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b INTRODUCTION

Bafore nanofabrication processes became available, te Nintdamental electroniy properties

of semd

icanduzior devices wers mdupgmimé: of their peometrical size. Throngh nanofab-
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state resenrch. Together with wbvmces in molecular beam agz&zxy IMBEL gi’ﬁ%ﬁh wamiEgh-
vleation albowy for so-called “Yund structne engmecring m the vertic] and ateral direc
tons stdtabile for the desigr of sendcomductor tevioss of aimost any desirsd puopertios.

th the very Beginning of nsnofabrication, quantn wire sirucures were saggested tor
pravide sfficient semiconducior lasers, besause the artificial confinement of carriers inthe
active vegion of 2 nanolaser was expected o give a beller performance [1, 21 than a btk
systern, After that, the electronic properties of the wires themmselves and theit passible use
for dewice appHeations became e center of worldwide activities {33 Tu 1985, Lurvi and
co-sworkers [4] were the first o report @ guantun wire device with negative transconducs
tance, and i was demonsirated that this kind of guantom device is interesting for practical
applications, Tor example, as feld effect irapsistors [51, Witls fortheoming advances innun-
oteehmatogy, the idee of ap “artificizl arom™ or guarim dot became realizable and a topic
of great interest. As olunic contacts w guantsm dots are diffiouit o establish, the first in-
vestigations of guantum dots concentrated on optical properties such as size effects iy the
absorption spectrs 161 ard the exciton dynamics 7], Later tunncling spectroscopy 18, 9]
was pstablished as the genine method for the investigation of the electronid transport
properiies of quantars dot structeres [107:

Adter the presence of size guantization effects and quantum interforence phendmens in
wires and dots wes demoustraled in the early sxperiments, lunther investigalions revealed
mumerons othér Features that were partially not predicted by theorstical congiderations,
suck as the quantzed conduotance in balllstic guanty wires {11, 12} or the quenching of
thig quearmitum Tlall gﬁ’é‘:@ ig Simz‘zg mggmi& frelds §§§ éé; o k

..Lﬁgff;iﬁs; ’gwm.g; o mves %zgg ek %}é furs zg»‘iz 5 x;ﬁ inents u iz ﬂ-a_.{’:{}i}i}%ﬁ{i a;‘a;;.aﬁi;a;siif;

svstern and eguibibriom wnneling spectroscopy [22] (see Section &), Tunneling &pew
trpscopy prinstpaiby offers the interesting possibility of studyingelectron transfor hbrween
systems of different dimensionality. for example, using a 20 gas as the emitter and a systemn
of guantum wires {237 ar dots [24] as the collector electrode. The tunneling characteristios
give pather ditect infonmation on the Fourier fransforms of the Jow-dimensional electron
wave Tunclions. Morgover, IUturns oul thed the resolis obtained tn the simibadon of temel-
img dpbetrs dre very sensitive to the actual shape of the potentianl, which hrings us to the
madn ot vation for writing this review.

L1 Adwol This Roview

While wiiting this chapter, it becamne clear that the lack of space and time as well as the
huge wmcunt. of praterial published in the field of nanostructuped syitems mpkes 10 e
essary o restrict the material presented here to several characlorstic Wwpies, selected with

Tl
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tiinr & vondsient plene of the shape and sragaitide of conhnement potentiale awd reluted
parameters. Furlhermore, in writing fhis roview, we wanled 0 give Gie beginaing sxperi-
pentatist nthe fSeld some baste Wea of the phenomens ypleally encouniored in s iransport
mrvpstigation of Jow-dimensional svstems and bow the obegrvedifeatures will allow hism or
her o estimate the various sample parameters necessary for 3 detailed Enowledpe of e
syt ander nvestigation.

Beosrr thie preceding discussion 1114 clescthat the presentroviow will be B from giving s
complete overview onall the Breiporlineslipiicns sdfrnedon nenestruciured systens

i §§:§@ g;z&g{ é;iﬁgg&{ﬁg Asa mggz}g‘ e}{;‘g% SR we ‘W‘% maention E‘%}a Zm’zzxg}{}z‘?ﬁ EREET zmazi@ g’z iizeﬁ,,

gﬁﬁ‘zgmfzziﬁ{ziﬁf éw&ws ?3? %}&Z‘ii%iziﬁ iz”az%s?@z‘é ﬁxg&ﬁwﬁz’zﬁs {Z'}“ ’?Si %ﬁma {}iﬁa E’zzgkézssh{%
inchude o modificaton of Young's doubleslic oxporirment Tor ballistc glectrons (28], as
well a8 the experimental proof that leterab nomeling through 2 quanium dot at lepst =
partially coherent provesy. [30], which was dchieved wilh sn exremely sophibsdcated de-
vice structure. Habil very vecentlv the observation-of ballistle toneport nhenomena wis
pesssible anly 1o very short sod narrow constrictions, the so-called guuntun pont con-
tnets. Reoent propress inthe faboication technmigues of guantum wires and dote such as, for
sxarmple. dleaved odpe overprowth [31,32] however, has miade 3 possibie fo creale fong
comglcing chennel exdhibiting the phenonmens charadierisfo of Bellistic tumepart [35, 341
Thiz allows s experimental et of several Goretical prediciions on the behavior of one-
danemsionslsvsiems ol ﬁ}%&ﬂ £ gaﬁzi@ = &zzi:z’zﬁgaz Py state) (55, é} Commderaile

s prosesses for

sary, i snivations and | mpraven
é&i}%{:i&g%’ i”:{}%%{’:&?ﬁii {or its special purpases, ’?%z%f vory fundamental iabocalion g’}ﬁf‘z@;}ﬁﬁs

in the nanotechanlopy of low-dimensional systems, however, were already roviewed gar-
Her. Sorme bane references on these Topscs can be Tound s (20, 40, 72 and, of course, the
frerature cited thersin.

This ehapter is dhaded ko teroe wain pasts. T e S part (Beotions 2 and 30, 2 sup-
voy of-the haske electfonic mopirties of low-dimensional systems 45 plven, moinding the
discossion of some shnple numerics! methods lor sell-conaisiont calculations o one and
fwo dimensions. The second part {Sectionsd and 5 madnly deak wath magnefolransnint
i guantam wires wel lalersl suriice supedatiices with o ig;*’f‘%?%‘i&%i% onthe expenmental
Teternmation of Tondemenl whre parsrmetess wal o metbosls e gain iedommation on the
Fekuit shifie of the Confining potential The hint past (Seetioek & ged 7 is-dedicasd w
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tunneling phenomens m low-dimensional systems, The systems and experiments reviewed
it this bt paet avealso selected under the gspect 1o which extent they sllow sodesy to po-
tential pasmmeters aaddor the shape of the covfesponding wave functidns, Becduge in the
thearetical -a}}p&fﬁﬁﬁﬁﬁﬁdiﬁyiﬁg the aﬁ%ﬁf{&%ﬁ- 4f tunneling pheaomena the notation sl
genelotmnspont sector, we deoidad o
t ooses where model caloulutions me
sro somewhat incohe@aebot fertiiiarss

2 QUANTIZED STATES IN LOW-DIMENSIONAL SYSTEMS

Low.dimensional electon sydlems are commanty defined by lareeal potenfiols wrtifi-
cniiv imposed on thie two-dimensional eledtron gas (2DEG) sitemed at the fnterface of
i tulation-dopid semicimducior heterodructre ] ighontthis chapler, we shall fo-
uns i reslis @%}ﬁmﬁﬁéﬁ usd _g ' "ﬁ&%%wz§§€§&§ sysie reral methods exiatto oreat g
i 3 tal at deh i&fﬁiﬁ%@ﬁgﬂe iy {:%’s ai% nse aggéw;’;eeé

Bographic %%;mgzzm soe 25, @if; _&i‘&z&z&m& ggig{i ii;amm

The common starting point in the study of the electronic properties of low-dimenstonal
systemy B provided by confining the eletyons of g 2DEG into narrow slectron Hnes
through g additonsl nanofabrcation provesss T case Use Hnes are sufliciently narrow,
lateral size quantization effects will ocour and quast one-dimensional electron gystems. so-
called qiinium wires, are pitablished. A vplcal guastum wire sainple, fabsicated by laser
h{}iﬁg?&;}%y anek gnham\gz}wi wal chemical prohin '%grgi’m%ﬁ in ﬁggzzfé 1.

only the @ »zﬁlmwzi}n'fm free mofion of the f:imtmxm Tius - P méﬁ: g:amm mé‘ view ig-
nores the preseice of correlations restliing frionh the Coulomb interaciion between differ-
ent electrons apd sununarizes the effects of slectron~clectron interactions by an average
globat contribution o the potential The problers iz ofter simplified forther by msuming
that the. conflning potential Ve, b can be decomposed into a someof two indspendent
g:prm'ibulicang Vix, o= Vig) -+ Vixd, whisre the first ierm s due to the confinerfient afthe
hetervinterface and the sepond tern sctotnts for the Tatirel polentisl iiodulstion 1 will be.
%%mwgz later that this:

paimerd s gl e:;i-‘éi oD ?’%{}iz sanbeasedin ﬁgggfgﬁg; Hongas a
good approximation to understand the resalts-obtained in varioys cxperimental situafions.
This approxbmation also 2llows the separation metton in the growth () ditsction
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Fig. b Schomiaties! view of a teploal miultiple Gumiin wire sample, whiclowas Sabricaled by baser
wlography sod subseouent wel cheododd elehing,
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tion ansatz Qﬂ{x, y z} = Py, v}q:(z}, whiere p{z} can’esgen&s {E) tim groond staw af Eiw'
underlying 2DEG with energy £7P, Higher subbands in the z direction are not consid-
gred heze, because commonty mly the lowest subband isoccupied in rypical high-mobility
GaAs-AlGaAs heterostructures, Within the effective mass approximation, this leaves us
with the equation

Hp= ( G E e ED {1
which gives the quantized states in the guantum wire and also the corresponding energy
levels, The bottom of the 2D subband E2P is vomimonly taken as the zero point of the
energy scale and all quantization energies are given relative to this origin.

Jregeneral, the z&nﬁﬁing potenitial Vi, 2); of Vix) if the ¥ and 2 dépeiidence have
been separated, has 1o be determined from a self-consistent aohution of the Schrddingetand
-Poisson equations. Trnethe Tollowing sections, we will SRz - the simplest methinds for
such self-conyistent callcutations, which can be used 1o analyze the electronic properiies.
of quantum wires. and guantom dots. To give some insight into the pbysics of guantug-
confined motion and to mtroduce several nolions used in nanostriiure physics, we alse
show Bow the acwial confining potential can be approximated by simgple and apalytically
ractable fonctions. From the self-consistent caloulations, i witl become evident that these
approximations are often sufficient fo describe the sxperimental data, bat not slways and
siot grder alt conditions,

2.1, Eléctrons in One-Diimensional Potentials

As stated before, we describe a one-dimensional electron system by a Schridinger equation
of the foim
P2 ?’2
HP.= ( ir ) s Ed {23

Bécause the motion along the wire axis in the y direction is assumed to be free, one can
use the following factorized firi of the wave function:

1
Dix, ¥} m__?g explikyy) ¢rix) (3)

where L is the wire length. Inserting this wave function into. the Schrodinger equation
shows that the energy eigenvalues of the iaﬁezmiy confined electons are quantized int
subbands acoording o

23
AN ) 2
Epthy) = Ey + e (4)
To. dﬁama& the 11> subband energies E,, ity necessary 1o know the shape of the lateral
ing potential Viz). ‘i‘i;@x‘% ave several ways to model ¥ (x) i a oo or less realistic
g two most familiarexamples for snalytical model potentials are. the sguare-well

0 H-WI2<xg W &)

Vixy= { o otherwise

where W is the wire width, and the parabolic potential

V{x) = dm*ada g (6



T turing put [23] that these two are the limiting forms of the more general Woods-Saxon
madel potential, known from the shell model of atomic nuclet (42]:

1 4
Vix)} = Vm[ - -+
14 exp(TUE0)) . exp(alelitny

-
(N

2
Vinin =2 Vo] ——rr———meee
e mw[ 1 4esplo/2) }
Depending on the parameter o, the Woods-Saxon potential interpolates between an ap-
proximately parabolic form (o = #) and an approximatcly squarc-well form {or = 2005,
For intermediste values of &, it develops a 8at bottomy, which, as weshall see later, is
DECESEArY ae; dcsgﬁisa qﬁaﬁaﬁmck@zgﬁs defined by a ggﬁzivgﬁiﬁ geometry atrelatively high

Ttis very instruetive 1o considis a parabolic confinement {n more defuil for several reasons.
First, it allows a completely analytical treatment of quantum wires in a magnetic field, and,
sepond, it turns out that in many cases this simple model describes the actual situation
reasonably well. It is, therefore, a useful tool for the analysis of magnetotransport data.

We' now assume that a guantum: wire is extended in the v direction and described by
& Jateral confining. potential of the form of Bz, (6). From the beginning, we include the
additional influence of 4 magnetic field applied in the 7 direction, which we describe as
usual within the Landau gauge by & vector potential A = B(0, x, 0). The cotresponding
Schridinger squation {or 4 single electron state reads

¥4 e
“n [w "i”{”%“ - f’fﬁ% }% ¥} 4 m% WPl ) =ERG ) B

éff?' ﬁ"* » 2y sty ™y
EEyerire i *wilx —x)t + mm wix* sﬁf{x} xxxxxx Egix) &

A simple quadratic substitution transforms this equation into the Schrodinger equation for
3 shifted harmonic oscillator

A fm+lm*w2{xu£ )+ P 29 = B (10)
Im* 3a 2 YT e P
where we nused o’ = wf, + @ and a new, magnetic field-dependent center coordinate
_ WQ ﬁi{fyﬁf«% 1%
An wxgg% ] W ;:ii}

The solutions to this equation are the well-known harmonic oscillator Amctions
ol e TR (e 50 with Yl (/T2 }”"”mex;s{ x5 B Y. Holed de-
notes the pthr Hermite polvaomial, The m@%gm&mg energy e&geﬁvaiws are given by

Eplky) ok »%E”} i };2&? o 1,2 (1

A - [ =Y A B S
oty =he{s3) 5 o e

Here, we have used the abbreviation meg( B) = m*w* fw], for the magnetic field-dependent
efective mass, In zero magnetic feld, the Iatemt psmb@im confinement gives rise to
equidistant 1D subbands £, (ky) = han(n + 1)+ 1 kzsz m* whose dispersion ts parabolic
and determined by the electron effective mass m"‘ Tn nonzero magnetic field, the sub-

bands are still equally spaced but with a field-dependent subband spacing i,/ % + w2 and
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Fig. . Dispersion relation of 2 typical quardam wite plotted for three ditferent magnetic Helds,

mﬁuance of mgfr{ E} and is 1llustmmd in F:gum 2, where the ﬁmp&:mmn of these so-called
magnetoelectric hybrid levels is drawn for three different magpetic fields.

