at the 
storm centre). Storm-centred ARFs are usually some- 
what smaller than fixed-area ARFs. Storm-centred 
ARFs are used more commonly in PMF (probable 
maximum flood) estimation, while the fixed-area 
ARFs are used for designing hydraulic structures for 
flood control, e.g. bridges and culverts. This paper is 
concerned with estimating fixed-area ARFs. 

Research on rainfall processes in the past 15-20 yr 
has been dominated by the stochastic modelling of 
rainfall fields in space and time (e.g. Waymire et al., 
1984; Sivapalan and Wood, 1987), a comprehensive 
review of which has been provided by Foufoula- 
Georgiou and Georgakakos (1991). These models are 
based on the space-time correlation structure of  rain- 
fall which reflects the conceptual, hierarchical 
features observed in actual rain systems, such as, cells, 
cell clusters and rain bands (Austin and Houze, 1972; 
Hobbs and Locatelli, 1978; Zawadzki, 1973). As such, 
they are capable of  describing different storm types and 
rainfall generating mechanisms, be they small convec- 
tive events or large synoptic events. However, these 
models are rarely used in design. 

One notable example of  research into ARFs which 
did use the spatial correlation structure of  rainfall 
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fields is that of  Rodriguez-Iturbe and Mejia (1974). In 
their work, they approximated the rainfall field as a 
zero mean Gaussian process, and averaged it over a 
catchment area. The averaging resulted in variance 
reduction factors which were a function of the 
assumed spatial correlation structure, and the size 
and shape of the catchment area. Rodriguez-Iturbe 
and Mej ia (1974) argued that these variance reduction 
factors could be interpreted as ARFs. However, these 
ARFs can only refer to parent rainfall intensties and 
not to extreme rainfalls; indeed, it is not clear what the 
relevance of these ARFs is to extreme rainfalls. 
Specifically, in their method, the mean of the areally 
averaged rainfall does not change with the averaging 
area which seems more appropriate to the parent 
process rather than to the extreme value process. 

What is needed, therefore, is an extension of the 
work of Rodrlguez-Iturbe and Mejia (1974) that 
makes use of  the spatial correlation structure while 
looking at the extreme value distributions rather 
than the parent distributions only. This is being 
attempted in this paper. The study of rainfall fields 
has expanded in the last decade, and alternatives to 
the use of  space-time correlation structures are being 
investigated, such as fractals and multiplicative 
cascades. For a detailed exposition of recent 
advances, refer to a recent issue of Journal of Geo- 
physical Research (Vol. 101, D2 l, pp. 26261-26538, 
1996; special section on Space-Time Variability and 
Dynamics of Rainfall). These advances may lead to 
alternative methods for estimating ARFs. Also, 
Bacchi and Ranzi (1996) have recently proposed 
another theoretical methodology for estimating 
ARFs based on crossing properties of  high intensity 
rainfall. 

1.2. Aim of this paper 

In this paper we present a methodology for estimat- 
ing catchment IDF curves which utilises the spatial 
correlation structure of  rainfall. The paper thus repre- 
sents an attempt to link approaches used presently in 
design, based largely on the use of  empirically- 
derived ARFs, with approaches based on some current 
scientific theories of  space-time rainfall fields. In this 
way we hope to place the estimation of design ARFs 
on a sounder scientific basis, and at the same time, 
provide some guidance for new research strategies. 

The methodology proposed in this paper consists of  
four steps. In the first step, we specify a parent dis- 
tribution of the point rainfall process. In the second 
step, this point process is averaged over a catchment 
area. In the third step, we transform the parent distri- 
bution of the areally averaged rainfall process to the 
corresponding extreme value distribution, using the 
asymptotic extreme value theory of Gumbel (1958). 
In the fourth and final step, we match the extreme 
value distribution derived above, for the particular 
case of  zero catchment area, with observed extreme 
value distributions of  point rainfall (i.e. point IDF 
curves), which then yield the parameters of  the catch- 
ment IDF curves. These steps are described in more 
detail in the following sections, and applications of  
the methodology are given at the end of the paper. 

2. Point rainfall--parent distribution 

The probability distribution of point rainfall inten- 
sities has been examined in a large number of studies 
(e.g. Eagleson, 1972; Warrilow et al., 1986). In many 
cases the exponential distribution has been suggested 
as presenting a good approximation to the underlying 
rainfall process. For this reason, and for clarity of  
presentation, we assume that the parent distribution 
of point rainfall intensity, ip, is exponential, with para- 
meter tip: 

l e x  p - fl(ip)=13 p ( ~ p )  (2) 

with its mean and variance given by: 

.~ =~,, (3) 

2 =fl~ (4) 

However, the methodology presented here can be 
easily extended to any other distribution belonging 
to the 'exponential' type (see Gumbel, 1958), such 
as, the Weibull and gamma distributions. 

