Corrigenda of the Handbook of MFA

Corrections are highlighted red.

- Page xi (Table of Contents): "3.3.1.2 Indirect Analysis: Case Studies 10 and 11".
- Page xiv, line 16 (Preface to the Second Edition): "Rudolf Frühwirth"
- Page 98, line 2: "... term ($N-n$)/ N has to ..."
- Page 104, line 1: "... is reached if the inverse of the variance ..."
- Page 110: " $Q x=$ covariance matrix ($i \times i$) of measured random variables"
- Page 110: " $Q y=$ covariance matrix ($j \times j$) of unknown random variables"
- Page 124, line 5: " ... (represented by row 3 of the matrix) ..."
- Page 131, first matrix:

$$
\left(\begin{array}{rrr|rrrr:rrr}
1 & 0 & 0 & 1 & 0 & 1 & -1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 1 & -1 & 0 & -1 & 0 & 0 \\
0 & -1 & -1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & -1 \\
0 & -1 & -1 & 1 & 1 & 0 & 0 & 0 & 0 & -1
\end{array}\right) \cdot\left(\begin{array}{c}
Y 1 \\
Y 2 \\
Y 3 \\
X 1 \\
X 2 \\
X 3 \\
X 4 \\
Z 1 \\
Z 2 \\
Z 3
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

- Page 134: $E 2=(0-1-1)$.
- Page 135, first paragraph below REMARKS: " The measurement of flow X3 is not reconciled because it is not included ..."
- Page 136, Eq. 2.68:

$$
\Delta x_{i}=\frac{a_{i} \cdot \operatorname{var}\left(\tilde{x}_{i}\right) \cdot r}{\sum_{j=1}^{n} a_{j}^{2} \cdot \operatorname{var}\left(\tilde{x}_{j}\right)}
$$

- Page 136, Eq. 2.69:

$$
\Delta x_{i} \propto a_{i} \cdot \operatorname{var}\left(\tilde{x}_{i}\right)
$$

- Page 137, Eq. 2.73:

$$
\Delta x_{i}=\frac{a_{i} \cdot r}{\sum_{j=1}^{n} a_{j}^{2}} \propto a_{i}
$$

- Page 137, bottom:

$$
\begin{aligned}
& \Delta_{A}=1 \cdot 5=5 \rightarrow E(A)=E(\tilde{A})-\Delta_{A}=100-5=95 \\
& \Delta_{B}=1 \cdot 5=5 \rightarrow E(B)=E(\tilde{B})-\Delta_{B}=200-5=195 \\
& \Delta_{C}=-2 \cdot 5=-10 \rightarrow E(C)=E(\tilde{C})-\Delta_{C}=135+10=145
\end{aligned}
$$

- Page 138 , Section 2.3.3, first paragraph: "... to be far away from the true value, the result ...".
- Page 148, last equation:

4. $\quad \hat{\sigma}_{S_{4}}{ }^{2} \approx \bar{g}^{2} \cdot \hat{\sigma}_{\bar{c}}{ }^{2}+\bar{c}^{2} \cdot \hat{\sigma}_{\bar{G}}{ }^{2}=\bar{g}^{2} \cdot s_{C}{ }^{2} / n_{C}+\bar{c}^{2} \cdot s_{G}{ }^{2} / n_{G}$

- Page 313: "3.3.1.2 Indirect Analysis: Case Studies 10 and 11".