The figure nicely visualizes that with incveasing magnetic field strength, fewer and
fewer subbands remain cccupied for a given Fermi level Ep, This magnetic depopulation
of 1D subbands gives rise 10 an oscillatory strocture in the agnetoresistance. Hs use for
the determination of wire parameters such as the energy spacing and the electron density
will be discussed later in detail,

Note the difference 1o the corresponding situation in purely 2D systems. In this case,
the :ﬁxgae&e field quantizes the energy leveis into dispersianiess Landat Jovels al cnergies
Bt E} The group velocity of glectrons in & Landag fevel is zero, Which classicalty
corresponds to the fact that elecirons are forced on ciroular cyclotron orbits by the thag:
netic field. Au analogous correspondence of the magnetoelectric hybrid states to classical
orbﬂs can ba used to @xp’lmn the permmm of a HONZEro group erc:&ty‘ inm p&mbom
avery pem%: ona Qmm zeai éxmzm miaﬁm& can be ?ﬁi&tﬁé wa e@msg&x&;ﬁ;ﬁg
‘classical orbit This is illustrated on the Jeft-hand side of Figure 3, which shows the allowed
energy values of a particle moving classically under the influence of a perpendicular mag-
netic field in a quantum channel described by a sguare-well confining potential. The (X, E'}
phase space shown in the figureds éxv;ée;é into Four different sections by the iwo parabolas.
V25 == RE = ImE (2 BY. Hore, Ry i the cyelotron radius
and xg 15 the center of the classical z;:yg}e;smﬁ crlit, whose dudnbum méchanical counter-
part is the center coordinate appearing in Eqgs. (109 and (11). Bach section corresponds to
one of the cases where the cyclotron orbit of the particle interacts with one, two, or none
of the side walls. Those classical cyclofron erbits that do not intéract with the wire walls
.-cm&g@ﬁfi 0 ﬁﬁﬁ;ﬁtﬁfﬁ@é méff:u Jevels and: wﬂfsﬁié be 33?’2&&{{5{3 ork c&mpi@*{ﬁy ﬁat saﬂimzs-

mwm;:t with beth walis (travmmg (}xb:ts) comsgwnd to magnamlecmc hy%md Iavals and
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1 mu\\ "?fiiiff
57
"o T

K {1/nm)

Pig 3. Left Possible combinatione of kinetic cnorgy and sysiolyon orbit center in & narrow chasnel
of width W, when specilar boundiny scoffering dorintes, The shaded wes 1 forbidden. The Tour secfions
“deimitad by te two mis{s?&s corresiond o different typés of ﬁmm& w&;ﬁs Right: THspersion relation E‘{k}
valoulmed For W= 200 nan mod B =15 Ty a;;giyiﬁg thie ‘Hobe-Son  quasiEsmion condition io the
chissiGal wajectories ghowne on the Jeft. The shaded areds indicate the parabolas drawn on-the eft-und side of the
figure, (Source: Reprinted with permission from [251)

those orbits interacting with only one side wall of the wire (skipping orbits) comspond
quanturn mechanically to so-called edge states, It s clear that in each real guantum chan-
e} the dispersion relation should é@&iag Hat reglons at high magnetic Belds. This is when
the spatial extension of the wave ‘function, which corresponds 1o the classical ayclowon di-
ameter; is substantially smaller than the effective wire width: The parabolic médel potential
describes this situation only in an approximate fashion since the-curvature of the dispersion
relation f[(Eq. (12)] becomes very small at high magnetic fields but never comipletely fiat as
for a Landau level. This is due to the fuct that any flat sections in the potential Tandscape
arg moisging and even at very high magneiic fields there will be:some net interaction of the
gi&ma:;g i:fﬁ}it: wﬁk Bes gzéc walls {:sf ﬁxﬁ ekmﬁﬁ

tgiiﬁt{ﬁ}i& aﬁni {a}zz the left- hﬁﬁé e;&:‘:« of Fig. 33 m&s;;g}néfs {i;z%@ﬁg 08 ;}&;ﬁtﬁiar state
ky in the dispersion relation (on the right-hand side of Fig. 3) by means of the relation
bk = —eBX. X can be interpreted as the classical eqguivalent to-the center coordinate o
introduced in Bg. (9). Hence, in sowme sense, the dispersion relation shows the engrgy of a
confined electron as a function of its fateral position in the wire,

The model potentiale described in the previous section are helpful for 4 qualitative and also
quantitative interpretation of many experimental situations, However, as simple as they are,
they nged some justification from rmore realistic caleulations taking into account an appro-
priately chosen distribution of ﬁﬂpisﬁﬁgg ar the eleetric {ie & cresed by the. gﬁa o 0D
of the samgple, A reabistic caloylation should also account for the fact that, in fesponse to
the externally applied poteniials, the eleciron gas will change its equilibrium configira-
tion and therchy modify the effective confinement. In other words, a folly self-convistent
treatment of thie Schriidinger and Poisson equations has 1w be performed. From an ex-
perimentalist’s point of view, such ealonlations will often be numerically too expeniive to
allow an efficient comparison with a particular experimental situation. However, these self-
consistent caloulations provide o lot of useful information about the corresponding sample
;}&famﬁiﬁf&, ﬁ’a:s%x b4 §§1§ sffective éﬁﬁﬁfi&mﬁfxﬁ whidth, tiw aiae%reg (‘iﬁ;’?%%f‘y,, or t?;e gci‘;e:mai
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itis ﬁwn ;msmble to choose an appmpnam}y wk}m& mi}&ei pate:nnai that is nummcall}r
very bagic mﬁhﬁéa fér a saif»-s&ﬂsmgﬁz description of ﬁgﬁﬁﬁmg ;}é}temiais are Iroduced
in the following, We also: rﬁpméaice some mamerical resulty that are oblained f_‘s:%r the most
frequently encountered experimental situations.

ﬁ’ﬁgﬁﬁﬁﬁag the Maﬁwsi W; we %&fﬁi i i mm?%@ &3 ﬁiﬁ sﬁﬁg}is Hm &???&X,i-

der to give a mmple ancl reariy%o«use exposition of the nummcal an:i aualytwa@ details
intended as a basis for quick first-principles calculations that any experimentalist might
be interested in. Those readers who are interested in more theoretical details are referred
to [44-47]. From mwore recent work, we mention [48, 49] and, in particular, the efficient
mumerical strmulation methods of electron states in quantum wires presented by Kerkhoven
et al. [50].

The organization of this section is ag follows. First, we describe a simple and steaighs-
forward discretization method and some practical details of the numerdcal solution of
the. Schridinger and Poisson equations. in one dimension. Then we discuss how self-
cﬁna;&w;my is achieved zzzzmmﬁaiiy aﬁé E;éﬁff ﬁm c&m&g&mﬁg&g procedure can be Sifﬁ?ii“

3%3@ i quanbum, wires ﬁﬁﬁﬁﬁﬁ §§

p&s&mﬁé %@geﬁﬁi@r W;ﬁ'; SO’ m&iﬁg o ﬁﬁﬁ i
shallow eiching and the $p§§§*g$£ﬁv technigues.

31, Self-Corsistent Treatment of One-Dvmensional Problems
1LY Solving Schridinger’s Equation

In the following discussion, we dssume that the problem of 1 laterally confined eleciron gas
can be treated in a one-particle approximation and that the contributions to the potential in
the x and 2 diections can be separmed as outlined previousty, To solve the Schridinger
equation for an arbitrary poiential in one dimension, a simple finite-difference msthnd can
be used, which is sufficient for many problems. For this purpose, the statiopary Schesdi finger
cquation is written In discietized form as

B oDw .
s 2 P = {13)

with. ‘
W (W = 29 W) and Gex - (14)

where i denotes the discretization index, & is the spacing beétween the mesh potwts, Vi is
the value of the confining potential af point {, and £ is the energy of ihic sigenstates, The
total number of grid points in the x divection is N. For simplicity, a constant efféctive mass
is assumed in the following. The wave functions are assumed to vanish at the bovndaries
of the mesh (W= 0, Wy =0 This allows us (o ransform Bq, (133 into a symmetric
bend matrix problem, where the elements of the Hamiltonian matrix 5 are given by

A 1
Hy s oo agz“%“y% (153
and
P A okl N (16
kb TR S G §§ =, e -
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All other elements of H are zero. To calonlate the cigenstates and eigenvectors of the
matrix, any standard numerical software can be used. Later, we shall discuss some results
that were obiained using EISPACK [51] routines, which simultancously vield both the
eigenvectors and the energy eigenvalues of the problem. Note that the BEISPACK routines
are reasenably fast-on a conventional personal computer, even if & 1-A resolution is used
an a 200-nm-wide system (2000 mesh points).

Inthe faiigwmg discussion, we %z;siéﬁr 2 guantune wire with tBe aias of frse raotion along
the v divection. The translational inv : along ¥ feduces the problem of calculating the
confinenent poteritial to the calenlation of éhy arbitrary cul ﬁ@mﬁgﬁ the pofential fandscape
i the x direction. The folal electrostatic potentisl in the quantum wire is determined by the
distribution of I donors (in the case of a wire'defined by etching? or the distribution
of electric fields (for a split-gate wire), on the vno hand, and by the spadal distibution of the
free electrons, on the ofber hand. To the following, we consider the Case of an eiched Wire;
whose confinement is determined by some spatial modulation of the donor distribution
with no external electric fields being applied.

A simple and numerically effective way to solve the one-dimensional Poisson equation
is obtained, if the spatial region in which the electrostatic problem is to be solved is split
into N intervals with a piecewise-constant charge density. We denote the charge density
in the ath interval by the constant o, where g, is composed of the contributions of the
iomized donors i othe stricture and the clectrons in the conducting tegions. Because, in
general, both will depend on lemperature, we can write

o = e NAGE T = nla, T3] (n

where N3 05, T} is the temperature-dependent density of jonized donors.and afx, ') is
the Joead &i@s@w}a density in the nth interval with x, < '€ Xp4i. Any residueal acceptor
concentrations or holes are ignored in this consideration, I we further assume a plecewise-
constant dielectric constant £,, the Poisson equation on the nth interval resds

P _ e a8y

Gx? Entp
where ¢ denotes the electrostatic potential. Integration yiekls the following quadratic ex-
pression for the electrostatic potential inthe ath interval:
o (x-x)?
Entp 2
on g@&sﬁagis To sa’ieﬁiaie T &zzé e, we define xp =0 and

ety (X~ gad oy {1

Wiaem .l si;z m‘@ iﬁﬁ‘ﬁ

dal) =10
{20y
dip
i e §‘
é’x o

That is, the potential is chosen to be zero at ¥ = 0, whereas an. electric fietd F.of any de-
sired value can be present at this point. These boundary conditions can be chosen arbitrarily
without restricting the generality of the described procedure, The preceding boundary con-
ditions lead to recursion relations for the coefficients d, and e, As starting values, they
give dy = 0 and ¢ = F and, if we require the potential values in adjacent intervals to match
at each infersection X,

P (Xt 1) = @uat (Enpt} ; (21}
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and the same for the displacement

. don  Bnai ] .

..... 7 it
&XZ Hmkyag Bz FEmst

wegel (he following recursive relations Ty cup 808 el

gy 'gj}g. (Kt ™ Xn o [EPETES R E T LS
ZEnEy
and
&t
Chfey 8 (Xng] = X} o (24}

Ent1 89 Epal

Having discretized the Schridinger and Poisson equations in thiz: way, it is now sasy to
obtain a setf-congistent solution of these two equations by carrying ovut the usual Hartree
jteration scheme, which will be summarized hater.

3.1.3. SelF-Consistency

To'obtain a self-consisterd solation of thie Polsion dnd:Schrddinger equations, one dhaioses,
a8 & first step, an initial spatial election distribation. Tt may, i principle, be of any shipe
provided that the integrated electron density equals §§§é predefined one-dimensional elec-
tron denisity in the quanbim wire: {ats, 79 dz = n'P. Here, the superscriptit denoles
an iteration index; it==1 deniotes the st iteration step. Tn practice, a{x, TV is chosen
10 have some “yealistic™ shiape, given by, for ple, the Caussisn diseibution fonction,
which will accelerate the convergence of the iteration procedure. The Poisson équation,
solved with the initial density p ()" = e(Nj{x, T} — nix, TY*=!}, now gives the start-
ing configuration of the electrostatic potential, ¢™=1(x}. The so-obtained potential is then
inserted into the Schrbdinger equation, whose solution vields a first approximation for the
wave functiong, and elgenenergios. With these wave functions, the local electron density in
the wire can be expressed a8

N
AT =S D) (25)

fa}
where: N denotes ‘the number of ccoupied subbands asd 2 (7Y dethe temperature-
dependent munber of electrons per-upit length {in the y-direction] in each 1D sitbband,
At findte temy e, the Fermi distribution entering intd the n; (77} (see the f@iimﬁg iixs-
cussiony extends to infinite energy. The cutoff ;ﬁmm N of subbands wsed in the sty s,
ih&refﬁm, é&i&mm& by the f%‘%}imﬁ;;ﬁ_ ﬁﬁ__ ' m&ay

the miamn

]
(T = fﬁ /P (E)F(E — Er)dE (26)

where gﬁniﬁ} is the one-dimensional density of states in the ith 1D subband, F(E ~ £g)
is the Fermi distribution function, and Ex is the Fermi energy in the qoantum wire,
For zero temperature, the previous equation simplifies 1o

£y
mr=0%)= [ gP(EyaE @
g@e&m most of the mgmﬁ m’%gﬂgaﬁmﬁg ot ggm&m wires are carrted outat quid he-
th 4

ure in the calenlation will be
a valid approximation: It cab ilinédiately he seen %}zai my (1) canmot be caloubsted divectly

11
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because this would require knowledge of the Fepmi énéigy. The Fermi energy i‘t&sif how-.
depends on 1'P and the calculated subband energies. Consequently, to obtain ag (T},
o first B to caleulate the Fermi energy from the diplicit refation

nP =y m(T) = Z[a ¢ P(E ~ E)dE (28)

where, again, T =0 K is assomed, The sommation s carried out over all ocoupied sub-
bands. The outlined procedure yields 2 Jocal elecizon density nix, T), whith can now be
nserted into the next iteration step. I practice, however, it-is not simply n{v, T} that 5.
wsed, but rather & Hnear combination of e, T andn(x, T

AU T) = (1 - )=, Ty b, ) (29y.

with the se-called mixing parameter o e [0, 1], Ui 1hid mining wick, the itepation s
repeated until the resulting potential and electron distribution are left unchanged by con-
secutive iterations, The wmaxing relation of Eq. (29)is introduced because the self-consistent
calculation scheme tends to be unstable. Frequendy, the position of the center of the self-
consistently caleulated potential [and, consequently, that of the charge distribution p(x)]
starts to oscillate about'it$ equilibrium value during the iteration process. Bquation {29}
serves to damp these oscillations and 1o achicve B convergence. Increasing the vale.
of «, i principle, reduces the number of fterations But increases the risk of oseiilations.
The optimum choke of & depends on the investigated system, but ususlly @ will be of
brder 0.2 for reasonably fast convergence.

3.1.4. Thomas—Fermi Approximation

In more complex situations, particularly in the ficld of real device simulation, the solution
of the Schridinger equation becomes numerically very expensive. Therefore, there is a
necd for approximation methiods that take the response of the electron gas to an externally
applied potential sfficiently imto sccount. A particelarly simple approsimation scheme is
gﬁ’wgé@é by the Wsﬁ&nsﬁ;g T%:ﬁmgs«-?&mi 3??{6&{:%} {5255} It was ﬁ?&g&ﬁ&ﬁy mzw&z

.....

ﬁsg focal charge éﬁi}*sﬁy fr¥the atom without mmkmg a s&iﬂﬁ{}ﬁ ;}f the &m&gﬁf céguaﬁmz :
for all energy levels,

Consider a uniform electron gas in some external potential g (e), which can'be due
1o the space charge distribution created by charged donors or to externally applied electric
fields, The electrons will change their configaration in 1eSpONSe 10 Pag (1), thereby creating
an effective potential ¢(x, Ty that will, in peneral, be wmperature dependent even if gy
is pot. In the Thomas-Fermi approach, i is assumed that ¢(x, T') originates in a spatially
vazymg elcctmn dm&ti}f n{x, ?"} rhat is thm‘mai ac;uainbnum with the Imal vaitw of &h&

#lx, Ty== f{} g(g}[zw@{{g Ep— eplx “T}}ggg?}] dE £

where g(E} is the density of states in the semiconductor. The preceding squation is than
evaluated as

e, Th= No(x, TV p{{ B 4 eglx, T))/knT) (31

where N, = 2{m*{x}fég§e“,’{2nﬁ3 12, m*(x} is a pmewmcwmnstam effeetive mass, and

patny= o [l S T—, e

12
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one ;ﬁmﬁﬁ&s {h& éxtmai gmzﬁmzi e;éggg{x} wﬂh the gzs}i@ﬁizgi formed h“g a ﬁxad fg}m
charge resulting from jonized donors, separpted from the active fégzi}fz of the wire by
spacer laver, This would be 4 typical situation for stohied guantwy wires, but deefollowing
copsiderations also apply to split-gate structares it the proper boundary condifions sre
chosen. As before, 2 denotes the growth direction, 'y i€ the direction of the wirk dxis, and
x is the direction of the Jajeral confinement produced by the nanofabrication process. Using
Eqg. {31) for the glectron density in the presence of g (x), one may write the Poisson
equation in_tiw following way:

[&g;&{x}'?@{x 73] ng{xif y} s mg{é‘%g@ T W?Z{X 3’*}] '{3%}

and NJ, {; 3‘} is :he canccﬁmam af zgﬁm éﬁﬁw ﬁq&aﬁm {33} maéy {:{}ﬁm :%;e 8-
sponse of thesysten of conduction electrong o the external potential witheut requiring the
Schridinger equation 1o be solved. The price that has to be paid for this convenience is thai
the Poisson equation now becomes a nonlinear differential equation, It ean be solved nu-
marically, using an fleration method simdlar to the ooe described praviously: One assusmes
a piecewise-constant charge density N5 (x, ) and starts with some initial distribution of
eiecimus fmm which a potr:ntiai «;a{x Ty is eaicuiate&i u&ing the Puisson equmimn ’f{"heu.

ary. We refer the reader 'm [56-58] for more. aem

3.2, Seif-Consistent Calculations in Two Dimensions
.21, Discretization Scheme and Bovundary Conditions

Until now, all considerations and calculations were based on the assumption that the con-
fining potential for narrow electron channels at 2 GaAs-AlGaAs inerface can be separated
inte twe independent components, one describing the spproximately hasgular potential
well 4t the hetetointerface and ihe other giving the laferal confinement induced by nanofb-
rication. The numerical problem was then reduced to the solution of eguations that only
éﬁg@ﬁé&é off thﬁ X &%M&zﬁ We now mi&x ti} $ asﬁﬁm;ﬁim and g@aﬁé@x ti:iez ﬁwﬁamé

gonftining migzﬁ;&l i?gzgisgmm it will b@&‘&{ﬁé clear that the separation e&f Q&g wm?xﬁ
componenis underlying the simple models discussed at the beginning of this chapter has o
be used with some care.

