#### Benchmark case: Duct

### Description

This benchmark is the same example as in reference [1,3], see Figure 1. The 3D model consists of an air-filled duct of length l = 3.4 m with a  $0.2 \text{m} \times 0.2$  m square cross section. Since the solutions of the three-dimensional method should be compared with the analytical solution of the corresponding onedimensional problem, it is necessary to apply zero boundary conditions for the boundary admittance, i.e. Y = 0, and the particle velocity on the entire surface, with the exception of  $Y(l) = (\rho c)^{-1}$ . Furthermore, for the particle velocity at x = 0,  $v_x(0) = 1 \text{ m/s}$  has been used. The sound pressure magnitude is constant in the duct and over the entire frequency range. The solution may be considered as waves traveling through the duct. The boundary condition at x = l ensures that the wave is fully absorbed. Although a smooth solution is expected over the entire frequency range, the numerical solution may be unstable if modes perpendicular to the traveling waves occur. For the above given cross section, these modes occur for frequencies of 850, 1700, 2550, 3400 Hz and higher. This benchmark case has been used in reference [2], which provides an analytical solution of the 1D duct problem including the solution of the eigenvalue problem with arbitrary admittance boundary conditions at both ends. Furthermore, it gives the 1D finite element system matrices, studies the eigenvalue distribution of the finite element solution with respect to Shannon's sampling theorem and critically discusses the accuracy of mode superposition for reconstruction of the solution in frequency domain.

| Name                                    | Duct                                                         |
|-----------------------------------------|--------------------------------------------------------------|
| Field                                   | Linear Acoustics                                             |
| Code                                    | Assigned by Associate Editors                                |
| Categories                              |                                                              |
| Bounded or Unbounded problems           | Bounded                                                      |
| Dimensionality of the case              | 3D                                                           |
| Scattering or Radiation problem         | Scattering                                                   |
| Time–domain or Frequency–domain problem | Frequency domain                                             |
| Description                             |                                                              |
| PDE                                     | Helmholtz Equation                                           |
| Geometry                                | Length $l = 3.4$ m with a $0.2 \text{m} \times 0.2 \text{m}$ |
|                                         | square cross section, see Fig. 1                             |
| Propagation medium                      | Air ( $\rho = 1.3 \text{ kg/m}^3, c = 340 \text{ m/s}$ )     |
| BCs                                     | $Z = \infty$ at walls                                        |
|                                         | $Z(l,y,z) = \rho c$                                          |
| Source                                  | $v_x = 1 \text{ m/s at } x = 0$                              |
| Receiver                                | (x,y,z) = (l,0,0)                                            |
| Quantity to compute                     | Acoustic pressure                                            |
|                                         | Frequencies for computation:                                 |
|                                         | 850 to $3400$ Hz, with $425$ Hz increment                    |

## References

- S. Marburg. Six boundary elements per wavelength. Is that enough? Journal of Computational Acoustics, 10(1):25–51, 2002.
- [2] S. Marburg. Normal modes in external acoustics. part i: Investigation of the one-dimensional duct problem. Acta Acustica united with Acustica, 91(6):1063–1078, 2005.
- [3] S. Marburg and S. Schneider. Influence of element types on numeric error for acoustic boundary elements. *Journal of Computational Acoustics*, 11(3):363–386, 2003.

Geometrical details



Figure 1: Benchmark case 'Duct'

# **Computational Details**

| Computational technique  |                                   |
|--------------------------|-----------------------------------|
| Computed results         |                                   |
|                          |                                   |
| Programming details      |                                   |
| Code accessibility       |                                   |
| Processing details       |                                   |
| Computational complexity |                                   |
| Notes                    |                                   |
| References               |                                   |
| Contributing institute   | Associate Editors benchmark cases |

## Results

| Frequency (Hz) | Acoustic Pressure (Pa) |
|----------------|------------------------|
| XX             | xx + jyy               |