Benchmark case: PAC-MAN

Description

The PAC-MAN geometry is the two-dimensional equivalent to the three-dimensional cat's eye geometry. As shown in Fig. 1, it is a circle of radius $r_{0}=1 \mathrm{~m}$ with an angular cut-out ranging from $-\varphi_{0}$ to φ_{0} (measured from the x-axis) and $\varphi_{0}=\pi / 6$. An analytical solution of the sound field inside the cut-out and outside the PAC-MAN has been derived [1]. The PAC-MAN problem is suited for radiation and scattering.

References

[1] H. Ziegelwanger, P. Reiter, The PAC-MAN model: Benchmark case for linear acoustics in computational physics, Journal of Computational Physics 346 (2017) 152-171. doi:10.1016/j.jcp.2017.06.018.

Geometrical details

Figure 1: The PAC-MAN model consists of a circle (radius r_{0}) with a circular sector of angular width $2 \varphi_{0}$ cut out. Incident sound field is schematically shown for a cylindrical wave with $r^{*}>r_{0}(---)$, a cylindrical wave with $r^{*}<r_{0}(-)$, and a plane wave ($-\cdots$). \mathbf{x}^{*} is the position of a line or a disk source described by its distance r^{*} and angle $\varphi^{*} . v$ is the velocity of a surface vibration. \mathbf{x} is the position of an evaluation point.