It is also common to assume that the spatial corre- 
logram, of  point rainfall intensity, is of  the following 
isotropic, exponential type (Rodriguez-Iturbe and 
Mejia, 1974; Wood and Hebson, 1986): 

pp(r) = exp( - r/X) (5) 

where r is the distance between two points and X is 
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Fig. 1. Spatial correlation coefficients (i.e., the correlogram) versus inter-station distance based on daily rainfall data at 67 stations in Tunisia 
during 1979--1983 (after Berndtsson, 1988). 

the spatial correlation length defined by 

j0 X = pp(r)dr 

For illustration, and to support the assumption of  an 
exponential correlogram, we present in Fig. l(a) the 
spatial correlogram, copied from Berndtsson (1988), 
based on daily rainfall data obtained from 67 stations 
in Tunisia for the 5 yr period 1979-1983. 

Again, although we have adopted an isotropic, 
exponential correlogram here for clarity of  presen- 
tation, the proposed methodology can be easily 
generalised for any other correlation structure, as 
well as for anisotropic conditions. For example, 
Sivapalan et al. (1990) have used a nested spatial 
correlogram (a combination of  two different correla- 
tion lengths) o f  the double-exponential type, while 
B16schl and Sivapalan (1997b) have used a nested 
correlogram of  the exponential type. 

3. Areal averaging of parent distribution 

3.1. Effects of  areal averaging 

Assuming that the spatial random field of  point 
rainfall intensities is stationary, we are now interested 
in how the spatial moments  change due to the aver- 
aging by a catchment of  area A. The spatially averaged 
(over the area A) rainfall intensity iA is defined as: 

i A = ~ ip(x)dx (6) 

where x is a vector representing the coordinates of  an 
arbitrary point inside the area. Because of  stationarity 
the mean of  iA remains the same as that of  ip. That is: 

/z A =/~p (7) 

The variance of  the areally averaged process, a 2, is 
less than ~ ,  with the ratio a 2 / ~  usually called the 
variance reduction factor, denoted by r 2. That is: 

0.2 2 2 = ~pK (8) 

The variance reduction factor K 2 decreases with 
increasing A; K 2 = 1.0 when A = 0, and K 2 ---* 0 as 
A --~ oo 

3.2. Estimation of r 2 

The magnitude of  the variance reduction factor K 2 
depends on the correlation structure of  rainfall, and 
the size and shape of  the catchment. Rodriguez-Iturbe 
and Mejia (1974) showed that K 2 c a n  be expressed for 
a stationary isotropic spatial random field as: 

K 2 = E [ p p ( l X  2 - l I 1)] (9) 

where E[op] is the expected value of  the spatial cor- 
relation coefficient between any two points x l and x2 
randomly chosen within a catchment domain of  size 
A, and I.I represents the magnitude of  the Euclidean 
distance between them. Rodrlguez-Iturbe and Mejia 
(1974) also showed that Eq. (9) can be simplified to: 

[~max PP (r~fR(r)dr ( 1 0 )  2 
K = 

J O  
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Fig. 2. Variance reduction factor K 2 versus nondimensional catchment area, A/X 2. The catchment area is approximated by a square and the 
correlogram is exponential. 

where R = r is the Eucledian distance between any 
two points within the area, Rma x is the maxima of r 
for all pairs of  points within the area, andfR(r) is the 
pdf of  the random variable R = r. 

In this paper we have assumed the catchment to be 
a square of  side a, i.e. A = a2; the pdf of  R has been 
derived by Ghosh (1951) for this case, and is 
reproduced in Appendix A. Using Eq. (10) we have 
estimated 2 for a range of catchment sizes, A, for the 
case of  a square shaped catchment and the isotropic, 
exponential correlogram given by Eq. (5). The results 
are presented in Fig. 2 in dimensionless form as 2 
versus A/X 2. Note that d e presented in Fig. 2 is 
identical to the variance reduction factor presented 
by Rodriguez-Iturbe and Mejia (1974) in their 
Figure 5. 