The principal procedure for the solution of the two-dimensional problent is analogous
1o that used O the pne-dimensional case. As in the preceding section, we start by giving a
particularly simple discretization method for the Schrodinger equation. Although there are
many advanced methods 1o solve the Schrodinger sguation numericaily (see, e.g., [39, 60D,
the §ﬁ§§ﬁ“§i§¥$§ﬁﬁ$ﬁ ssisz&ma éﬁ%ﬁﬁi’}ﬁé tater {ﬁi} wﬁi mzzg@ of s ggﬁgi‘;ﬁﬁg ;;&}% whe

e

nﬁ # @
e (3:::2 +3 Z)W(xﬁz}é« Vix, ¥ (x, 2} = EW{x, 2) (34}

where V{x, £} now describes the joint influence of the electric field at the heterostructure
interface and the lateral nanostructuring process, we replace the differential quotients by
finite differencesjust as fn the preceding section:
B &%%gw
31‘?1* §2 gﬁ

)Mf;ﬁgwmgg
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writh
W (W g 20 5+ Wy 5}
and
Dy e (W gy 2N 5 Wy ) 035

Kﬁwg B = xpgy =Xy and §; = zj51 — z; are the mesh spacings in the & stz dires-
tions, respectively. One now performs an index transformation and defines a new index
be (i — I}N, + J, where N; and N; are the number of mesh points in the x and z direc-
tions, This gives

n* (%-wj — W+ W, + Wy g — 20 + Wy

- 3
2m* 47 3?

where k runs in the interval between 1 and N = N; N;. As boundary conditions, one again
assumes vanishing wave functions at the borders of the meshy Wy = 0, Wy = 0. This
transformis the eigenvalue equation into 4 symmw: band matrix pmbim where the ele-
ments of the Hamiltonian wateix H are now given by

L |
Hg,gm—i—m*(az j)-i*‘r’z

) b Vil = H g {36)

h?
Hesn, = Hirp == (505 ) amn

Hk=al; mdi<a<N

L
Hgis w Hoapmd [ # otherwise
2&*5?

-All other elements of H are zero. Once again, one obtains a7 al discretization of
the 3$§§t@éiﬂ§é¥ ﬁé:;;ﬁ{aizm, wideh can easily %g mplemented on & mﬁaﬁ m;mm ﬁ&zﬁg

j&aise;r, some resulis: %z?% be shown that wers obtained using the gm Ei&?ﬁﬁii mﬁﬁﬂ%
aimady mentioned in the context of the one-di onal self-consigient eaieuiaﬁﬁﬁs

“The next important step is the discretization of the Poisson equation. Usually, it is.not
reasonable to discretize and to sotve both the Poisson and the Schriidinger equations in
the whole discretization range because the electronic wave fanetions are expected to con-
tribute only in the vicinity of the heterostructare interface. To achieve high aceuracy and io
reduce computation times, the Schridinger equation is, therefore, solved only on a subset
of the Poisson mesh, An example of this gives Figure 4, which shows the two discretization
meshes used for a self-consistent simulation of a shallow etched guantum wire. Ag shown
in this figure, the Schrodinger equation is solved only in the nonetched regions of the sam-
ple and there only in the area immediately adjacent 10 the heterostmeture interface, The
rest of the sample is assumed to be totally depleted. The two-dimensional Poisson equa-
tion can be solved on a rectangular mesh using the so-called simultaneous overrelaxation
method [62]. As in the one-dimensional case, we assume zero femperature and define a
local charge density

oz, x)=N*(z,x)} + 1Pz, 2) {38)

which consists of the contribution ¥*(z, x) of the onized donors and the local electron

concentration nP(z, 1), The discretized 2D Poisson equation can then be written in the

followirg matrix form:

edid; o j
2En

@i i Qi1 B i1, b Gt b e (39)
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&53&#&&&&@ gﬁé for thee se;zmw {zf ‘ézs Sehetdingse mm %ﬂ‘fﬁﬁﬁ suconmisred »:izg i;im m;ﬁx s}f‘
51 51 points, (Souress Reprinted with permission from {6133

Here, § counts the mesh points in the x direction, j those in the z (growth) direction, and
8;, 8 are the mesh spacings in the two directions. g ; and ¢; ; are the values of the charge
density and the electrostatic potentizl at the point {1, ), respectively. The elements of the
matrices s, b, e, doand ¢ b Bg (Wjare gy ebywepy =dy=lad g =4 at the
inner mesh polais. To define them st the hﬁﬁzzﬁmy of the mesh, one introduces suitable.
electrosiatic boundary conditions. Ini the niext subsection, several results of caleulations
ysing fo the outlined methad will be disctissed. Theis, Netmann boundsry conditions (zero
electric field) are used on three sides of the undeérying meshi (see Fig. 4). To fix thie potential
scale, Dirichlet conditions are used at the upper side, Note that, for simplicity, one assumes
a position-independent dielectric' constant £ in Eq. (39). This is 2 good approximation
for quanturn wires fabricated on GaAs-AlGaAs heterostructures, becanse. there is Title
difference in the telative diclectric constants of GaAs and AlGaAs.

Self-consistency of the nirmerical solutions for the wave functions. energy levels, and
the potential shape are now obtained in the samie way as deéseribed for the ons-dimensional
case, Starting with an arbirary electron diswibution #10(x, 2, T, one fitst calonlates the
wm;spm&dmg electrostatic potential. From this, & first approximation to the subband ener-
gies and wave functions is obtained, The electrons are then distributed among their energy
levels taking the 1D form of the density of states into account. In most cuses, Zerotemper-
ature can be assumed for simplicity. The resulting new electron distribution n(x, z, )%
is again mixed with #(x, 2, 7) using a weighting ficor o (0= 0,..., 1} according o

Ay s Ty (e 0,2, T +onix g, 7] - E

The new valieof nix, 2, T¥= i then used in the subsequent lteration for the Pojsson.
equation.

322 Bome Namerical Resulis

prevmasiy ané wil also ;néﬁ:ai@ ihe limits of ?aixdgy s&f ﬁxa asm?ﬁéﬁs e ;xr{mﬁagiyg
namely on the approximation of confining potentials by simple anatytical functions and on
the separate treatment of the confinement in lateral and growth direction.

Figure 5 shows the confinement potential obtained from a solution of the two-
dimensional Poisson-Schrodinger (PS) model for a wire fabricated by shallow etching on
a-GaAs-AlGaAs heterostiuctors. Figure 4 shovws (i parametrization: of the system used
in the numerical calculation, The etching process, whith removes 2 layer of thickness ey

3]
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Fig. s, %Mzmzm view of 4 gu ¥
Maaﬁsaméﬁm itertace of the Gads and the M{}mﬁs ?ﬁm&m&; %ﬁyggami of the Poisson mmgm

from the UaAs cap, ndices 2 Iateral fnodaletion of the densitvof ehsrgeé donors, Be@a&%
the exact disteibution of the donors and the surface states i not kmown exactly, it is:mod-
eled by & sheet of positively charged donors with thickuess &, positioned at 2 = duy. The
profile of the charge distribuition n"ﬁ is assumed to be constant in the 'z direction and to
be correlated with the profile of the free carrier distribution in the wire itself. This can be
formally expressed ag

1
nfjﬁ{}’sﬁ =leg) = i f?!:D(y. £z {41}
z

To accelerate the convergence of the caleulation, a Broyden algorithm {63, 64] can be
used. ’me sclfmnsismm sotuta«m is t%wn ei&tznned typically after IS at&mm& w;{h waxage

iﬁh&ﬁiﬁﬁﬁ %f}f iise& z confinomont fmza that of ﬁm % aﬁaﬁﬁﬁﬁmﬁi gver the entire Infegration
region. However, within the range of the comesponding wave fonctions, the relation be-
tween the two contributions may be “linearized” and their separation can be considered to
be & good approximation in many cases.

A common way 1o give a one-dimensional representation of the results of a two-
dimensional calculation is to perform a cut through the potential profile at the maximum of
the electron charge densily nm(y, 2}, as shown in Figure 6. This also allows us o decide
whiat form an analytical model potential showld have in order to give a fair approximation
of the seli~consistently calculated potential. Figure 6 reveals that, in the case of shallow
etched gquantum wires, the self-consistest confinement potential has a sinusoidal shape,
The small oscillations superimposed on the sine potential of Figure 6 are due to small local
variations in the self-consistently caleulated electron density. Note that the situation shown
in Figare 6 s typical fora relatively i;;g?; electsop density, whichooglns, Torexample, dfier
illumination. The Fermi Jevel is Tocated near the upper edge of the potential modulation
and the highest lving of the eight occupied subbands are situaied in the nonparabolic part
of the potential, '

Note also that there 1 a considerible "offset” in the zero-point energy; that is, 8 large
energetic distance beiween the conduction band bottom and the Towest sibband. This offset
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X (A

Fig. 6. Cutb through » quantun. wire potential a the tolal charpe dendity misdmum. The 1D subband
energies wd the squared wave functicns of the lowest thres subbands are also shows, (Sourcs: Reprinied with
permission from (811

Vg 400 nm ._ -
metallic gate | Ne-1610'2cm®| metaliic gate
Undoped GaAs.
ﬁ*&;ﬁﬁﬁsgaﬁ»?é»&§ ?’égmﬁ 1 32“? -Qi’ﬁng
Undoped Aly cGag 745
i 5
bl
p-GaAs Na=110"% om3
§§$

Fig, 1 Sample geometry and sample parameters. for o typical yplit-gute wire §
- AlGsAs helersruaiure, {Soarce! Reptinted fom 4], with péninlasion of Pleevier Seiende)

‘teflects the position of the lowest occupied subband of the underlying 2D electron gus,
which is fhe gero point for the superposed guantization into 1D subbands. (Fermi energies
considered later on will generally not be given with réspect to the conduction band bottom
but with respect {o the botiom of the lowest 2D subband.} This is another manifestation of
the fact that the x and 7 components of the total confining poténtial cannot be considered
separadely. Itis another interesting feature of the caleulated results that the spatial extension
of the wave funchions cortesponding to the highest occupied subbands can even exceed the
geometrical width of the wire struchdre (which is on the order of 200 pm in Fig. 6}

In the case of low electron densities, the overall cosine shape of the confinement po-
tential is conderved. However, the Fermi Tevel and the occupied subbands sre then Jocated
near the bottom of the potential where it may be well approiiingied by & parabolic shape.

We now compare thése resulis to those obiained Bom self-consistent caloulations per-
formed for a split-gate geometry. The corfesponding sample stractare. is deplcted in Fig-
ure 7. I contrast 10 the shallow etehing method, the lateral copfinement isnow induced by
the external volfage applied to metallic gates on top of the GaAs-AlGaAs heterostrucnie,
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&mgﬂx This g%i@ws us: o %’:i}fiﬁgé the behavior of té’;e ﬁ‘«‘(}i}ﬁ‘ﬁeﬁ electron sysiem frs;s:&} effec-
tively two dimensions) fo strongly confined one dimensional, Self-consistent wire poten-
tials for the split-gate geometry of Figure 7 are shown in Figure 8 for various values of the
gate voltage. The corresponding charge density distributions are reproduced in Figure 9.
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Fig. 10. Self-consistently calculated potential and charge distribution of a cylindrical quantum wire. The
dotted lines are the results obtained through the Thomas—Fermi (TF) approximation; the solid lines are obtained
through a self-consistent solution of the Schrédinger and Poisson equations. (Source: Reprinted with permission
from [54]. © 1992 American Physical Society.)

Figure 8 reveals the main qualitative difference between the split-gate and the shallow
etching geometry: For low electron density, both cases yield an approximately parabolic
potential, whereas, at higher electron densities, the split-gate potential develops a flat bot-
tom. The electron density plotted in Figure 9 shows several oscillations, which, in fact,
reflect the structure of the corresponding 1D wave functions. The position and the ampli-
tude of these oscillations depend on the gate voltage, which nicely reflects the increasing
number of occupied subbands as the gate bias is lowered.

3.2.3. Thomas—Fermi Approximation in Two Dimensions

In the last paragraph of this section, we take a brief look at the application of the Thomas—
Fermi (TF) approximation to two-dimensional problems. In principle, there is no difference
to the one-dimensional case considered earlier, except for the number of independent vari-
ables. We, therefore, restrict the following discussion to a comparison of the resuits gener-
ated by the TF and PS approaches in Figure 10. The figure shows the potential and the local
charge density as a function of the radius for a cylindrical, homogeneously doped quantum
wire [54]. Dotted lines represent the Thomas—Fermi results; solid lines correspond to a
fully self-consistent solution of the Poisson and Schridinger equations. As discussed pre-
viously and as also seen in the figure, the PS approach leads to oscillations in the electron
density, which are not revealed by the TF approximation. This is because the latter yields
some kind of “average” behavior of the electron density and the confinement potential. The
difference between the two approaches will become weaker when the number of occupied
subbands or the temperature increases. In general, the Poisson—Schrodinger results are ex-
pected to approach the Thomas—Fermi results, as soon as the energy spacing between the
occupied subbands becomes smaller than kg 7.

3.3. Three-Dimensional Modeling of Quantum Dots

In this section, we give a very brief survey on the self-consistent treatment of quantum
dots. without going into great detail. For the reader particularly interested in this subject,
we give a short list of references, which may serve as a starting point for finding more
detailed information on this topic.

There are mainly three obvious possibilities for calculating the electronic properties of
quantum dots: As a first approximation, again a one-dimensional model potential such as,
for example, an anharmonic oscillator potential suggests itself (Luban et al. [65]) for the
simulation of electronic properties of a quantum dot nanostructure. As a next step, one
might consider a circular symmetric “quantum disk” system. This implies the use of cylin-
der coordinates and, consequently, the solution of a two-dimensional Schrodinger equation
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using the methods described in the previous sections. Finally, and also numerically most
challenging, is a fully self-consistent simulation in three dimensions. The first to do this
were Kumar et al. [66], who calculated the electron states of a quantum dot including the
presence of a magnetic field. Recently, fully self-consistent calculations became more im-
portant because of progress in nanofabrication and the need for a three-dimensional (3D)
device simulator for practical applications. The interested reader is referred to the work of
Udipi et al. [67] for a model of lateral quantum dots on silicon and Scholze et al. [68] for
various other aspects of device simulation. _

The case of a circular dot geometry has been intensively investigated during the past
years. The most popular examples of this are pillar-shaped double-barrier resonant tun-
neling diodes with diameters in the nanometer range, the dot being formed in the well
between the barriers. The intensive work on these systems was performed mainly at Texas
Instruments (see, e.g., [55]) and was motivated by two major aspects. First, the increas-
ing scale of integration in commercial devices strongly requires this kind of calculation
and, second, nanostructured double-barrier resonant tunneling diodes (DBRTDs) are use-
ful for certain applications that require ultralow power consumption. The efforts in this
field aim at the conception of a nanodevice simulation tool capable of calculating current—
voltage characteristics from the given fabrication parameters. The computer simulations
always employ the Thomas—Fermi approximation to keep the computational expense rea-
sonably low. It should be noted, however, that the calculation of 7V characteristics requires
not only the self-consistent treatment of confinement potentials but also the calculation of
tunneling currents. Therefore, scattering processes have to be included [69] for realistic
simulations, which is a topic that we have completely omitted in the preceding discussion.
Pioneering work in this field was done by Frensley [70] and Luban and Luscombe [71].
Detailed accounts on the problems and methods encountered in nanodevice simulation can
be found in their work and in the other references given in the context of the Thomas—Fermi
approximation.

4. TRANSPORT SPECTROSCOPY OF QUANTUM WIRES

In the following, we discuss the magnetotransport properties of quantum wires in the diffu-
sive transport regime. We shall focus on those phenomena that provide a more or less direct
access to those quantum wire properties directly related to the confinement potential, such
as the subband spacing or the wire width. The standard example for an experiment yield-
ing the subband spacing is the magnetic depopulation measurement. A second example
that has only recently been shown to be suitable for the subband spectroscopy on quan-
tum wires is the observation of the magnetophonon resonance at elevated temperatures.
In the interpretation of the experimental results, the confinement will be approximated by
simple and frequently used model potentials, as they are suggested by the self-consistently
calculated results introduced in the preceding chapter. We shall discuss the limits of the
validity of these approximations and also outline a method that gives direct information
on the shape of the actual potential from the comparison of high- and low-temperature
magnetoresistance measurements. Several other phenomena exhibited in a magnetoresis-
tance experiment, such as the suppression of backscattering in a magnetic field or the weak
localization effect, are also considered. They provide additional information on several
characteristic lengths important for the characterization of long quantum channels in the
diffusive regime. The particular magnetoresistance “anomalies” occurring in lateral surface
superlattices and their use for the determination of potential parameters will be discussed
in the subsequent chapter.

According to the objective of this chapter, ballistic transport phenomena are completely
neglected in the following. This is mainly because the phenomena typically examined in
this regime, in general, do not rely strongly on a detailed knowledge of the properties
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of confinement potentials. The reader who is especially interested in a review on ballistic
transport is referred to the excellent articles by Beenakker and van Houten [25], van Houten
et al. [26], Timp [72], or the textbook of Datta [73] as well as the references cited therein.

