Gruppe A

1. Gegeben sei $f(x) = \arccos(\sqrt{1-x^2})$. Berechnen Sie eine Stammfunktion von f.

Hinweis: Eine mögliche Methode wäre eine spezielle Substitution.

Außerdem gilt
$$(\arccos(x))' = -\frac{1}{\sqrt{1-x^2}}$$
.

- 2. Sei w = 1 i.
 - (a) Ermitteln Sie arg (w^8) . Geben Sie das Ergebnis im Intervall $[0, 2\pi)$ an.
 - (b) Berechnen Sie alle $z \in \mathbb{C}$, welche $z^3 = w$ erfüllen.
- 3. Gegeben Sei die Kurve

$$C = \left\{ r(t) = \begin{pmatrix} 1 + 2t \\ 1 - t^2 \end{pmatrix} : t \in [0, 1] \right\}$$

und das Skalarfeld $f(x,y) = x^2y$.

- (a) Berechnen Sie die Tangentialebene des Skalarfeldes im Punkt $(x_0, y_0) = (1, 1)$.
- (b) Berechnen Sie die Bogenlänge s=s(t) für $t\in[0,1].$
- 4. Gegeben Sei die Kurve

$$C = \left\{ \boldsymbol{r}(t) = \begin{pmatrix} t \cos t \\ t + e^t \\ t \sin t \end{pmatrix} : t \in [0, \pi] \right\}$$

und das Vektorfeld

$$\mathbf{f}(x, y, z) = \begin{pmatrix} y e^x \\ e^x + z \cos(yz) \\ y \cos(yz) \end{pmatrix}.$$

- (a) Weisen Sie nach, dass f wirbelfrei ist.
- (b) Berechnen Sie das Potential Φ zum Vektorfeld f, welches $\Phi(0,1,\pi)=1$ erfüllt.
- (c) Berechnen Sie das Kurvenintegral

$$\int_C \boldsymbol{f} \cdot \mathrm{d} \boldsymbol{r}$$
.

Gruppe B

1. Gegeben sei $f(x) = \arcsin(\sqrt{1-x^2})$. Berechnen Sie eine Stammfunktion von f.

 ${\it Hinweis:}$ Eine mögliche Methode wäre eine spezielle Substitution.

Außerdem gilt
$$(\arcsin(x))' = \frac{1}{\sqrt{1-x^2}}$$
.

- 2. Sei w = 1 i.
 - (a) Ermitteln Sie arg (w^8) . Geben Sie das Ergebnis im Intervall $[0,2\pi)$ an.
 - (b) Berechnen Sie alle $z \in \mathbb{C}$, welche $z^3 = w$ erfüllen.
- 3. Gegeben Sei die Kurve

$$C = \left\{ r(t) = \begin{pmatrix} t^2 + 2 \\ 1 - 2t \end{pmatrix} : t \in [0, 1] \right\}$$

und das Skalarfeld $f(x,y) = xy^2$.

- (a) Berechnen Sie die Tangentialebene des Skalarfeldes im Punkt $(x_0, y_0) = (1, 1)$.
- (b) Berechnen Sie die Bogenlänge s = s(t) für $t \in [0, 1]$.
- 4. Gegeben Sei die Kurve

$$C = \left\{ \boldsymbol{r}(t) = \begin{pmatrix} t \cos t \\ t + e^t \\ t \sin t \end{pmatrix} : t \in [0, \pi] \right\}$$

und das Vektorfeld

$$f(x, y, z) = \begin{pmatrix} y \cos x + z \exp(xz) \\ \sin x \\ x \exp(xz) \end{pmatrix}$$

- (a) Weisen Sie nach, dass \boldsymbol{f} wirbelfrei ist.
- (b) Berechnen Sie das Potential Φ zum Vektorfeld f, welches $\Phi(1, \pi, 0) = 1$ erfüllt.
- (c) Berechnen Sie das Kurvenintegral

$$\int_C \boldsymbol{f} \cdot \mathrm{d} \boldsymbol{r}$$
.

Gruppe C

1. Gegeben sei $f(x) = \arcsin(\sqrt{1-x^2})$. Berechnen Sie eine Stammfunktion von f. Hinweis: Eine mögliche Methode wäre eine spezielle Substitution.

Außerdem gilt $(\arcsin(x))' = \frac{1}{\sqrt{1-x^2}}$.

- 2. Sei w = 1 i.
 - (a) Ermitteln Sie arg (w^8) . Geben Sie das Ergebnis im Intervall $[0, 2\pi)$ an.
 - (b) Berechnen Sie alle $z \in \mathbb{C}$, welche $z^3 = w$ erfüllen.
- 3. Gegeben Sei die Kurve

$$C = \left\{ m{r}(t) = \begin{pmatrix} 1 + 2t \\ 1 - t^2 \end{pmatrix} : t \in [0, 1] \right\}$$

und das Skalarfeld $f(x,y) = x^2y$.

- (a) Berechnen Sie die Tangentialebene des Skalarfeldes im Punkt $(x_0, y_0) = (1, 1)$.
- (b) Berechnen Sie die Bogenlänge s = s(t) für $t \in [0, 1]$.
- 4. Gegeben Sei die Kurve

$$C = \left\{ \boldsymbol{r}(t) = \begin{pmatrix} t \cos t \\ t + e^t \\ t \sin t \end{pmatrix} : t \in [0, \pi] \right\}$$

und das Vektorfeld

$$f(x, y, z) = \begin{pmatrix} y \cos x + z \exp(xz) \\ \sin x \\ x \exp(xz) \end{pmatrix}$$

- (a) Weisen Sie nach, dass \boldsymbol{f} wirbelfrei ist.
- (b) Berechnen Sie das Potential Φ zum Vektorfeld f, welches $\Phi(1, \pi, 0) = 1$ erfüllt.
- (c) Berechnen Sie das Kurvenintegral

$$\int_C \boldsymbol{f} \cdot \mathrm{d} \boldsymbol{r}$$
.