We want to reiterate that the methodology pre- 
sented here is not limited by the assumptions of  iso- 
tropy and square shape of the catchment area. These 
can easily be generalised. For example, the distri- 
bution, fR(r), of  distances can be analytically derived 
for a rectangle (Ghosh, 1951), and numerically for any 
other catchment shape (Rodriguez-Iturbe and Mejia, 
1974; Sivapalan et al., 1996). Similarly, the metho- 
dology can be generalised to relax the assumption of 
isotropy (see, for example, Sivapalan, 1986); isotropy 
is only adopted here for clarity of  presentation. 

However, the assumption of stationarity in space of 
the underlying rainfall random field is crucial to the 
derivations presented here. For example, this 
approach cannot handle finiteness of  storm area, and 
the consequent, possibly partial coverage of a catch- 
ment area. At best, the method could be appropriate 
for rainfall systems which are large relative to catch- 
ment area. There have been some studies of  the effect 
of  partial coverage of storms; see, for example, Eagle- 
son and Qinliang (1985). 

3.3. Parent distribution of areal average rainfall 

It can be shown that, when the point rainfall 
process is exponentially distributed, the areally 
averaged rainfall process is approximately gamma 
distributed (Hebson and Wood, 1986; Wood and 
Hebson, 1986; Sivapalan et al., 1990). We adopt 
the following gamma distribution, with parameters 
kA and 13A, as the parent distribution of areal average 
rainfall: 

fl(iA)= ( yA) kAexp(-- ~A) /13Ar(kA) (11) 

The mean and variance for the gamma distribution 
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are given by: 

i~ A =kAl3 A (12) 

2 2 
O A =kA~ A ( 13 )  

Using Eqs. (3) and (4) and Eqs. (7) and (8), we then 
have: 

kA{3A =13p (14) 

kA~ 2 = ~p2K2 (15) 

where K 2 is the variance reduction factor estimated 
with Eq. (10). From Eqs. (14) and (15) we can then 
solve for kA and ~A as follows: 

k A = K  - 2  (16 )  

/3 A =/3p K 2 (17) 

Eqs. (16) and (17) therefore describe how the para- 
meters of  the parent distribution of areally-averaged 
rainfall change with catchment area A. 

4. Areal  rainfall: Transi t ion to extreme values  

In this paper we are concerned with obtaining the 
distribution of  extreme rainfall, i.e. the largest value in 
a single calendar year. Gumbel (1958) (also see 

Benjamin and Cornell, 1970, pp. 670-672), con- 
sidered random variables, denoted by X, with under- 
lying parent distributions of  the 'exponential' type, 
and the distribution F L of Y., the largest of n inde- 
pendent, identically distributed random variables 
X1,X2,X3 ..... X .  sampled from F x(x). An 'exponential' 
type distribution is one whose cumulative distribu- 
tion, in the upper tail only, can be written in the form: 

Fx(x) = 1 - exp[ -g(x)]  (18) 

with g(x) an increasing function of x. The gamma 
distribution assumed earlier for areal average rainfall 
is of  this type, as is, naturally, the exponential dis- 
tribution itself. Gumbel (1958) then showed that the 
distribution of Y., the largest of  n independent 
random variables drawn from Fx(x) is given by: 

Fy. (y) = exp{ - exp[ - ~ . ( y -  u.)]} (19) 

where con and u. are parameters of  a linear approxi- 
mation to g(x) for large (i.e. extreme) values of  x. 
This approximation is given by: 

g(x) ~- g(un) + ol.(x- u.) (20) 

The upper tail is defined, following Gumbel (1958), 
as that corresponding to any chosen value of n, i.e. 

u. = g - l ( l n  n) (21) 

where u. is the rainfall intensity beyond which we fit 
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Fig. 3. Best fits to l -F/(iA) for the gamma distribution of areally averaged rainfall intensity for different values of  the parameters k A and/3A. 
Solid lines are exact and dashed lines correspond to approximate expressions adopted in this paper (Eqs. (22)-(26)). 
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Fig. 4. Fitted functions J~ (kA) and j~ (/cA) as functions of the gamma parameter kA. 

the tail o f  the parent distribution with Eqs. (18) and 
(20), and n can be interpreted as the reciprocal o f  the 
probability that this intensity is exceeded in any rain- 
fall event. 