4.1. Magnetic Depopulation Experiments
4.1.1. Determination of Subband Energies

The “classic” method to gain information on the confining potential in quantum wires and,
in particular, on the energy spacing of the 1D subbands is the so-called magnetic depop-
ulation measurement [74-76]. It exploits the particular features of the low temperature
(T < 4.2 K) longitudinal magnetoresistance of a quantum wire sample with a magnetic
field applied in the growth direction of the underlying heterostructure. As already men-
tioned earlier, the magnetic field enlarges the energetic separation of the 1D subband edges
and, therefore, the number of occupied subbands is successively reduced with increasing
magnetic field. This is shown in Figure 11, where the magnetic field—dependent density
of states of a one-dimensional system is plotted for three different magnetic fields. The
position of the Fermi level EF is defined through the electron density in the quantum wire
and also depends on the magnetic field strength.

As shown in Section 1, the energy dispersion for a parabolic confinement potential in a
perpendicular magnetic field is given by
1 h%?

1
En(ky) =ha)<n + 5) + Emeff(B)

n=0,1,2,... (42)
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Fig. 11. One-dimensional density of states according to Eq. (43) plotted for magnetic fields of B=0T,
2T, and 6 T, respectively. Because constant carrier density is assumed, the position of the Fermi level is dependent
on the magnetic field. The density of states is calculated for the ideal case of absent lifetime broadening of the
magnetoelectric hybrid levels. As shown by Berggren et al. [75], realistic assumptions for the lifetime broadening
leave the main qualitative features of the magnetic depopulation process unchanged. The lifetime broadening in
a magnetic field is found to be strongly dependent on the wavevector component k.
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The density of states for a particular subband is given by the expression

-1
=) = : @3)
dk, nh JVE —ho(n+1/2)

b4
If we sum this expression over all N occupied subbands, we obtain

N
g0 (F) = Y2rer®) Y (E—En)"V?@(E - En) (44)
wh

n=0

which is plotted in Figure 11. The density of states at the Fermi energy oscillates as a
function of magnetic field and gives rise to an oscillating impurity scattering time. A semi-
quantitative way to see this is to consider the scattering from a set of dilute impurities
in first-order perturbation theory. If the scattering potential is delta function like with a
strength Vj it can be shown that [77]:

v =2 "D (Er)cimp V3 (45)
Here, cimp denotes the sheet concentration of impurities. At low temperatures, impurity
scattering may be considered to be the dominant contribution to the resistivity. The mag-
netic depopulation effect will, therefore, manifest itself in the oscillatory behavior of the
semiclassical magnetoresistivity oy, o 7l ng(EF).

To reveal the oscillatory structure in the magnetoresistance, it is advantageous to con-
sider arrays of identical quantum wires. For a single quantum wire, the low-field magnetic
depopulation oscillations may be obscured by the so-called aperiodic conductance fluctu-
ations (for an introduction to this topic, see, e.g., [25]). This quantum interference effect
originates in the large-phase coherence length in a mesoscopic electron system and it is
averaged out if an ensemble of quantum wires is investigated.

Several methods for the fabrication of such arrays of quantum wires have been success-
fully applied. The simplest possible sample layout consists of a two-terminal configuration
where an array of quantum wires is extended between two large contacts. To get rid of
the contact resistance, one may evaporate a metal gate on top of the wire array intended
for the application of a small modulation voltage [78]. This sample geometry is shown in
Figure 12a.

The magnetoresistance is then measured using a lock-in technique and gives the resis-
tance of only those regions covered by the modulating gate. The influence of the contact
resistance is thereby effectively eliminated. A variation of this method was used by Brinkop
et al. [79, 80, 119]. Their fabrication principle exploits a modified split-gate technique to
create the wire array as indicated schematically in Figure 12b. In contrast to the sample

(a) (b) ()=
Photoresist - -
Vs N\ Ell \
AlGaAs T ey o
GaAs 1
shallow
ohmic contact etched wires

Fig. 12. Two different fabrication principles for arrays of parallel quantum wires. (a) Wires fabricated by
laser holography and shallow etching. The top Al gate serves as a modulation electrode for lock-in measurements
intended to eliminate the contribution of the contact resistance. (b) A Ni/Cr gate evaporated over nanostructured
photoresist stripes. This modified split-gate geometry allows one to tune the confinement strength. (Source: Part b
reprinted with permission from [119]. © 1989 American Physical Society.)
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Fig. 13. Derivative of the magnetoresistance with respect to the modulated gate voltage Vg, measured
for an array of quantum wires. The sample layout is shown in Figure 12a. The period of the shallow etched grating
was 450 nm. The inset shows the same data plotted as a function of the inverse magnetic field together with a
Landau plot of the corresponding magnetoresistance maxima.

shown in Figure 12a, where the confinement is achieved by shallow etching, the purpose
of the gate in this configuration scheme is twofold. First, it produces the 1D confinement
and, second, it serves as a modulating gate for contact resistance elimination. For the pur-
pose of spectroscopic investigations, it furthermore provides an effective grating coupler
for far-infrared radiation (see [79]). This sample configuration has the advantage of sup-
plying quantum wires with a tunable confinement strength.

Figure 13 shows a typical magnetoresistance trace obtained for a sample structure as
depicted in Figure 12a, using a modulated gate voltage to eliminate the contact resis-
tance [78]. A minimum occurs whenever the Fermi level is shifted across the bottom of
the highest occupied magnetoelectric subband, where a sharp maximum in the density of
states is followed by a region of minimal density of states (DOS). If a running subband
index ngsc is assigned to each minimum and the index ng is plotted against the inverse
magnetic field position of the corresponding minimum in Ry, a fan chart or so-called Lan-
dau plot is obtained (cf. the inset of Fig. 13). The characteristic feature in this plot, which
demonstrates the presence of a 1D confinement, is the deviation from linearity at low mag-
netic fields. This behavior can be understood from Eq. (42), which describes the subband
energies in a parabolic confinement potential. For the subband edge (ky = 0) of the anth

subband, Eq. (42) yields E,(B) = A wg + wg n+ %). For large magnetic fields, wp may

be neglected and the resulting dependence of nosc on B! is linear. This is the well-known
behavior of the Shubnikov—de Haas oscillations observed in the magnetoresistance of un-
structured 2DEGs. The presence of the lateral confinement characterized by the additional
frequency wo becomes visible only when it is at least of the same order of magnitude as the
cyclotron frequency. For those magnetic fields where this is the case, the relation between
nosc and 1/B is no longer linear. This is the general signature of lateral confinement in
narrow channels, no matter what the actual shape of the confining potential is [74, 81].

It is instructive to analyze the nos.(B~!) dependence in terms of a parabolic confine-
ment potential [75] because this allows the analytical treatment of the magnetic depop-
ulation effect and provides a particularly simple way to determine wire parameters from
an actual measurement. The situation encountered in a magnetic depopulation experiment
is depicted in Figure 14, which shows the energy of the magnetoelectric subband edges
as a function of B. Whenever the Fermi level crosses the edge of the highest occupied
magnetoelectric hybrid subband, that is, whenever Er = NAw(B), a minimum in the mag-
netoresistance is observed. Because the 1D electron density in the channel is constant, the
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Fig. 14. Dependence of the magnetoelectric subband energy on magnetic field strength, calculated for
a parabolic confinement with Awg = 1.57 meV. The dashed-dotted lines show the corresponding behavior of the
Landau levels in an unstructured 2DEG. Also shown is the oscillating Fermi energy, calculated for a 1D carrier
density of nypy = 5.68 x 108 cm™!. 1 is the subband index.

Fermi level oscillates with increasing magnetic field. From the 1D carrier density at zero
temperature

Er
nip = / ng(E, B)dE (46)
0
one obtains, together with Eq. (44) and Ep = Ey,
2 [2m* @32 il
mp== |2 Ly 2 (47)
@0 n=0

This finally leads to the following relation between the index N of the highest occupied
subband and the magnetic field position of the corresponding magnetic depopulation min-
imum in Ryy:

4/3
— (hawo)? 48)
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If this relation is fitted to the experimentally determined Landau plot, N plays the role
of the previously introduced nesc. As fit parameters, one obtains the subband spacing
Eo = hwp and the 1D carrier density nip. The latter is related to the approximately lin-
ear behavior of the nes.(1/B) plot for high-magnetic-field values [75], which is obtained
by replacing in Eq. (47) w by w:

m* /e 3n 23
1 (2 — 49
N= omemy ( 4 "‘DEO) “

In the preceding section, we have seen that in the case of quantum channels defined
by a split-gate geometry the confining potentials as obtained from self-consistent calcula-
tions have the shape of a Woods—Saxon potential with a flat bottom. Only for very narrow
channels or at quite low electron densities does the potential assume an approximately
parabolic form [44]. In the case of quantum wires defined by the shallow etching method,
the self-consistent calculations showed that the effective potential felt by the electrons is of
a sinusoidal shape [61]. It is again for relatively low electron densities that the electronic
wave functions are concentrated near the bottom of the sinusoidal potential where it is well
described by a parabola. Only in these cases will the parabolic model and the described
fitting procedure be able to reproduce the experimental depopulation data and give results

By =
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Fig. 15. Experimental and calculated sublevel index n, versus the inverse magnetic field positions of
the resistance minima for two different samples. The theoretical values are calculated under the assumption of a
square-well potential and fitted to the experimental points with the channel width and the 1D carrier density as
fit parameters. (a) Wide channel (estimated width and carrier density are 378 nm and 1.16 nm™ !, respectively).
(b) Narrow channel (162 nm, 0.38 nm—l). The wide-channel sample is well described by a square-well potential.
The parabolic approximation is found to give better results for the narrow channel (cf. [75]), but turned out not to
be suitable for a description of the wide-channel experiment. (Source: Reprinted with permission from [81].)

for channel width and electron density that are in good agreement with independently esti-
mated values.

The second strongly simplified model potential, the square well, does not lend itself
to as simple an analytical treatment as the parabolic potential. Rundquist [81] applied a
numerical fitting procedure to describe wide and narrow channels defined by the split-gate
geometry using a square-well confinement potential. As expected, the square-well model
is able to describe wide channel experiments where the parabolic model does not give
convincing results and vice versa (cf. Fig. 15, where the experimental results are plotted
together with a numerical fit of the results with a square-well model). However, even in
the simple case of a square well, the fitting procedure becomes numerically very expensive
and is not easily implemented in routine investigations.

Another model potential used to approximate the flat bottom potential of split-gate
wires at high electron densities (or, alternatively, low gate voltages) is given by V(x) =
(m*wg /2)(lx| —/2)? for |x| > t/2 and zero otherwise. It has been investigated in Wentzel,
Kramers, Brillouin (WKB) approximation by Berggren and Newson [76]. The use of this
potential in the numerical analysis of an experimental situation requires one additional fit
parameter, namely the width ¢ of the flat potential section. If, in addition, a modulating
gate configuration is used for the magnetoresistance measurement, a phase shift in the
d Ry, /d Vg traces has also to be taken into account, which requires adding a further un-
known parameter Bosser t0 the positions of the magnetic depopulation minima. Altogether,
one thus needs four fit parameters for the analysis of the Landau plot. The so obtained
values of Eg and ng are questionable in particular when the Landau plot consists of only a
few data points.

4.2. Magnetosize Effects and Weak Localization in Quantum Wires
4.2.1. Magnetosize Effects

A useful quantity for the characterization of quantum channels is the electrical width W,
which can be estimated from several independent effects in the magnetic field and tem-
perature dependence of the sample resistance. The values extracted for W allow us to
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Fig. 16. Low-temperature (T = 2 K) magnetoresistance of an array of shallow etched quantum wires,
measured with different back-gate voltages applied to the substrate. At low back-gate voltages, the behavior of
the system corresponds to a modulated 2D gas. At higher gate voltages, the Fermi level is reduced below the
modulation potential amplitude and typical 1D features are observed, such as the large magnetosize peak at B =
0.27 T and the negative differential magnetoresistance caused by a suppression of 1D weak localization at B <
0.1 T. The pronounced negative differential magnetoresistance superimposed on the depopulation oscillations at
VG 2 —100 V is due to the suppression of backscattering by a magnetic field (cf. Fig. 17). The —173-V trace has
been drawn separately for clarity (b). The squeezed traces at the bottom of part b are the same curves as in part a.

cross-check whether a model potential used in the analysis of magnetic depopulation ex-
periments is well suited to describe the experimental situation.

Figure 16 shows two-terminal magnetoresistance traces for an array of quantum wires
fabricated by laser holography and shallow etching. The etching is very shallow in this
case such that without additional measures only a periodic potential modulation is super-
imposed on the 2DEG. The results of Figure 16 were obtained without application of a
modulating front-gate voltage and, therefore, contain the contribution of the contact resis-
tance which, however, is small in this case. The electron density was reduced by applying
a negative back-gate voltage on the substrate side of the sample. In this way, the Fermi
energy becomes gradually smaller than the amplitude of the potential modulation, even-
tually leading to a system of well-separated quantum wires. The magnetoresistance traces
depicted in the figure clearly show the evolution of two magnetoresistance phenomena typ-
ical for narrow electron channels in the diffusive transport regime: magnetosize effects and
weak localization.

We first consider magnetosize effects. With increasing back-gate voltage, that is, in-
creasing confinement of the electrons to 1D channels, a magnetoresistance peak evolves at
about 0.3 T. This so-called magnetosize peak has been shown by Thornton et al. [82, 83] to
be due to diffuse scattering from the channel walls of electrons moving on cyclotron orbits.
It can be shown that this effect can be explained by purely classical arguments and that the
presence of diffuse boundary scattering is an essential prerequisite for the observation of
a magnetosize peak. Note that the mean free path of the electrons has to be large enough
that boundary scattering contributes appreciably to the total wire resistance. The situation
is depicted schematically in Figure 17, which shows two classical electron trajectories at
two different field strengths [25]. For field strengths where the cyclotron radius is of the
order of R; ~ W/2 (Fig. 17a, W is an effective wire width), the probability for electron
backscattering is considerably larger than in the case of R, « W/2 (Fig. 17b), provided
that the scattering from the channel boundaries is predominantly diffuse. The reduction of
backscattering for R < W/2 is also responsible for the negative differential magnetore-
sistance observed in the field range beyond the magnetosize peak for the most strongly
confined channels in Figure 16.

As has been found experimentally by Thornton et al. [82], the magnetic field position
B of the magnetosize peak can be related to the effective width Weg of the quantum
wire by Wer & 0.55R]", where RI"™ = fikp/eBys. It is not straightforward to give an un-
ambiguous meaning to the effective wire width Weg obtained from the magnetosize peak.
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Fig. 17. Classical cyclotron trajectories in a narrow channel with diffuse side-wall scattering, illustrating
the origin of the magnetosize peak. (a) If the cyclotron radius (/cyct) is near the indicated value, diffuse side-wall
scattering can reverse the motion of an electron, leading to an enhanced resistance. (b) At higher magnetic fields,
backscattering is suppressed and the resistance is reduced below the zero-field value. (Source: Reprinted with
permission from [25].)

The definition of W depends on the underlying model potential. Even if a particular
model has been chosen, there are several possibilities to define Weg. Consider as an ex-
ample the parabolic confinement potential. One way to define Weg is to take the distance
between the turning points of the classical motion at the Fermi energy:

West = —— (50)

(wyp is the confining frequency). An alternative definition is given by Weg = nip/nap.
nip can, for example, be estimated from the approximately linear section of the Landau
plot. If one starts from Eq. (47), replaces the summation over v by an integration, and takes
into account that in the limit of high magnetic fields @ ~ w., one obtains

4 2 '
N ——— [Z(eBNY/? 5
nip ZTpm—" h(eB ) (51)

This formula describes a situation analogous to the depopulation of pure Landau levels in
a two-dimensional electron system. Taking the corresponding relation between the Landau
level index N and the sheet electron density of the underlying 2DEG:

nop = %NB (52)
one obtains, as a final result for Wesr, _
Weer =21 [m] n]]/) (53)

Note that the application of Eq. (50) or Eq. (53) implicitly assumes that the overall sheet
electron density nap is not affected by the nanofabrication process, which will be the case
only for relatively wide channels. In general, the lateral confinement will raise the conduc-
tion band bottom also in ungated or nonetched regions of the quantum wire (cf. Fig. 8).

Several other definitions for effective wire widths are possible. They rely, for example,
on the lateral extension of the wave function in the Nth magnetoelectric hybrid level [84].
All these definitions give values for Weg that differ from each other, but nevertheless allow
one to estimate the correct order of magnitude. A comparison of Weg, as obtained from a
model potential, with the experimentally determined value therefore allows one to decide
if the applied model gives reasonable results.

It should be emphasized that not every quasi one-dimensional system will display a
magnetosize maximum. For wires defined by split gates, for example, it was shown by
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Thornton et al. [82] that the confining electric field gives relatively smooth side walls and
the boundary scattering is predominantly specular. A magnetosize maximum is, therefore,
only weakly established or completely missing. One, therefore, has to resort to alternative
methods for the independent determination of the wire width, one of which will be briefly
outlined in the following discussion.