We constructed the cumulative parent distribution 
function, F1(iA), for areal average rainfall intensities 
which are gamma distributed, with the pdf  given by 
Eq. (11) with parameters ka and 13A. We fitted the 
upper tail o f  this cumulative distribution, more speci- 
fically that part o f  the distribution for which 
1-Ft ( iA)  <--0.01 (corresponding to n = 100), to an 

exponential function of  the type: 

1 -F1(iA) ~- e x p { -  [g(UnA)+OtnA(iA --UnA)] } (22) 

The best fits o f  the approximate exponential function 
to 1-FI( iA)  are presented in Fig. 3, for different 
values o f  the gamma parameters kA and f3A. Both 
the slope, c¢,A, and the intercept, u,A, are functions 
of  parameters kA and /3A. Based on fits for a large 
number of  values of  kA we obtained functional 
forms for slope and intercept of  the following 
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Fig. 5. Point IDF curves for rainfall regime represented by K-45 stations in Austria (after Schimpf, 1970; Sivapalan et al., 1997). 

type: 

°<hA =~ (/CA)/HA (23) 

U,A =f2(kA){3A Inn (24) 

The functional forms 3q (kA) and J~ (kA) were obtained 
empirically, and are presented in Fig. 4(a) and (b), 
respectively. The fitted relationships for fl(kA) and 
j~(kA) are as follows: 

J] (kA) = 1 -0 .17  In kA (25) 

J~(kA) = 0.39 + 0.6 lk °'8 (26) 

Note that, despite the empirical manner in which 
Eq. (23) to Eq. (26) were obtained, these are generic 
properties of  the gamma distribution (valid for n = 
100), applicable to a large range of parameters kA and 
13A, and thus have wide applicability, k A in Eqs. (25) 
and (26) is related to K 2 through Eq. (16). 

5. Linking point rainfall to areal rainfall: Extreme 
values 

In the analyses presented above we have fitted the 

upper tail of the cumulative distribution of areally 
averaged parent rainfall, by an 'exponential' function 
with parameters C¢,A and U,A (Eq. (22)). Therefore, 
through the Gumbel (1958) theory of extremes, 
these are also the parameters of  the Gumbel distribu- 
tion ofareally averaged extreme rainfall intensity (Eq. 
(19)), which make them also parameters of  the catch- 
ment IDF curves. Both a,A and U,A are functions OfkA 
and/3A, and through the dependence of the latter two 
parameters on K 2, they are also functions of  the scaled 
catchment area, A/X 2. This dependence on catchment 
area allows us to use the relationships derived above 
to describe how the catchment IDF curves change 
with catchment area. 

However, at this stage C¢,A and U,A remain relative 
quantities only, with their absolute magnitudes yet to 
be determined. This is because, while the variance 
reduction due to the areal averaging of the rainfall 
field has been incorporated through A/X 2, the value 
of/3p, which determines the absolute value of the 
variance of point rainfall intensities, has not been spe- 
cified yet. The specification of these absolute values is 
the crucial point of  this paper. We achieve this by 
matching the above-derived parameters of  the 
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proposed method (solid line) for the K - 45 regime and tr = 24 hours. Dashed line represents the constancy of CV associated with an areal 
reduction factor which does not change with return period. 

catchment IDF curves, for the particular case o f  zero 
catchment area, i.e. A = 0, with the parameters o f  
observed, point IDF curves. This match will then 
yield the required absolute values o f  the parameters 
of  catchment IDF curves. The procedure for this is 
formally presented next. 

For point rainfall, since the parent distribution is 
exponential (Eq. (2)), the relationships given by 
Eqs. (20) and (21) are exact, and the extreme value 
parameters for point rainfall, Olnp and U,p, are given 
by: 

~,p = 1/tip (27) 

U~p = tpln n (28) 

On the other hand, the corresponding (approximate) 
relationships for areaily-averaged rainfall can be 
obtained from Eqs. (16) and (17) and Eqs. (23) and 
(24) as follows: 

A(K -2) 
( X n A - -  K 2 f l p  (29) 

u,A =J~(K-Z)tpK 2 Inn  (30) 

The parameters for point and areally-averaged, 
extreme rainfall can now be compared. Combining 

Eq. (27) with Eq. (29) and Eq. (28) with Eq. (30), 
we obtain: 

OtnA fl(K -2) 
- - -  ( 3 1 )  

O l n p  K 2 

U"A = ~2J~(K-2) (32) 
U n p  

Eqs. (31) and (32) connect the parameters o f  the 
probability distribution o f  point extreme rainfall to 
those o f  areal average extreme rainfall. The effects 
of  catchment size and spatial rainfall structure enter 
Eqs. (31) and (32) through the dependence o f  the 
variance reduction factor, K 2, o n  A / X  2. 