4.2.2. Weak Localization and Interaction Correction to the
One-Dimensional Conductivity

In Figure 16b, a magnetoresistance trace for very high applied back-gate voltage is shown.
The number of subbands is now considerably reduced because of the low remaining elec-
tron density. At very low magnetic fields (<0.1 T), the differential magnetoresistance is
seen to be negative for these strongly confined wires. The effect is also observed in a less
pronounced form in the 140-V trace of Figure 16a and is attributed to the suppression of 1D
weak localization by a magnetic field. Note that this effect has nothing to do with the re-
duced backscattering observed beyond the magnetosize peak (B > 0.3 T). In the following,
we sketch only the very basic idea underlying the phenomenon of weak localization and
indicate briefly how its investigation may serve as a tool for the determination of relevant
wire parameters. A detailed and clear account of the physics of weak localization can be
found in [25] and the references cited therein. Our very brief introductory argumentation
follows closely the exposition at the beginning of Section 6 of [25].

Weak localization is assumed to occur in the diffusive transport regime because of the
phase coherence of electron waves that are propagating or elastically backscattered by an
impurity. It can be shown that elastic impurity scattering does not affect the phase coher-
ence length [ and that, in order to achieve phase randomization, inelastic scattering events
are necessary [72, 85]. Bergmann {86] has given an intuitive interpretation of the quan-
~ tum mechanical weak localization effect. Its treatment within the framework of the path
integral formalism, which forms the basis of this qualitative interpretation, is discussed in
some detail in [87]. Consider an electron propagating along a narrow channel from a start-
ing point r to the point r’. Quantum mechanically, one may assign a probability amplitude
A; to each path (labeled by an index i) the electron can take between the two points. The
probability of finding the electron at r/ after a time ¢ is then given by the absolute square
of the coherent sum of these amplitudes

2
P(r,r,t) = ‘ZA,-( =Y lAilP+ ) AiAS (54)
i i i#j
If a sequence of elastic scattering events is considered that brings an electron back to its
starting point, r and r’ coincide and the preceding sum is taken over closed Feynman
paths. It may then be split up into a sum over time-reversed pairs of amplitudes At and
A~ assigned to clockwise and counterclockwise propagation along the same closed path.
Because of time reversal symmetry, the two amplitudes are equal and if they are added
coherently, they give a probability for returning to the starting point (after several phase-
conserving elastic scattering events) of [A*T + A~|2 = 4| A|2. Without phase coherence, if
scattering gives rise to a purely classical diffusive motion, the squared probabilities have to
be added noncoherently. This would give for the same process a classical return probability
of 2| A[2. In other words, quantum mechanical phase coherence yields a return probability
that is twice the probability of the corresponding classical noncoherent diffusion process.
It may, therefore, be expected that this will give rise to an additional contribution to the
conductivity of a low-dimensional semiconductor system, which exhibits quite large phase
coherence lengths at low temperatures. This contribution has to be added to the classically
obtained result

loc

81D = &Boltzmann + 381 (55)
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where the sign of 8g11°]§ will be negative, because an enhanced return probability reduces
the resulting conductivity.

On the other hand, if a weak magnetic field is applied, time reversal symmetry is broken.
There will be appreciable flux through any closed electron trajectory, which gives rise to an
Aharonov-Bohm like phase shift acquired along the corresponding Feynman paths. This
phase shift will be different for clockwise and counterclockwise propagation along the
closed paths. Different possible orbits will enclose different flux and after averaging over
all possible closed trajectories (or Feynman paths) phase coherence will be destroyed at
sufficiently large magnetic fields. This, consequently, leads to an effective suppression of
the weak localization corrections to the 1D conductivity. It has been shown by Altshuler
and Aronov [88] (see also [25, 89, 90]) that this magnetic field dependence of the weak
localization effect can be taken into account by adding to the 1D conductivity a term of the
form

b (1 w2

881oc = 7h (l¢25 + 31;;) forly,lp > W>1 (56)
Here, W is the width of the channel, / is the mean free path, I, = +/#/eB is the magnetic
length, and Iy = ,/Dty, where D denotes the diffusion constant, is the phase coherence
length. A first-principles justification of Eq. (56) can be found in the review article of
Beenakker and van Houten [25].

The preceding relation is derived under two assumptions. First, the magnetic length I,
has to be larger than the effective width of the channel; otherwise, the localization is of
a 2D nature. This requirement is usually well established at the low magnetic fields for
which the suppression of weak localization is observed. The second condition requires that
the width W be larger than the electronic mean free path /, which is usually not the case
for the conventional high-mobility GaAs—AlGaAs samples used to study the effect. It has
been shown by Beenakker and van Houten [90] that in the opposite regime / >> W one
has to take into account the effects of boundary scattering on the phase accumulated along
a closed trajectory enclosing a magnetic flux (flux cancellation effect). Equation (56) has
then to be replaced by

2 1 WZ -1/2 1 W2 2 -1/2
selP—_° (|2 + 2| -—|a+2+2 57
Sioc nh([zg,+313,] [;;*31;*12] ) ©D

The weak localization correction turns out to be much weaker in the case of an un-
structured 2DEG (which also finds its expression in the W dependence of Bgllolz ), so that
the negative magnetoresistance at low field becomes more and more pronounced as the
1D confinement becomes stronger. This is what is observed in parts a and b of Figure 16,
where a pronounced negative differential magnetoresistance is observed only for the high-
est back-gate voltages and, hence, the narrowest channels.

The magnetic field dependence of the weak localization correction can be exploited to
obtain wire parameters such as the width W and the phase coherence length /4. One simply
fits one of the expressions Eq. (56) or Eq. (57), chosen appropriately to the sample geome-
try, to a plot of G(B) — G(0) = 1/R;x(B) — 1/R;x(0) versus magnetic field, using W and
l as adjustable parameters. This is done in a field range where I, > W and the suppression
of weak localization is clearly observed in the magnetoresistance. This method was applied
for the first time by Thornton et al. [91] for a 15-um-long channel defined by a split gate
on top of a GaAs—AlGaAs heterojunction. We reproduce their results, obtained for various
temperatures below 1 K, in Figure 18. The solid curves are fitted according to Eq. (56). It
has been discussed if the “dirty metal” expression Eq. (56) for 8g11£ is suitable in this case,
because the estimated mean free path is larger than the channel width. However, the ex-
tracted values for the different characteristic lengths give a more or less consistent picture,
if one assumes that the damage induced by the electron beam lithography [74] has led to a
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Fig. 18. Difference of magnetoconductance and zero-field conductance for a split-gate wire, measured
at different temperatures. The sample geometry is shown in the inset. The solid lines stem from a two-parameter
fit according to Eq. (56). (Source: Reprinted with permission from [91]. © 1986 American Physical Society.)

drastic reduction of the mean free path in the wire, compared to the value of the unstruc-
tured 2DEG. The values for the phase coherence length /4 (200 nm or below) found from

- the fits shown in Figure 18 together with the condition Iy > [ underlying Eq. (56) would
be consistent with a mean free path that certainly is not reduced below the estimated width
of 50 nm, but could have reached the same order of magnitude.

An example of the application of the correct expression Eq. (57) to the low-field mag-
netoresistance in short and narrow channels defined by the shallow etching technique can
be found, for example, in [92].

For the sake of completeness, it should be mentioned that there is another correction
to the Boltzmann—Drude conductivity go that is due to electron—electron interactions. Be-
cause both the weak localization and the interaction effects are relatively weak, they may
to first order be taken into account as additive corrections to go:

21D = g0 + 881 + 88e—e (58)
The interaction correction has been estimated to be [93]:

e2 | D
dgee=—00—

59
wh\ 2kgT 59)

which is valid if the thermal length \/AD/kgT < W. « is a coupling constant that depends
on the electron density and on the screening length in the system under consideration. Its
magnitude is usually of order unity and in the commonly encountered experimental situ-
ations its sign is positive [25]. Electron—electron interactions thus reduce the conductivity
of a narrow channel. The localization correction can be easily distinguished from the inter-
action correction in a magnetic field. As is obvious from Eq. (56) or Eq. (57), the former is
completely suppressed already at very weak fields, whereas the latter is almost unaffected
in this field regime. Theoretical considerations indicate that there is a small contribution
to 8ge—e Which is also sensitive to weak magnetic fields. But the main contribution to the
conductivity correction reveals its magnetic field dependence only in strong fields. Usually,
the weak-field-dependent part of dg... is neglected, which makes the distinction between
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the two corrections feasible [94]. If one wishes, one may use the 7 dependence of the inter-
action correction, determined from the magnetoconductance after subtraction of the weak
localization correction, to estimate the diffusion constant D of the narrow channel [74, 91].

4.3. Magnetophonon Resonances in Quantum Wires

In 1961, Gurevich and Firsov [95] discovered that the quantization into Landau levels at
high magnetic fields should lead to resonant longitudinal-optical (LO) phonon scattering of
electrons between these equidistant Landau levels. As the LO phonons are assumed to be
dispersionless in the interesting k-space region, resonant scattering between Landau levels
is expected whenever the phonon energy equals an integer number of Landau levels:

horo = Nhw, (60)

This so-called magnetophonon effect has been shown to result in an oscillatory behavior
of the magnetoresistance at temperatures high enough to ensure a sufficient population of
the phonon states (usually at 7' 2> 100 K). Since then, magnetophonon resonances (MPRs)
have been observed in a variety of semiconductor systems (for a review of the work until
1975, see [96]). In the bulk, MPRs have become a standard method for the determination of
effective masses [97, 98] and proved to be a useful tool for the investigation of the conduc-
tion band nonparabolicity in ternary compounds for temperatures up to 400 K [99, 100].
After the first detection of MPRs in 2D systems [101], a wealth of phenomena was in-
vestigated also in 2D electron gases using the magnetophonon effect. Besides the deter-
mination of effective masses, an important subject that could be investigated using the
magnetophonon effect in 2DEGs was the influence of the reduced dimensionality on the
electron-phonon interaction [102-104].

As discussed previously, in quantum wires the energy spacing of magnetoelectric hy-
brid levels does not only depend on the magnetic field strength, but also on the 1D
subband spacing induced by the lateral confinement. If, for example, parabolic confine-
ment is assumed, the energy levels are calculated according to E,(B) = hw(n + %) =

By w?+ co% (n+ %). This leads to a modification of the magnetophonon resonance condi-
tion Eq. (60) where now Aw has to be used instead of Aw.. As a consequence, the magnetic
field positions of the magnetophonon resonances should be shifted to slightly lower fields
compared to the 2D case. Because this shift depends on the subband energy Awp, it is
expected that MPRs can be used for subband spectroscopy of 1D quantum channels.

After a brief résumé of the relevant theoretical work on MPRs in quantum wires, it will
be shown in the following that MPRs are indeed useful for the experimental determina-
tion of 1D subband energies. The obtained results for the sublevel spacings turn out to be
different from the values extracted from low-temperature magnetic depopulation investi-
gations. We discuss the reasons for this difference and show that it gives direct qualitative
information on the shape of the wire potential.

4.3.1. Magnetophonon Resonances in Quantum Wires: Theory

The first theoretical investigation of MPRs in quasi one-dimensional electron systems was
performed by Vasilopoulos et al. [105]. To determine the contribution to the magneto-
conductivity due to electron-LO phonon scattenng, they started from a quantum transport
equation of the form

O = s Dnc) (1 = () Wy (€ 1912) — (& 1y1ye1) ©1)

which follows from a modification of the formalism developed to describe the magne-
tophonon effect in 2D systems [106]. Here, (n;) denotes the Fermi—Dirac distribution
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function, y is the coordinate along the wire axis, and W; . is the usual Frohlich-type
transition probability between the two states ¢ and ¢’. The |¢) denote the one-particle
states of the 1D confined electrons. For their calculation, it is assumed that the confine-
ment in the growth direction can be separated from the lateral confinement and that the
latter is well described by the usual harmonic oscillator potential. The z component ¢o(z)
of the wave function is approximated by the well-known Fang-Howard trial functions

vo(z) = bg/ 2 exp(—boz/2). Thus,
(r12) = Y (V'mo/h(x — %))1 /v/Lexp(ikyy)po(2)

where the harmonic oscillator functions, given in the paragraph following Eq. (11), have
been used.

It turns out that in the case of relatively weak confinement (wy < w¢) 0xx may be cal-
culated analytically. The LO phonon-mediated magnetoconductivity consists of a contri-
bution falling off monotonically with increasing B and an additional oscillatory part 0.;¢,

which is given by [105}:

505 @ Nlelg cos(an!_o/w) —exp(—2nTy/hw) ' 62)
*x w ) kgTho coshQaTy/Aw) — cosRrwLo/w)

A plot of this relation is shown in Figure 19. The total magnetoconductivity, including the
monotonic part, is obtained from Eq. (62) by replacing the numerator cos(2rwLo/w) —
exp(—2n 'y /hw) by sinh(2rx Ty /hw). w is again the combined “renormalized” frequency

w= ,/w(z, + wg, Iy is the magnetic field-dependent width of the Nth magnetoelectric

hybrid level. lg = h/m*w is a modified magnetic length and, finally, w0 is the frequency
of the LO phonons, which is assumed to be given by its bulk value.

In the case of weak confinement the oscillatory part of the magnetoconductivity is thus
described by a series of exponentially damped cosine oscillations just as it is well known
from the magnetophonon theory in the bulk and in 2D systems [107, 108]. Whenever the
resonance condition Awp o = vhw with integer v is satisfied, a maximum in the magne-
toconductivity is observed (cf. Fig. 19). The main effect of a weak 1D confinement on
the magnetoconductance is thus simply a shift of the resonant maxima in oy to smaller
magnetic fields as compared to the resonance condition [Eq. (60)], valid for bulk and 2D
systems.

This first investigation of the 1D magnetophonon effect has been followed by several
improvements of the theory, mainly concerning the extension to the case of arbitrary con-
finement strength. Mori et al. [109] pointed out that, in the case of strong confinement,
the influence of the confining potential on the electron motion may not be neglected. Em-
ploying a Green’s function approach to the general Kubo formula and using the same
parametrization of the confinement as before, they were able to show that, in addition to
the weak confinement expression already given by Vasilopoulos et al. [105], there is a
second, qualitatively different contribution to the 1D magnetoconductance. To understand
the difference between the two contributions, one may resort to a simple classical picture.
Consider a wide, weakly confined quantum wire. In sufficiently strong magnetic fields,
a considerable part of the electrons will be in Landau level-like states. Classically, they are
localized on circular cyclotron orbits. LO phonon scattering will lead to hopping motion
between these localized orbits and, therefore, to an enhancement of the electron mobility.
This is why maxima occur at resonance in the magnetoconductance as indicated in Fig-
ure 19. On the other hand, if the confinement is strong and the wire narrow, a considerable
fraction of electrons will be in edge states corresponding to skipping orbits propagating
along the wire. The LO phonons will scatter electrons off their propagating modes, thereby
reducing their mobility. This is expected to lead to resonant minima in the magnetocon-
ductance. In Figure 20, the second derivative of oy, calculated according to the model of
Mori et al. [109], is plotted for the two cases of low and high confinement energy.
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Fig. 19. Top: Magnetoconductivity in units of og = &2 / hky o as a function of the combined frequency
® (= in the figure). The parameters used in the calculation are also shown. €2 is the confining frequency of the
parabolic potential; NgD is the depletion charge density, needed for the calculation of I'y. Bottom: Oscillatory
part 025 according to Eq. (62). (Source: Reprinted with permission from {105). © 1989 American Physical
Society.)
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Fig. 20. Calculated second derivative of the two contributions to the magnetoconductivity for weak (left)
and strong (right) confinement. opo denotes the contribution corresponding to the skipping motion of electrons
along the wire boundaries, g, _pj, is due to electrons without interaction with the channel boundaries. The traces
are calculated for T = 100 K, a level broadening I" of 1 meV, and a confining frequency of the parabolic potential
of 1 meV (left) and 5 meV (right). The insets show the corresponding underived quantities in units of og =
ne? fawom®, o being the Frohlich coupling constant. In the figure, wyp is the LO phonon frequency, we is the
cyclotron frequency, and @, is again the combined frequency of the magnetoelectric hybrid levels. (Source:"
Reprinted with permission from [109]. © 1992 American Physical Society.)

These results have been confirmed theoretically by Ryu and O’Connell [110, 111], who
used a different quantum transport approach [112] to describe the influence of resonant
LO phonon scattering on the magnetoconductance. Their model calculations also assume
a parabolic confinement potential and again give two contributions to the magnetoconduc-
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tivity, the first being almost identical to the result of Vasilopoulos et al. [105]. The second
term was attributed to a “nonhopping” contribution to the electron conduction, which is
qualitatively reminiscent of Mori’s skipping orbit motion term.