Note that while the extreme value distribution para- 
meters U,p and U,A given by Eq. (27) to Eq. (30) are 
dependent upon the chosen value of  n explicitly, this 
explicit dependence has been eliminated in the ratios 
o f  these parameters given in Eqs. (31) and (32). 
Nevertheless, there is an implicit dependence of  the 
functionsfl(kA) andfz(kA) on the value o f n  chosen to 
approximate the tail of  the cumulative gamma distri- 
bution; note that the approximations given by Eqs. 
(25) and (26) were obtained for n = 100. This implicit 
dependence offl(kA) andfz(kA) on n will only have a 
relatively minor impact on the results presented in the 
remainder o f  this paper. 
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Fig. 8. Areal reduction factors estimated by the proposed method for the K-45 rainfall regime in Austria, for tr = 24 hours, as functions of 
scaled catchment area A/X 2 and return period, T. A is the catchment area and X is the spatial correlation length of rainfall. 

As shown in previous sections, the derivations 
using the Gumbel (1958) extreme value theory give 
rise to a Gumbel (Extreme Value Type I) distribution 
for catchment average rainfall intensity. The crucial 
point is that observed point IDF curves, often, are also 
closely fitted by a Gumbel distribution. If both the 
observed and derived extreme value distributions 
(i.e. for point rainfall) are of the Gumbel type, then 
we can match their parameters. 

For illustration, we take the example of the IDF 
curves for the rainfall regime characterised by 'K-45 
stations' in Austria; these are shown in Fig. 5 (taken 
from Schimpf, 1970). Sivapalan et al. (1997) and 
Bl6schl and Sivapalan (1997a) fitted the following 
conditional cumulative Gumbel distribution to these 
IDF curves: 

Fl( i  e Its) = exp{ - exp[ - b(tr)(i e - C(tr))] } (33) 

with the parameters b and c, which are functions of 
duration t~, being expressed by the following empiri- 
cal relationships: 

b(t~) = - 0.05 + O.25tr 0'49 (34) 

cur) = 0.2 + 2 0 . 0 t r  0"70 (35) 

Eqs. (34) and (35) apply specifically to the rainfall 
regime of 'K-45 stations' in Austria. 

Note the identical form of Eq. (19) and Eq. (33), 
and in the case of extreme point rainfall, the corre- 
spondence between b(tr) and C(tr) in Eq. (33) and the 
parameters ce,p and U,p in Eqs. (27) and (28), respec- 
tively. This correspondence then allows us to replace 
C¢,p and U,p in Eqs. (31) and (32), with, respectively, 
b(t~) and c(t~) given by Eqs. (34) and (35). In this way, 
we can then express the parameters t~,A and u,A in 
terms of b(t~), c(tr), and r 2 as follows: 

)A (KY~_ 2) 
OL,A = b( tr (36) 

UnA = C(tr)rZJz(K -2) (37) 

Eqs. (36) and (37), in essence, provide the general- 
ised Gumbel parameters for an areally-averaged, 
extreme rainfall intensity as functions of duration, 
t ,  with the effects of catchment area and rainfall 
correlation structure expressed through K 2. Note 
again that the functions f l (kA)  and fE(kA) in Eqs. 
(36) and (37) are generic properties of the gamma 
distribution (for the chosen value of n = 100), while 
the parameters b(t~) and c(tr) apply specifically to the 
Austrian rainfall regime of K-45 stations. 

Nevertheless, there is an implicit n associated with 
the empirical IDF curves and the associated para- 
meters b(G) and c(t3,  just as there is an implicit n 
(n = 100) associated with the functions f l (kA)  and 
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Fig. 9. lsohyetal patterns for two selected storms. (a) Storm on July 16, 1913, in the Stifting region, Styria, Austria and (b) the storm during 
September 10-13, 1899, in the Erlauf region of Lower Austria. Isohyets are in mm depth units. 
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Fig. 10. Empirical areal reduction factors (a) for the July 16 storm of 1913 in the Stifling region, and (b) the September 10-13 storm of 1899 in 
the Erlauf region, obtained from the isohyetal patterns of Fig. 9 (lines with markers). Areal reduction factors estimated by the proposed method 
are presented for two enveloping correlation lengths (solid lines). 

f2(kA).  This difference should be noted even though n 
does not appear explici t ly in Eqs. (36) and (37). In this 
regard, it may help to view the role o f  n, not merely as 
specifying the number o f  storms per year  but also as 
determining the cutoff  point which defines the upper 
tail o f  the cumulative distribution function of  parent 
rainfall intensity (see Eq. (22)). In other words, the 
only difference between the empirical  and theoretical 
approaches is in the cutoff  point adopted for extremal 

analysis. We believe this difference could affect the 
accuracy of  the estimates o f  CtnA and UnA marginally;  
the methodology itself  remains valid. 

The parameters C~nA and u,A from Eqs. (36) and (37) 
can now be used to construct c a t c h m e n t  IDF curves 
for catchments of  any size, A. Fig. 6(a) and (b) pre- 
sent, respectively, two sets o f  catchment IDF curves 
for two different catchment areas (normalised by the 
square o f  the spatial correlation length), i.e. A/X  2 = 1.0 
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and A£k 2 = 25.0, constructed using Eqs. (36) and (37) 
for the rainfall regime represented by K-45 stations in 
Austria. Both the mean and standard deviation of 
areally-averaged, extreme rainfall decrease with 
increasing catchment size, but at different rates. Simi- 
lar behaviour has been observed in measured extreme 
rainfall data (e.g. Berndtsson, 1988). This would mean 
that the coefficient of variation, CV, of extreme rain- 
fall would not remain constant, but would change with 
catchment area. This has important ramifications for 
the behaviour of  ARFs, as will be illustrated in the 
next section. It is also interesting to note in Fig. 6 the 
decreasing mean with increasing averaging area, 
which is at variance with the results of  Rodriguez- 
Iturbe and Mejia (1974), whose mean remained con- 
stant. This is because their estimates of  ARFs only 
applied to parent rainfall intensities, and not to the 
corresponding extreme rainfall intensities. 

6. Application and discussion 

In this section we investigate how the theory of 
catchment IDF curves described above represents 
two aspects of  the scaling behaviour of  extreme rain- 
fall distributions, namely, the relationship of the coef- 
ficient of  variation with catchment area, and the 
dependence on return period of the ARFs estimated 
by the proposed methodology. 

6.1. Coefficient of  variation 

Using the properties of  the Gumbel distribution 
(Chow et al., 1988) one can estimate the mean, stan- 
dard deviation, and coefficient of  variation, of  
extreme rainfall at the catchment scale. The mean 
and standard deviation are given by: 

IAeA = blnA + 0.5772/0~nA (38) 

7r 
OeA- V/~Oln A (39) 

which, using Eqs. (36) and (37), can be expanded as 
follows: 

~eA -~ K2 { C( tr)]C2(K- 2) + 

2 7r 
aeA=K v/~b(t~)fl(K-2) 

0.5772 } (40) 
b(trgt (~ -2 ) 

(41) 

Eqs. (40) and (41) can then be combined to yield the 
coefficient of  variation: 

~/~ 
CVeA = 0.5772 + b(tr)c(tr)fl (K-2)J2(K- Z) (42) 

For comparison, the coefficient of  variation of 
extreme point rainfall can be derived directly 
from Eq. (33), or by putting 2 = 1 in Eq. (42). 
This gives: 

~r/v/6 (43) 
CVep = 0.5772 + b(tr)c(t~) 

Fig. 7 presents the coefficients of  variation estimated 
using Eqs. (42) and (43) for tr = 24 hours, for the 
rainfall regime represented by the K-45 stations in 
Austria. The coefficient of  variation, CV, estimated 
by the proposed method, decreases with catchment 
area, A. This has important ramifications for the 
type of ARFs produced. Consider an ARF which is 
assumed independent of  the return period. The use 
of  such a constant proportionality factor to multiply 
the IDF curves (i.e. regardless of  return period) 
changes both the mean and standard deviation of 
the IDF curves by the same ratio. This means that 
CV remains constant, regardless of  catchment area. 
The constant value of CV in this case would be 
identical to that of  the point IDF curves, which is 
given by Eq. (43) and shown by the dashed line in 
Fig. 7. In contrast, the fact the CV estimated by the 
proposed method decreases with catchment area 
clearly suggests that the ARFs that would be 
estimated by this method are indeed functions of 
the return period. This is shown later in this 
section. 

One may expect the dependence of the CV of rain- 
fall intensity on catchment size to be directly related 
to the CV behaviour for flood peaks. The adoption of 
an ARF that is independent of  return period (leading 
to constant rainfall CV), appears to match the main 
assumption behind the index flood method 
(Dalrymple, 1960; Chow et al., 1988), namely that 
the CV of flood peaks are independent of  catchment 
area. However, there is recent evidence which seems 
to suggest that the CV of flood peaks in fact decreases 
with catchment size (Smith, 1992; Gupta and Dawdy, 
1995; Bl6schl and Sivapalan, 1997b). The CVs of 
rainfall, obtained according to the methodology 
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presented in this paper, are more consistent with the 
latter finding. 