4.3.2. Magnetophonon Resonances in Quantum Wires:
Experimental Results

Regarding the nature of the magnetic depopulation experiments discussed previously and
the methods of calculating the subband spacing from the resulting Landau plots, it is clear
that it is necessary to have a sufficient number of occupied subbands in order to obtain
reliable results for Eg and np. It is the main advantage of the magnetophonon method of
subband spectroscopy that the number of occupied subbands is largely irrelevant for its ap-
plication. It is, therefore, a transport characterization technique for quantum wires with low
carrier densities or relatively large subband spacing. It could even be used to characterize
quantum channels in or at least very near to the quantum limit where only one 1D subband
is occupied (provided, of course, the subband spacing is substantially smaller than AwLo).

However, it has been shown experimentally [103] and theoretically [108] in the case of
MPRs in 2D systems that the oscillation amplitude of the magnetoresistance strongly de-
pends on various scattering mechanisms such as scattering from charged donor impurities.
These scattering mechanisms influence the broadening of the Landau levels or magne-
toelectric hybrid levels in 2D and 1D, respectively. The experimental results [113, 114]
indicate that if the influence of charged donors is reduced by low total doping and large
spacer layers of the underlying heterostructures, a much more pronounced magnetoresis-
tance oscillation is obtained at high temperatures. Consequently, the low-density regime
is the natural field of application of the magnetophonon effect for the characterization of
quantum wires both because this regime is not readily accessible to magnetic depopula-
tion measurements and because the magnetophonon effect is more easily resolved. On the
other hand, one has to be aware of the considerable amount of unwanted scattering sources
that are introduced by any nanofabrication process. The shallow etching method, in par-
ticular, introduces considerable side-wall roughness in the narrow channels. This, in turn,
will reduce the amplitude of the high-temperature magnetoresistance oscillations and be
disadvantageous for their resolution.

For this reason the following experiments discussed briefly were conducted on a set
of quantum wires obtained by very shallow etching on a low density, high mobility het-
erostructure. The most prominent features of the sample material used in the experiments
are the low integral doping and the relatively wide spacer layer. Due to these features very
shallow etching is sufficient to obtain appreciable 1D confinement, keeping the amount of
sidewall roughness within tolerable limits. Some details of the sample structure are given
in the caption of the following Figure 21. This figure shows a set of typical magnetoresis-
tance traces, recorded at T = 100 K and revealing pronounced oscillatory structure due to
the magnetophonon effect.

Figure 22 shows two examples of the oscillatory part of the magnetoresistance A Rosc,
which were obtained from similar data as those shown in Figure 22 after subtraction of a
monotonous background resistance. The lower trace corresponds to a sample (labeled “1”
in the following), where slightly deeper etching is done in comparison to sample “2”. The
two samples are otherwise identical. The R(B) traces shown in Figure 21 were obtained for
sample “2”. Note that for the more shallow wires of sample “2” the oscillation amplitude is
almost an order of magnitude greater than for sample “1”. On the other hand, the oscillation
of sample “1” does not seem considerably broadened as compared to the A Rys of the
other sample. The most interesting feature of the traces of Figure 22 is that they seem to
be “phase-shifted” with respect to each other.

This phase shift together with the large reduction of the oscillation amplitude observed
for sample “1” indicates that for the more strongly confined wires of this sample one en-
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Fig. 21. Typical magnetoresistance data measured on an array of shallow etched quantum wires at T =
100 K. The various traces correspond to sample “2” for different electron densities (see text). The underlying
heterojunction consists of 100 A GaAs cap undoped, followed by 300 A Alg.4Gag gAs, doped to 2 x 1018 ¢m=3,
and 600 A undoped Alg 4Gag As spacer.
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Fig. 22. Oscillatory part of the magnetoresistance A Rosc plotted for two different samples. The curves
are obtained after subtraction of the monotonic background from the R(B) traces, some examples of which are
shown in Figure 21. Sample “1” (bottom curve) was slightly deeper etched than sample “2” (top curve). This slight
increase of the etching depth leads to a reduction of the oscillation amplitude by almost an order of magnitude as
well as to a drastic “phase shift” of the oscillation. Note the different y-axis scales valid for the two traces.

counters a situation where there is a crossover between the two transport regimes discussed
in the previous section. For sample “1” scattering off skipping orbits seems to be the domi-
nant source that influences the magnetoresistance. Therefore one observes resistance max-
ima at resonance whereas the other sample “2” displays minima at resonance. It turns out
that this assumption leads to a consistent explanation of the features of A Rysc observed in
Figure 22.

To analyze the experimental data quantitatively, one assumes a parabolic confinement
Vix)y= %m*w%xZ for the quantum wire. Again, x is the direction perpendicular to the wire
and m* is the electron effective mass (frequently called the polaron mass in the context
of MPR). In a perpendicular magnetic field, the bottoms of the magnetoelectric hybrid

levels are quantized according to E(B) = Awesr(n + %) with Awesr = ,/(hwc)z + E% and
Ep = hwyp being the 1D subband spacing.

As discussed before, one assumes that the weak confinement case is valid for sample
“2”. The resonance condition

Nhwegt = har o 63)
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Fig. 23. (a) Plot of the squared magnetic field position of the resonance minima in AR versus 1/N 2,
obtained from the data shown in Figure 22 for sample “2”. The corresponding value of the subband spacing
obtained from the intersection of the resulting straight line with the B2.axis is 1.6 meV. (b) Landau Plot obtained
from magnetic depopulation data for the same sample and electron density as in (a). The solid hne represents a
fit using a harmonic oscillator model, which gives a subband spacing of 1.1 meV.

thus applies to the minima in the magnetoresistance oscillation A Ry [109]. For sample
“1” this condition is related to the resonant maxima in A Rgsc.
Using E1Lo = Awr0, this resonance condition may be rewritten as follows:

2_(m* 2 Elo m*\? 2
B _(—e—h—) N2 _(eh) Ej. (64)

According to this equation, the B? values, corresponding to the resonant extrema in
A Rosc, plotted versus 1/N? should lie on a straight line. Its slope is a measure of the effec-
tive mass of the confined electrons, whereas its intersection with the B2-axis is proportional
to the squared subband spacing Ep. It should be emphasized that this simple relationship is
only valid if the confining potential can be approximated by the harmonic oscillator form
given above.

Figure 23a shows the positions of the resonant minima in ARy taken from the up-
per curve in Figure 22 (corresponding to sample “2”). The solid straight line stems from
a fit of the data according to Eq. (64), using the LO phonon energy for bulk GaAs,
E1Lo = 36.6 meV. The simple parabolic model potential is seen to describe the experimen-
tal data quite well. As parameters of the fit one obtains a magnetophonon effective mass
of (0.069 £ 0.007)m. and a subband spacing E¢ of (1.6 £ 0.3) meV. The value for Eg can
now be compared to the corresponding low temperature value, obtained from a magnetic
depopulation measurement on the same sample at 7 = 2 K. The resulting Landau plot is
shown in Figure 23b. The deviation of the plot from a straight line clearly shows the 1D
behavior of the laterally confined electrons. The solid line interpolates between calculated
points fitted to the data according to the model of Berggren et al. [75] (see Section 4.1.1),
which also assumes a parabolic confinement potential. The resulting subband spacing is

= (1.1  0.2) meV, which is somewhat smaller than the corresponding high tempera-
ture subband energy.

When one changes the carrier density of the quantum wires, for example by illuminating
the samples with a red light emitting diode, one obtains the subband spacing as a function
of the 1D carrier density as shown in Figure 24. Solid circles correspond to data obtained
from an analysis of the MPR signal of sample “1”. Open diamonds represent the same data
for sample “2”. The open circles were obtained from magnetic depopulation experiments
on sample “2”. Figure 21 shows a set of typical magnetoresistance traces measured for
varying carrier density of sample “2”. To arrive at the plot of Figure 24 the electron density
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Fig. 24. Subband spacing as a function of the 1D electron density for the two samples considered in the
text. Solid circles: Magnetophonon results for sample “1”. Open diamonds: Magnetophonon results for sample
“2”. Open circles: Subband energies obtained by magnetic depopulation from sample “2”. The increase of Eg
with decreasing nyp is attributed to screening effects, as discussed in [115].

was determined from the linear part of the low temperature Landau plots according to
Eq. (49). Details of the experimental pfocedure can be found in [114] and [115]. Note that
in order to determine the low temperature subband spacing from the magnetic depopulation
data it is necessary that the number of occupied subbands in the wires is large enough for
the usual evaluation methods to be applicable. This is the case only for sample “2” at
relatively high carrier densities. In all cases where a direct comparison was possible, the
low temperature subband spacing turned out to be systematically smaller than the high
temperature value by 30-50%.

Before giving an explanation of this apparent difference, it is worth mentioning that
both in the theoretical and the experimental analysis the LO photon energy of 36.6 meV
of bulk GaAs is assumed. Note that there is experimental evidence that the presence of
the GaAs—AlGaAs interface leads to a modification of the photon energies. From a com-
bination of cyclotron resonance and magnetophonon resonance experiments on various
GaAs-AlGaAs heterojunctions, Brummell et al. [102] found that the LO phonon energy
appears to be reduced by approximately 5% to 34.8 meV. However, this possible slight
modification of the LO phonon energy has no influence on the above analysis. The rea-
son for this insensitivity is that the statistical error of the fit in Figure 23a is, in spite of
the excellent correlation to the data, not very much smaller than approximately 10%. This
experimental error far exceeds that introduced by any uncertainty in the phonon energies.

To explain the difference in the Eg values obtained at low and high temperatures, re-
spectively, we first note that the thermal rearrangement of the electrons among the 1D
sublevels at elevated temperatures cannot account for the observed difference. If this rear-
rangement is considered in a self consistent calculation, it can be shown [116] that it will
indeed lead to a slight enhancement of the subband spacing. However, these changes in Eg
are small (less than 10%) unless one assumes considerable recharging and reordering of
the electrically active impurities, which is not a very realistic assumption.

It rather turns out that the observed difference can be consistently explained if one takes
into account that the actual confinement potential for shallow etched quantum wires is not
exactly parabolic but sinusoidal. To demonstrate this, we model the experimental situation
by choosing a one-dimensional potential of the form V (y) = Vipeda(cos(@ry/w) 4+ 1)/2
that best approximates the self-consistently calculated potential for a shallow etched wire
(cf. Fig. 6). Using this model potential, we calculate both the magnetoelectric confinement
and the corresponding energy states as a function of magnetic field, simply using the one-
dimensional Schrodinger equation and the discretization schemes described in Section 2.

37



SMOLINER AND PLONER

30 BT
%\ 25 -\\ ,/
E20 — =
> AY yA
> 15 —X; y
(] AY Vi
& 10 C =
A v
5t AN _—/
N\ 4
l\\l /L M)

0 r r L
0 50 100 150 200 250 300 350 400
X (nm)

Fig. 25. Cosine-shaped model potential with a period of 400 nm and a modulation amplitude of 25 meV.
The energy levels are calculated for zero magnetic field. Because of the shape of the potential the subband spacing
decreases with increasing energy.
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Fig. 26. Magnetoelectric subband edges as a function of magnetic field calculated for the cosine potential
shown in Figure 25.

Figure 25 shows the energy levels for a cosine potential with Vio¢ = 25 meV and a
period of 400 nm for zero magnetic field. To calculate their magnetic field dependence,
one adds the magnetic confinement according to

V) = Ve®) + V() = V’;“’ [cos(%’) + 1] + %m*wz(x ~x0)® (65
To cover the essential features of a magnetophonon or magnetic depopulation experiment,
it is sufficient to consider the positions of the sublevel bottoms, that is, to calculate the
magnetic field dependence of the 1D subbands setting the center coordinate xg = 0. The
resulting B dependence of the hybrid level energies is shown in Figure 26.
Two main features are interesting. First, the subband spacing of the high-lying subbands
is obviously smaller than that of the low-lying levels of the cosine potential. This is im-
portant when considering the information on the subband spacing Ey obtained from the
magnetic depopulation method. Ep is found from that part of the Landau plot where it de-
viates from a straight line. That is, the main information is obtained from those high-lying
subbands that are depopulated at low magnetic fields. If the Landau plot is fitted with a
model curve calculated from a simple parabolic potential (Section 4.1.1), one has to be
aware that this will only reproduce the subband spacings for the high-lying levels.
Numerically, one can simulate this situation by determining the magnetic field posi-
tions, where the magnetoelectric subbands cross the Fermi level. The resulting Landau
plot is then evaluated using the simple harmonic oscillator model. In fact, performing this
procedure for the model potential of Figure 25, we obtain an energy spacing of 1.35 meV,
which excellently reproduces the subband spacing of the high-lying subbands (1.3 meV)
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Fig. 27. Sum of the electrostatic and magnetic confinement potentials in the range between B =0T and
B =1T, plotted in steps of 0.25 T. The parameters of the cosine potential are the same as in Figure 25.

in the cosine-shaped potential. Note that, in the numerical simulation of the magnetic de-
population experiment, the Fermi level has to be calculated as a function of magnetic field,
taking into account the one-dimensional density of states. Because this is easily achieved
only for the harmonic oscillator potential but computationally very expensive for an ar-
bitrarily shaped electrostatic potential, one may assume an approximately constant Fermi
level at low magnetic fields. As can be seen from Figure 14, this assumption is justified at
low magnetic fields. The oscillations of the Fermi level are relatively small there and the
error introduced by assuming a constant Er will be negligible.

We now consider the situation encountered in a magnetophonon resonance experiment.
Because of the strong damping of the magnetophonon (MP) magnetoresistance oscillations
with decreasing magnetic field, it is clear that, in contrast to the magnetic depopulation
experiment, the relevant information is drawn from the structure in Rxx(B) observed at
high magnetic fields (B > 4 T). As can be seen from Figure 27, the magnetic confinement
strongly dominates over the electrostatic one already at fields of 2 T. The resulting total
potential is parabolic to a good approximation with the nonparabolic parts of the super-
posed electrostatic potential entering only as a weak perturbation. At the high magnetic
fields at which MP resonances are observed (cf. Fig. 22), only the lowest subbands are oc-
cupied. Because the transition probability between the subbands at elevated temperatures
is weighted by a Boltzmann factor, resonant LO phonon scattering mainly occurs between
the lowest subbands. Hence, what is probed by the magnetophonon effect is the subband
spacing of those levels lying near the bottom of the cosine confinement potential, which
is larger than that of the high-lying levels. Quantitatively, we demonstrate this by the fol-
lowing considerations. In analogy to the previous simulation of the magnetic depopulation
experiment, we calculate those magnetic field positions where an integer number (N) of
subbands equals the LO phonon energy (36.6 meV) and plot their squared values against
the inverse-squared N (see Fig. 28). The solid straight line in the figure is a fit according to
Eq. (64), ignoring all nonparabolic contributions to the electrostatic confinement. As can be
seen from Figure 28, the parabolic model fits perfectly with the simulated data points. The
values for the effective mass and the subband spacing obtained from the fit are m* = 0.070
and AE = 2.0 meV, respectively. The latter reproduces almost exactly the subband spacing
at the bottom of the underlying cosine potential. .

To summarize these considerations, one may state that magnetic depopulation exper-
iments always probe the subband energies at the Fermi energy, whereas magnetophonon
resonance experiments are sensitive to the sublevels near the bottom of the confinement
potential. This not only explains the experimentally observed difference between the en-
ergy values determined by the two methods. It also shows that the combination of the two
methods provides in a simple manner direct information on the actual shape of the under-
lying confinement potential, in that it allows us to decide immediately if the potential is
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Fig. 28. Simulated magnetophonon resonance experiment for a wire with cosine-shaped confinement.
The squares correspond to those magnetic fields, where an integer number of the low-lying subbands fits the LO
phonon energy. The straight line stems from a fit using a simple harmonic oscillator potential. The subband spac-
ing extracted from the intersection of the straight line with the B2 axis is AE = 2.0 meV. This value reproduces
the subband spacing at the bottom of the cosine potential almost exactly. The mass value obtained from the slope
of the line is m* = 0.070me.
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Fig. 29. Confinement potential according to Eq. (66) plotted together with the calculated energy levels
at zero magnetic field.

cosine or square well like. Consider as an example a potential calculated according to

4
V)= V‘“T""(cos(%l) + 1) (66)

which is shown in Figure 29 together with the corresponding subbands. This model poten-
tial exhibits a flat bottom and has relatively steep side walls as is typical for a split-gate
wire at high carrier densities. Inversely to the previous case of a simple cosine potential,
the upper subbands now have a higher spacing than the low-lying ones. Again, the simu-
lation of the magnetic depopulation and the magnetophonon resonance experiment shows
that the former will give the higher subband spacing of the top levels, the latter that of the
bottom levels.

Finally, it is worth noting that the estimate of the 1D carrier density from a magnetic
depopulation experiment should be interpreted with some care. The application of the
standard parabolic model to the interpretation of a Landau plot also yields the 1D car-
rier density of the wire [cf. Eq. (49)]. If the “true” confinement is sinusoidal, however, the
so-obtained n1p slightly underestimates the actual value, because the procedure leading to
Eq. (49) presupposes that the subband spacing appropriate for the high-lying levels is valid
for all occupied subbands.
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5. WEAKLY AND STRONGLY MODULATED SYSTEMS

A practical problem that sometimes arises when one fabricates an array of shallow etched
quantum wires is that one needs to know whether one has really achieved a system of sep-
arated quantum wires or only imposed a periodic potential modulation on the underlying
2D electron gas. Also, the variation of the potential amplitude with varying etching depth
or gate voltage is sometimes of interest for theoretical or technological reasons. As will be
shown in the following, the magnetoresistance measured perpendicular to the equipoten-
tial lines of a lateral potential modulation contains a wealth of information on the relevant
potential parameters. Depending on whether the modulation is only weak, that is, the po-
tential amplitude Vjp is much smaller than the Fermi energy, or whether Vj is no longer
negligible in comparison to EF, different characteristic features of the magnetoresistance
can be used for the characterization of the potential. This will be the topic of the present
section. Because modulated systems are of great interest not only from the point of view
of potential properties, they have been extensively investigated and reviewed in the past
(see, e.g., [84]). We will consider these systems only under the aspect of obtaining insight
into the shape and magnitude of the periodic potential. In order to do this, we restrict our
discussion to the very simplest (semiclassical) model considerations commonly employed
for the explanation of the observed effects.

We start with the case of a weakly modulated system. A weak potential modulation
can be realized by different techniques such as very shallow etching, by application of
small voltages to a grating gate, or even by brief illumination with two interfering laser
beams [19]. The magnetoresistance p, measured perpendicular to the equipotentials of
the so-introduced modulation exhibits a number of characteristic low-field oscillations (see
Fig. 30). The oscillations are periodic in 1/B, just as the Shubnikov—de Haas oscillations
of the unstructured 2DEG, but, as the different field scale indicates, of an obviously dif-
ferent origin. After the first observation of these oscillations [19], which have later on
been termed commensurability oscillations, several equivalent models were developed to
explain their origin [117-120]. In the following, we give a very brief account of the semi-
classical model of Beenakker [117], because it facilitates an intuitive understanding of the
underlying physics. Its basic ideas can also be used to explain the special features occurring
if the modulation height is gradually increased.

2R/a=4 3 2 1
12 1 l 1 l 1 1 t
00 o041 02 03 04 05
B (T)

Fig. 30. Longitudinal magnetoresistance of a weakly modulated 2DEG with current flowing perpendic-
ular to the equipotential lines (see inset). The thick solid line represents data from Weiss et al. {19}, showing
commensurability oscillations below B = 0.4 T and the onset of Shubnikov—de Haas oscillations for B > 0.4 T.
The thin solid line is calculated from the semiclassical guiding center drift resonance model of Beenakker [117].
The vertical arrows indicate those magnetic field values where the cyclotron diameter matches the period of the
grating. The commensurability oscillations are phase shifted relative to these values by n/4. By is the criti-
cal field for magnetic breakdown and will be discussed later in this section. (Source: Reprinted with permission
from [25].)
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Fig. 31. TIllustration of the electron motion in a weakly modulated 2DEG with a magnetic field applied
perpendicular to the electron gas. (a) Potential landscape with cyclotron orbit. (X, Y) are the coordinates of the
orbit center (guiding center); ¥ £ R are the extremal points, where the orbit center acquires a net E x B drift.
(b) Numerically calculated cyclotron orbits in a sinusoidal potential. Horizontal lines indicate the equipotential
lines of the periodic modulation. The figure shows a resonant orbit at 2R /a = 6.25 and a nonresonant one at
2R/a =5.75 with negligible drift. (Source: Reprinted with permission from [25}.)

Figure 31 shows the classical cyclotron trajectory of an electron moving in a weak pe-
riodic potential modulation with a magnetic field applied perpendicular to the plane of the
2DEG. (X, Y) denotes the center of the cyclotron orbit and R = Akg/eB is the cyclotron
radius. Because the modulating potential is assumed to be very weak, it can be considered
as a small perturbation that leaves the cyclotron orbits essentially undistorted. The simul-
taneously present electric (E = —V Vy04(y)) and magnetic fields classically give rise to
an E x B drift of the center of the otherwise unaffected cyclotron orbit. Because at low
magnetic fields the electronic orbit extends over many periods of the potential modulation,
only the drift acquired at its extremal points ¥ £+ R will be essential. This is depicted in
Figure 31b. If the position and radius of the orbit are such that the drift acquired at opposite
extremal points adds up constructively, one speaks of a guiding center drift resonance. Off
resonance, the drift acquired at one extremal of the orbit will cancel that at the other ex-
tremal, leading to zero net drift. At resonance, the electron drift, which is directed parallel
to the equipotential lines, will lead to a maximum in p, . An off-resonant, stationary orbit
accordingly corresponds to a resistance minimum. This qualitatively accounts for the oscil-
latory behavior shown in Figure 30. The preceding ideas can be integrated into a rigorous
solution of the semiclassical Boltzmann equation. If the strength of the potential modula-
tion is characterized by the parameter £ = eV / Ef, the magnetoresistance is then obtained
to second order in ¢:

Pyy 1 (2n )2 J2Q2nR:/a) 67

o1+
P0 2\ a 1 - J}@nR:/a)

Here, po is the usual semiclassical expression for the longitudinal magnetoresistivity, a is
the period of the potential modulation, and / = vgt is the mean free path. Jy is a Bessel
function. The exact analysis gives the condition 2R./a = n — 1/4 for a resistance minimum
and 2R;/a =n + 1/4 — order(1/n) for a maximum. In the limit 27 (R./a) > 1, Eq. (67)
can be shown to reduce to the following frequently quoted expression for p [117]:

2
p_L=p0(1+282( ! )cosz(Zn&— Z)) (68)
aR. a 4

Basically, the same result can also be derived directly from the simple classical picture
outlined previously [117]. Note that the V entering the definition of ¢ is a root mean square
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average of the modulation potential amplitude. If, for example, a sinusoidal modulation

Vimod (7) = Vo cos(2my/a) is considered, one has Vy = \/5——‘7 .

The guiding center drift oscillations have also been explained on purely quantum me-
chanical grounds [118, 119]. If the weak periodic modulation V (x) is treated by simple
first-order perturbation theory, it is easily shown that this leads to a widening of the Lan-
dau levels to Landau bands according to En(ky) = (N +1/2)hwc + (Nky|V (x)|Nky). The
kets in the matrix element denote the N'th Landau state with center coordinate xo = iky /e B
of the unperturbed system. If the matrix element is replaced by the classical expectation
value, which can be done because high numbers of Landau levels are occupied at low
fields, an expression very similar to Eq. (68) can be derived for p .

The result of the semiclassical calculation is shown in Figure 30 (thin solid line). A pa-
rameter value ¢ = 0.015 is assumed to reproduce best the corresponding experimental
trace. The most interesting feature of Eq. (68) is the phase shift of 7 /4 appearing in the ar-
gument of the cosine term. The value of this phase shifts depends on the shape of the mod-
ulating potential and equals 7 /4 only if a simple sinusoidal potential is assumed. The
perfect agreement with the phase shift of the experimental trace indicates that this assump-
tion describes the actual shape of the potential very well.

Another important source of information on the potential parameters is the positive mag-
netoresistance at very low magnetic fields (denoted by the arrow labeled B in Fig. 30).
This property of p, is clearly not accounted for by the strongly simplified classical picture
of undistorted cyclotron orbits undergoing a resonant drift. Beton et al. [121] investigated
this positive magnetoresistance systematically by using a grating gate geometry similar to
that used by Brinkop et al. [79] (cf. Fig. 12), which allowed them to vary the height of the
modulating potential. We reproduce their results in Figure 32, where several magnetoresis-
tance traces are shown for different voltages applied to the modulating gate.

As shown in the figure, with increasing gate voltage and thus increasing potential am-
plitude, the positive magnetoresistance is significantly enhanced and extends over a larger
field range. Simultaneously, the number and peak-to-valley ratio of the commensurability
oscillations are reduced. This behavior is easily explained by a modification of the simple
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Fig. 32. Magnetoresistance traces measured at 2 K for different top-gate voitages. From top to bottom,
Vo =-1.0,—-0.8, —0.6, —0.5, —0.3, —0.2, and 0 V. The curves are displaced for clarity. The period of the modu-
lation potential was @ = 300 nm. By, is the critical field for magnetic breakdown (see also Fig. 30). For B > 0.5 T
the usual Shubnikov—de Haas oscillations are observed. (Source: Reprinted with permission from [121]. © 1990
American Physical Society.)
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Fig. 33. Numerically calculated classical electron orbits in a periodic potential with a magnetic field
applied perpendicular to the 2DEG. The straight lines symbolize the equipotential lines of the periodic potential.
The orbits (a), (c), (e), and (g) correspond to 2R /a = 6.25; the orbits (b), (d), (f), and (h) correspond to 2R./a =
5.75. The left-hand orbit of each partial figure is symmetric with respect to the periodic potential; the right-hand
one is positioned asymmetricalty with respect to the equipotential lines. The values of the parameter ¢ = eV /EF
are (a), (b) 0.01; (c), (d) 0.05; (e), (f) 0.09; and (g), (h) 0.15. (Source: Adapted from [121].)

classical picture outlined previously. The main ideas become clear from Figure 33, which
shows numerically calculated classical trajectories for different potential heights (charac-
terized by the parameter ¢ defined previously). The left-hand set of orbits is calculated for
2R:/a = 6.25, which, in the case of a weak modulation, would correspond to a maximum
of p, ; the right-hand orbits were obtained for 2R:/a = 5.75, corresponding to a resistance
minimum. .

If the potential amplitude is increased, the corresponding electric field consequently en-
hances the E x B drift. On the other hand, this also leads to an increasing distortion of the
cyclotron orbits. As a consequence those trajectories begin to drift (right-hand trajectories
of parts b, d, f, and h of Figure 33), which are stationary in the weak potential case and
lead to a distinct minimum in p; . This fact explains the reduction of contrast of the com-
mensurability oscillations with increasing potential amplitude. As shown in parts g and h
of Figure 33, there is also a possibility of open orbits traversing parallel to the equipoten-
tial lines. Beton et al. [121] conclude from their classical model that a certain fraction of
open orbits is present even for the smallest magnetic field values. Because the open orbits
are traversed with the Fermi velocity vf rather than with the slower E x B drift velocity,
they dominate the resistivity at very low magnetic fields and lead to the observed positive
magnetoresistance. As shown in Figure 32, the magnetoresistance (caused by open orbits)
remains positive up to a certain magnetic field By where it has a maximum, followed
by commensurability oscillations resulting from closed and drifting orbits. It was shown
by Beton et al. [121] that the maximum in o; occurs when the Lorentz force equals the
electric force caused by the potential gradient:

Vi

2 ;O = e BeritVp (69)
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Magnetic fields weaker than By, are unable to force an electron on a closed cyclotron orbit
against the action of the potential wells, which leads to a dominant fraction of open orbits.
When the magnetic field exceeds the critical value determined by Eq. (69), the number of
open orbits is drastically reduced (“magnetic breakdown”). It can be easily shown [121]
that the magnetoresistance can be approximated by

e N M (70)
P0 Nt
where No/ Nt denotes the fraction of open orbits relative to the total number of trajectories
and pp is the resistivity at zero magnetic field. In Eg. (70), the magnetic field dependence
contained in w, together with the drastic reduction of Ng/NT at
2nVy
eavg
leads to the observed peak in p at low magnetic fields.

Beton et al. also gave a semiqualitative quantum mechanical explanation of the observed
low-field behavior [122]. A rigorous analysis of the semiclassical dynamics in lateral su-
perlattices was given by Streda and Kucera [123, 124], who analyzed the detailed features
of the electronic energy spectrum and obtained the characteristic low-field magnetic break-
down peak from the Chambers solution of the semiclassical Boltzmann equation. A similar
magnetic breakdown concept had been used earlier by Streda and MacDonald {125] for an
investigation of the weak modulation limit. In principle, the classical considerations made
responsible for the magnetoresistance peak remain a valid picture also in the more de-
tailed study of Streda and Kucera. In contrast to the classical model of Beton et al. {121],
however, the latter does not predict a magnetoresistance that falls off abruptly for fields
B > B, but behaves smoothly in this field regime. Also the relation for the expected
peak position is slightly modified to B¢ = 4Vy/eavr.

According to Eq. (69), the determination of B allows the characterization of the am-
plitude Vp of the periodic potential, if the Fermi velocity vr is known. An example of the
application of Egs. (68) and (69) to the systematic study of Vy and its dependence on var-
ious sample parameters is given in Figure 34 [126]. The shown data were obtained from
the magnetoresistance of an inverted, back-gated heterostructure. The lateral superlattice is
induced by a grating metal gate, fabricated on top of the heterostructure. The gate fingers
had a width of only 25 nm and formed a grating with period @ = 200 nm. The height of the
potential modulation was tuned by a voltage Vi applied to the top Schottky gates, whereas
the electron density could be independently varied by a back-gate voltage. The different
symbols in Figure 34 indicate different methods used to extract the value of V. The squares
are obtained from an analysis of the magnetic breakdown peak discussed previously. The
circles and triangles stem from a comparison of the n = 1 and n = 2 commensurability os-
cillations (labeled i = 1, 2 in the figure) to the theoretical expression Eq. (68), where this
was possible. As shown in Figure 30, this approximate relation not only reproduces the cor-
rect period and phase of these oscillations, but also gives a fair approximation of their am-
plitude for low values of n. For higher n, the calculated amplitude generally overestimates
the measured one, which is due to the previously discussed reduction of the oscillation
“contrast” by distorted orbits not accounted for by the simple classical picture of [117].

Figure 34a shows the dependence of the potential amplitude on the gate voltage for a
certain fixed back-gate voltage, that is, for fixed electron density. The two different evalua-
tion methods approximately give the same results when the modulation is very weak. This
is the regime for which Eq. (68) is conceived and where it gives a fair representation of the
actual situation. For higher Vg, Eq. (68) yields smaller values than Eq. (71). It is expected
that in the case of stronger modulation Eq. (68) overestimates the oscillation amplitude,
particularly at higher indices n and, consequently, underestimates V. In part b of the fig-
ure, the same analysis is performed for fixed Vg but at different electron densities, varied
by a back-gate voltage. Again, the two evaluation methods give different results for the
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Fig. 34. Amplitude V of the periodic potential modulation for a back-gated inverted heterostructure,
plotted as a function of the voltage applied to a grating gate, fabricated on top of the sample. Squares are obtained
from an analysis of the magnetic breakdown peak at By; circles and triangles are obtained from the application
of Eq. (68) to the i = 1 and i = 2 commensurability oscillation. (Source: Adapted from [126).)

same reasons as before. However, all values confirm the observed trend of an increasing
modulation amplitude (at fixed top gate voltage) with decreasing carrier density ns. This
carrier density dependence is a signature of screening effects that should be independent of
ng in a purely 2D electron system. The results of Figure 34b, therefore, nicely illustrate the
reduction of screening when the potential amplitude increases and an increasing number
of electrons become bound in one dimension.

A similar analysis has been applied to the characterization of short-period (@ = 100 nm)
lateral surface superlattices, fabricated by a plasma etching process [127]. An additional
blanket gate on top of the etched superlattice has been used to improve the properties of
the potential modulation. Indeed, the analysis of the phase of the commensurability os-
cillations shows that the blanket gate smooths the periodic potential and suppresses most
of its higher harmonics; that is, the potential is sinusoidal to a very good approximation
and, consequently, yields a phase shift of the commensurability oscillations equal to 7 /4.
According to Davies and Larkin [128], a potential that is not perfectly sinusoidal creates
higher harmonics in the magnetoresistance commensurability oscillations. Thus, an addi-
tional possibility to obtain information on the shape of Vipeq(y) is to analyze the Fourier
transform of the low-field oscillatory magnetoresistance, taken as a function of 1/B. This
method was also applied in [127] and was found to confirm the results obtained from the
phase analysis.

When the lateral superlattice potential becomes still stronger, the magnetoresistance
anomalies change their character. This is illustrated in Figure 35 [129]. In this example,
the periodic potential is created by shallow etching on a GaAs—-AlGaAs heterostructure.
The potential amplitude relative to the Fermi level is tuned by brief illumination from a
red LED. In part a of the figure, Vy and Ef, measured relative to the subband bottom
in the wells of the lateral potential, are nearly equal. In this case, there is no trace of
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Fig.35. Theleft-hand curves show experimental magnetoresistance traces for different amplitudes of the
modulating potential. The top curve corresponds to the strongest modulation, the bottom curve to the weakest one.
The inset in part b shows the experimental setup. The right-hand figures display the calculated magnetoresistance
(thick solid lines; see text). The dashed curves correspond to the isotropic contribution to pyxx, thin solid lines to
the anisotropic part, which dominates for very strong modulation. The Fermi level (measured from the bottom of
the potential wells) and the potential amplitudes used in the calculation are: (a) EY/ eil = 8.1 meV, Vo ="7.8 meV;
(b) 8.6 meV, 7.0 meV; (c) 9.0 meV, 6.7 meV. (Source: Adapted from {129].)

a positive magnetoresistance, which, on the contrary, becomes negative. With increasing
difference between Vp and EF, that is, decreasing &, a positive contribution to the low-field
magnetoresistance becomes visible, which dominates for the lowest value of ¢ (part c of
the figure).