6.2. Areal reduction factors 

The ARFs associated with the proposed method can 
be obtained from the equations for the point and 
catchment IDF curves presented before. First, an 
expression for extreme point rainfall intensity ie can 
be derived by inverting Eq. (33), and noting that 
F=(T-1)/T. Similarly, an expression for extreme 
catchment rainfall intensity ieA can be derived by 
inverting Eq. (19) for a catchment of  area A, using 
expressions for c¢,A and u,A from Eqs. (36) and (37). 
The ARF is defined simply as the ratio ieA/ie; using the 
expressions derived, and after some simplification, 
this leads to: 

ARF [K2(A/X2), tr, T] 

_ b(t,)C(tr)r2f2(K- 2)- ~ l n { l n (  T ~ )  } 
m 

b(tr)C(tr)-ln(ln(TT'~_l)} 

(44) 

Eq. (44) clearly demonstrates that the ARF depends 
on catchment area, A, spatial correlation length, k, 
duration, tr, and the return period, T. Fig. 8 presents 
the ARFs estimated in this way for three different 
return periods (T = 1.5 yr, 10 yr, and 1000 yr) for 
the case of  tr = 24 h. It shows, in particular, that the 
ARF decreases both with increasing catchment size 
and with increasing return period; this is consistent 
with observations (B16schl et al., 1995; Myers and 
Zehr, 1980; Srikanthan, 1995). 

It is also interesting to examine the ARF for very 
large return periods. For T---, ~, Eq. (44) becomes: 

2 

ARF[K2(A/R2)]= ~ (45) 
A (K-2) 

which indicates that in this case the ARF is a function 
of catchment area and rainfall correlation structure 
only, and is independent of the particular rainfall 
regime (i.e. point IDF curves). 

How do the ARF values estimated by the proposed 
method compare to ARFs estimated from actual 
storms? We carried out such a comparison using 

two observed historical storms which occurred in 
1913 and 1899, respectively. Fig. 9(a)and (b)present 
the isohyetal patterns for the two storms. The 1913 
storm (reported by Forchheimer, 1913) was a very 
localized convective event (i.e. a thunderstorm), and 
produced a maximum of 650 mm of rainfall in 4 h in 
the Stifting region of Styria, Austria. It was assessed 
to be a 1000 yr event. The 1899 storm (reported by K. 
K. Hydrographisches Central-Bureau, 1900) was 
associated with a long-lasting, synoptic event which 
covered much of Austria and produced a maximum of 
430 mm of rainfall in 96 h in the Erlauf region of 
Lower Austria. It was assessed to be a 500 yr event. 

Fig. 10(a) presents (line with markers) the empiri- 
cal ARFs estimated for the 1913 storm in the Stifting 
area using the isohyetal pattern shown in Fig. 9(a). 
Note that these empirical ARFs are storm-centred 
ARFs while the proposed method gives fixed-area 
ARFs. Storm-centred ARFs tend to be slightly smaller 
than fixed-area ARFs. We then attempted to match 
these empirical estimates with ARFs estimated by 
the proposed method (Eq. (44)) through selection of 
appropriate spatial correlation lengths, X. This match 
gave two enveloping spatial correlation lengths: X = 1 
and 2 km for the 1913 storm in the Stifting region. In a 
similar way we evaluated empirical ARFs for the 
1899 storm in the Erlauf region and the match with 
the proposed method gave correlation lengths of  X = 
60 and 120 km (Fig. 10(b)). These two pairs of  spatial 
correlation lengths correspond well to the observed 
isohyetal patterns (Fig. 9) and to our present under- 
standing of the physical processes goveming rainfall 
generating mechanisms. In many cases, correlation 
length X is a measure of the spatial extent of  the rain- 
fall field. The values of k found here are consistent 
with the localized convective event (i.e. thunder- 
storm) of 1913, and the synoptic event of considerable 
spatial extent of 1899. 

While, according to Eq. (44), the ARF is a function 
of duration tr, SO far we have not examined in detail 
the dependence of the ARF on tr. Analyses not pre- 
sented here show that there is only a weak dependence 
of the ARF on tr. In empirical methods tr is the major 
control on the ARF while it is the spatial correlation 
length k which is critical in the proposed method. In 
fact, in empirical methods tr is a surrogate for storm 
type, with convective events having short durations, 
and synoptic events having longer durations. 
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We believe that correlation length h is a more direct 
and pertinent measure of  storm type, and of  the 
governing precipitation processes, and is therefore 
more relevant than tr to the areal reduction of inten- 
sity. However, X and tr are often closely related, as is 
demonstrated in Fig. 10(a) and (b). The 1913 storm in 
the Stifling region has tr = 4 hours and X = 1-2 km, 
and the 1899 storm in the Erlauf region has tr = 96 h 
and X = 60-120 km. In order for the proposed method 
to be applied to construct catchment IDF curves we 
would need to develop consistent relationships 
between k and tr for the region in question, so that 
appropriate correlation lengths can be used in the rain- 
fall averaging. This is the only way regional estimates 
of  ARFs can be produced; this is left for further 
research. 

7. Conclusions 

In this paper, we have presented a new metho- 
dology for constructing catchment intensity-duration- 
frequency (IDF) curves which is based on the spatial 
correlation structure of  rainfall. The methodology con- 
sists, in the main, of  the areal averaging of the parent 
rainfall and the transformation of the areally-averaged 
parent rainfall distribution into the corresponding 
extreme value distribution according to the theory of 
Gumbel (1958). To construct catchment IDF curves 
with the proposed methodology the following pieces 
of  information are needed: (a) point IDF curves for the 
rainfall regime under study, which follow a Gumbel 
distribution, i.e. parameters b(tr) and C(tr); (b) the spatial 
correlation structure of  the parent point rainfall process 
for the storm type considered, i.e. pp(r) o r  ~k; and (c) 
catchment area, A. 

The proposed methodology overcomes the short- 
comings of previous work by Rodriguez-Iturbe and 
Mejia (1974) by distinguishing between the scaling 
behaviour of  the parent and extreme value distribu- 
tions of  the rainfall process. Indeed, the areal reduc- 
tion factors (ARFs) predicted by Rodriguez-Iturbe 
and Mejia (1974) are identical to the variance reduc- 
tion factors K 2 presented in Fig. 2 of  this paper while 
the ARFs for extreme rainfall estimated by the pro- 
posed method (Fig. 8) are significantly larger. 

The other advantage of the methodology is that 
with a minimum number of  assumptions, the method 

reproduces a number of  observed properties of  
extreme areal rainfall. The ARFs estimated by the 
proposed method were found to decrease with return 
period, which is consistent with data evidence. 
Similarly, the coefficient of  variation (CV) of 
rainfall decreases as catchment area increases, 
which too is consistent with data evidence. We 
have applied the proposed method to two observed 
storms in Austria, and found that the correlation 
lengths of rainfall needed to match empirical 
ARF estimates were consistent with our under- 
standing of the governing rainfall generation 
mechanisms. 

The main control on catchment IDF curves accord- 
ing to the proposed methodology is the rainfall spatial 
correlation length, X, which characterises the storm 
type. We believe that this is a physically more justifi- 
able measure of  storm type than is storm duration, t ,  
which is used in traditional, empirical ARF estimation 
procedures. However, the spatial correlation length 
and storm duration are often closely related through 
the type of storm. 

Most of  the simplifying assumptions made in this 
paper have been made for clarity of  presentation. 
These include isotropy, exponential correlogram, 
exponential/gamma parent distributions, square 
catchment area, and stationarity. All of  these can be 
easily relaxed, as explained under the respective head- 
ings in the paper. As for stationarity, Vanmarcke 
(1983; p. 226) suggested that the effect of non- 
stationarity can be represented by including a larger 
scale component in a nested correlation structure. This 
has been done in Sivapalan et al. (1990) and B16schl 
and Sivapalan (1997b). The most fundamental, 
though implicit, assumption in the proposed method 
is that the correlation structure of  rainfall does not 
change with return period; the correlation structure 
of  the parent process has also been used for extreme 
rainfall. More work is needed to verify or relax this 
assumption. 

This paper has represented an attempt to link 
approaches used presently in design, based largely 
on the use of  empirically-derived ARFs, with 
approaches based on some current scientific theories 
of  space-time rainfall fields. In this way we hope to 
place design practice on a sounder scientific basis, at 
the same time providing some guidance for new 
research strategies. 
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Appendix A 

The probability density function of R, the random 
distance between two independent points in a square 
of side length a has been given by Ghosh (1951), and 
is reproduced below: 

4r 
f R ( r )  = ~b(r)  (A 1) 

where, 
f o r  the r a n g e  r = 0 to r = a: 

dp(r) = 1-Tra2 - 2ar  + l r2  (A2) 
2 2 

f o r  the r a n g e  r = a to r = x/2a: 

0(r) =a2 {sin ' a - c o s - '  a} 

+ 2 a ~ -  ~ r  2 +2a 2) (A3) 
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