This behavior can be explained semiclassically if one assumes different scattering times
for electrons bound in the wells and for those having sufficient energy to overcome the
barriers and to move freely [129]. In the following outline of the underlying semiclassi-
cal model, we suppose that the potential modulation is in the x direction. One assigns a
scattering time r&’ to those electrons bound in the well and r(f to those electrons whose
energy is high enough to overcome the barriers, both defined for zero magnetic field. With
an applied magnetic field, the number of free electrons is not constant, because due to the
Lorentz force electrons can acquire an additional momentum component in the x direc-
tion, which transforms previously bound electrons into free ones. Thus, for B # 0, one can
define an average, magnetic field—dependent scattering time for free electrons
1 61 6g—6 1

% O 2! B
which is equivalent to the assumption that the phase space average of the scattering proba-
bility is not changed by a weak magnetic field. The angles 6p and 8 delimit those regions in
k space (at zero and nonzero magnetic field, respectively) that correspond to a free-electron

(72)
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dispersion, that is, where the electrons have sufficient kinetic energy in the x direction to
overcome the barriers. One finds from a semiclassical treatment [129] that the resistivity
in the x direction may be split up into two components:

Pxx = Pi?(ry) + Apxx (73)
The first term foHows from the Chambers solution of the Boltzmann equation

m* 1+ 0?12C(68)

iso - 74
Prx (T) it 1-Cs) 74)
if for T an isotropic scattering time is used, which is given by
7 + 6 + sin
=1+ M(r(‘; - tf) (75)

The effect of anisotropy, induced by the presence of two different scattering times, is sub-
sumed in the second term of Eq. (73):

m* 7r~93+sin931:&’—t
e?nst, 6p +sinfg tf

In Figure 35, the magnetoresistance traces calculated according to Egs. (74) and (76) are
shown on the right-hand side. The dashed lines correspond to p)‘cs;’ which, in analogy to
the strongly modulated case discussed previously, exhibits a positive magnetoresistance
followed by a breakdown peak. The solid lines correspond to the anisotropic contribution
Apxx. It can be seen that at large values of ¢ the anisotropic part strongly dominates the
low-field magnetoresistance, leading to the characteristic spiked helmet form. The model
calculations also allow one to estimate the amplitude of the periodic potential. However,
the involved formalism is much more intricate than the methods described previously and
does not lend itself to systematic routine investigations. The Vy values corresponding to
the different experimental situations shown in Figure 35 are given in the caption.

In conclusion, it is worth mentioning that the semiclassical modeling of magnetotrans-
port in a periodic potential gives in a way complementary information on the underlying
potential for weak and strong modulation. In the first case, the commensurability oscil-
lations provide phase information that allows one to draw conclusions on the shape of
the potential. However, because the semiclassical model treats the potential modulation
as vanishingly small, the potential amplitude is not well reproduced by the semiclassi-
cal expressions (see [126]). In contrast to that, the magnetic breakdown picture yields a
particularly simple tool for the determination of potential amplitudes but it is basically in-
sensitive to the exact shape of the modulating potential. Sinusoidal or Kronig—Penney-like
model potentials give essentially the same results [123, 129].

f

(76)

6. VERTICAL TUNNELING THROUGH QUANTUM WIRES

6.1. Experimental

In this section, we discuss the use of tunneling spectroscopy as a tool for the investigation
of confining potentials and wave functions of 1D systems. Experimentally, tunneling via
1D states can be realized in various ways. Lateral tunneling between a quantum wire and
2D systems, for example, can be implemented on modulation-doped heterostructures us-
ing a split-gate geometry with a “leaky” channel. In this geometry, electrons are allowed
to tunnel out of a 1DEG through a thin side-wall barrier into an adjacent 2D electron
bath [130, 131]. A pronounced oscillatory structure can be observed in the 1D-2D tunnel-
ing current when the carrier concentration in the 1D channel is modulated through the split
gates. These features reflect the modulation of the 1D density of states as the 1D subbands
are successively depopulated with increasing split-gate bias.
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However, tunneling between electron systems of different dimensionality in the verti-
cal (growth) direction turned out to be the more interesting situation. In vertical geometry,
epitaxial regrowth techniques either on V-groove etched substrates, as proposed by Luryi
and Capasso [132], or on the edge of in situ cleaved substrates [133] can be used for de-
vices, where electrons tunnel resonantly from a 2D emitter state into the 1D subbands
of a quantum wire [134]. In such a sample, tunneling proceeds from the edge of a two-
dimensional electron source through a bound state in a quantum wire into the edge of
another 2D electron system and the combined effects of the longitudinal and perpendic-
ular motion of electrons allows a detection of the excited wire states. On double-barrier
resonant tunneling diodes, the lateral dimension can be restricted by use of focused Ga ion
beam implantation [135]. In this case, the mixing of 2D emitter subbands and 1D subbands
in the double-barrier region can be observed [136]. In theoretical models, these subband
mixing and coupling effects turned out to be important and have, therefore, to be taken into
account [137, 138].

The most instructive way to investigate tunneling processes through quantum wires,
however, is to use a nanostructured double-layer electron system consisting of two coupled
two-dimensional electron gas (2DEG) systems separated by a thin tunnel barrier. Three
types of such bilayer structures have been extensively investigated: the double heterostruc-
ture with a two-dimensional electron gas on both sides of an AlGaAs barrier, the double-
barrier resonant tunneling diode with two-dimensional emitter, and the coupled quantum
well system. On all types of samples, either the upper 2D-channel, lying closer to the sam-
ple surface, or both channels can be patterned into quantum wires. In this way, tunneling
processes from a 2D emitter into a system of one or more quantum wires and also ver-
tical tunneling between insulated quantum wires can be investigated. In all these cases,
the fundamental technological problem, which makes the construction of a vertical tunnel-
ing device a challenging task, is the formation of independent ohmic contacts to each of
the barrier-separated low-dimensional systems. In the following, we discuss three repre-
sentative experiments, each performed on one of the three mentioned systems of coupled
electron channels. We describe briefly the sample geometry used and show some typical
data obtained for each of these devices. In a subsequent section, we shall discuss briefly
the theoretical models underlying the interpretation of these data. In the discussion, the
emphasis will be put on the influence of the confining potential on the resonant tunnel-
ing characteristics or, vice versa, on the question to which extent the latter can provide
substantial information on the former.

The double GaAs—AlGaAs—GaAs heterostructure, used in [23, 139-142], is shown
in Figure 36a. The sample structure is made up of a nominally undoped GaAs layer
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Fig. 36. (a) Schematic cross section of a processed single-barrier resonant tunneling device and resulting
surface potential in the y direction (top). (b) Corresponding conduction band profile in the z direction. Ep, and
E, denote the energy levels on the 2D and 1D side, respectively. EF is the Fermi energy; V4, is the applied sample
bias.
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(Na <1 x 10! cm™3) grown on a semiinsulating substrate, followed by an undoped Al-
GaAs spacer (d = 50 A), doped Al,Gaj_,As (d =50 A, Np <3 x 1018 cm™3, x =0.36),
another spacer (d = 100 A), and n~-doped GaAs (d = 800 A, Np <1.2x 10 cm™3). An
additional highly doped GaAs cap layer (d = 150 A, Np = 6.4 x 10'® cm~3) was added
on the surface. This structure provides an inversion layer at the lower GaAs/Al,Gaj_xAs
interface, containing several 2D subbands, and an accumulation layer at the upper
Al,Ga;_, As/GaAs interface, both separated by a barrier of only 200-A thickness. From
Shubnikov—de Haas measurements, it was deduced that in both 2DEG systems only one
subband is occupied with values of 7™ = 6.0 x 10! cm~2 and #%° = 5.5 x 101! cm™2
for the electron densities, respectively.

With this sample structure, 1D-2D tunneling can be realized if the upper channel is
structured into quantum wires using, for example, standard laser holographic techniques
and wet chemical etching. The etching process will induce a potential modulation only in
the upper electron system, because the lower 2DEG is screened by the highly doped barrier
separating the two channels. More details concerning sample preparation, particularly on
the question of independent ohmic contacts to the low-dimensional systems, can be found
in [140]. A bias voltage V4, applied between the top and the bottom electron systems across
the barrier, will shift the 1D states energetically with respect to the 2D electron gas as
indicated in Figure 36b. It can be shown from self-consistent calculations that the externally
applied voltage drops almost completely across the potential barrier. Consequently, the
relative energy shift AE between the 1D and 2D system is equal to eV}, to a very good
approximation, which considerably simplifies a quantitative analysis of the experimental
data. Note that for this geometry both the initial and the final states involved in a tunneling
process are quantized in a way that no free momentum component exists in the direction
of the tunneling current.

‘Some typical tunneling data are shown in Figure 37. For reference purposes, consider
first the results for the unstructured sample (upper curve in Fig. 37), where the resonant tun-
neling processes occur between two 2D electron gases and lead to a series of sharp peaks
in d1/d V. Because in the geometry discussed the transverse electron momentum (parallel
to the barriers) is conserved during the tunneling process, resonant tunneling occurs when-
ever the subband in the accurnulation layer is energetically aligned with a subband in the
inversion layer [141, 142].

[2D - 2D] T=17K

t

¥

[1D - 2D] 7
T=17K
40 -30 20 -10 0 10 20
BIAS VOLTAGE Vp, (mV)

dl/dVy, (arbitrary units)

Fig. 37. dI/dV, curves of an unstructured sample (2D-2D tunneling), recorded at 7 = 1.7 K and
d1/dVy, characteristics of a nanostructured sample (1D-2D tunneling). The upward arrows indicate the reso-
nance positions of the unstructured sample.
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Fig. 38. Schematic diagram of a 1D-1D tunneling device based on a double-barrier resonant tunneling
structure. (Source: Reprinted with permission from [143]. © 1994 American Physical Society.)

The trace at the bottom of Figure 37 shows the corresponding low-temperature d1/d V;
characteristics for a nanostructured sample. A wealth of additional structure appears in the
differential tunneling characteristics in the investigated bias regime. It turns out that the
identification of single peaks is not as straightforward as in the case of 2D-2D tunneling. It
will be shown later in detail that for 1D-2D tunneling individual peaks in d1/d V4, cannot
be simply assigned to the energetic alignment of the 2D emitter level with a special 1D
wire state.

Vertical tunneling between single quantum wires (1D—-1D tunneling) was demonstrated
by Wang et al. [143, 157] in a very appealing way. They used a conventional double-barrier
resonant tunneling diode with symmetric barriers having a thickness of 47 A and enclosing
a 90-A-wide well. On both sides of the double barrier, 200-A-thick spacer layers were
grown to minimize the unintentional incorporation of donors into the well. The sample
geometry depicted in Figure 38 is achieved by optical lithography and a series of selective
wet chemical etch steps [157]. The top line has a submicrometer width and forms an air
bridge to the top contact regions. This allows one to establish independent ohmic contacts
to the top and back lines of the device. Its active area is formed by the overlap region of
the top and back lines, as shown in Figure 39a. When a bias voltage is applied, the spacer
in front of the double barrier forms an accumulation layer, which acts as a 1D emitter (see
the conduction band profile in Fig. 39b). The 1D quantization energy Awe in the emitter
is determined by the width J; of the top line and the side-wall depletion induced by the
etching process. In general, the 1D quantization of the emitter will be much weaker than
in the double-barrier region.

If the width [; of the top line is in the micrometer range, a conventional small-area res-
onant tunneling diode is obtained, whose current—voltage characteristics display the usual
region of negative differential resistance. The reduction of /; to submicrometer dimensions
leads to the observation of a rich additional structure in the /-V curves, which is due to
resonant tunneling through the quantized 1D states between the AlAs barriers of the active
area (cf. Fig. 48). Using magnetotunneling experiments, even the probability density of the
quantum confined states can be determined with this device [144-146].

As a third example, we mention a vertical tunneling device that is based on coupled
quantum wells [147-149]. Both wells are 180 A wide and separated by a 125-A Al-
GaAs barrier. The reported electron concentrations are typically 3 x 101! cm™2 (u =
800,000 cm?/V s) and 1.8 x 101! cm~2 (u = 200,000 cm?/V s) in the upper and the lower
wells, respectively. On these samples, independent contacts to the electron systems in the
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Fig. 39. (a) Side view of the 1D-1D tunneling device. The wires are formed by side-wall depletion
undemeath the GaAs bar. (b) Corresponding conduction band profile. Awe and Awy are the subband spacings
in the 1D emitter and well. Eg and E; are the energy levels resulting from quantization in the growth direction.
(Source: Reprinted with permission from [144]. © 1995 American Physical Society.)
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Fig. 40. Cross-sectional view (a) and top view (b) of the device structure. The selective depletion tech-
nique, which is used to contact each 2DEG separately, is shown in (a) and definitions of the different tunneling
regions in (b). G denotes the gated, U the ungated region of the device leading to the ¢- and k-peaks shown in
Figure 41. (Source: Reprinted with permission from [147]. © 1996 American Institute of Physics.)

upper and lower wells were established by in situ focused ion beam lithography and se-
lective gate depletion techniques. A schematic view of the sample geometry is shown in
Figure 40. The gates BG1, formed by an in situ patterned n* layer, and FG1 are used for
the local depletion of the lower and upper channels, respectively. In this way, independent
contacts to both 2D systems can be achieved. The back gate BG is used to tune the electron
concentration in the lower channel. A potential modulation can be imposed on the upper
well by means of the nanostructured top (front) Schottky gate FG.

The back gate allows the variation of the electron density (i.e., the Fermi level) in the
lower channel. By recording the tunneling conductance as a function of the back-gate volt-
age, the resonant tunneling between the barrier-separated electron systems can be studied
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Fig. 41. Tunneling differential conductance for V5) = —0.25 V and three different grating periods. The
arrows mark the peaks, which are due to the crystal part of the 1DSSL band structure. Definition of separated
quantum wires occurs at Vg = —0.45 V. (Source: Reprinted with permission from [148]. © 1996 American

Physical Society.)

without applying a bias voltage across the tunnel junction. This technique, first introduced
by Eisenstein et al. [150-152], is called “equilibrium tunneling spectroscopy.” In the case
of 2D-2D tunneling, the net effect of the back-gate voltage is, just as in the previously
discussed “biased” cases, a relative shift of the emitter and collector subband energies.
As soon as the bottoms of the two subbands on both sides of the barrier are energeti-
cally aligned, the requirements of energy and momentum conservation are fulfilled and
resonant tunneling between the subbands can occur. To study 1D-2D tunneling processes,
a voltage Vi can be applied to the front Schottky gate. This induces a potential modu-
lation in the upper 2DEG whose amplitude can be tuned from zero up to a value where
an array of independent quantum wires is established in the upper channel. At interme-
diate values of Vj, the strength of the modulation is not sufficient to create a set of in-
dependent wires but rather leads to the formation of a lateral superlattice. For this latter
situation, typical tunneling spectra are shown in Figure 41, where the differential tunnel-
ing conductance is plotted for three different grating periods and a front-gate voltage of
Va=—-025V.

It can be shown (see the following sections) that the two large peaks, labeled k and g,
are due to resonant 2D-2D tunneling between the 2D emitter and the 2D gases in the gated
(g-labeled peak) and the ungated (k-labeled peak) regions of the device. They occur at
back-gate voltages where the 2D electron densities in the emitter (lower) 2DEG and in
the respective regions of the upper channel coincide. The small peaks, denoted by arrows,
correspond to back-gate voltages where k,, at the Fermi energy in the 2DEG is equal to k,
in the one-dimensional surface superlattice (1DSSL) to within a reciprocal lattice vector
G, =2nn/(a + b) of the superlattice. Here, n is an integer, a + b is the superlattice period
(i.e., the sum of the width of a gate finger and the gate separation). The y axis is oriented
perpendicular to the 1DSSL gates. In other words, the regular series of small-amplitude
peaks can be assigned to the “crystal part” of the superlattice band structure.

Before continuing the discussion of these experiments, we briefly introduce the theo-
retical machinery of the transfer Hamiltonian formalism [153-155], which forms the ba-
sis of a quantitative analysis of all the vertical tunneling experiments discussed in this
review.

6.2. Transfer Hamiltonian Formalism

Consider a tunneling process starting in an electron system, which we shall call the emitter
in the following, and ending in some collector electron bath. To support the intuitive under-
standing of the following, one might imagine a 2DEG as the emitter and a second 2DEG,
separated from the first through a barrier, as the collector system. In the formalism of the
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transfer Hamiltonian approach, one treats, in a first step, both 2DEGs as independent sys-
tems. Each one is characterized by a complete set of eigenfunctions {W;}; and {¥;}r and
the corresponding eigenenergies, respectively (the indices I and F indicate the initial and
final state of a tunneling process). If the two systems are brought into contact, for example,
by a thin tunneling barrier, one may approximate the wave function of the total system by
an expansion of the form

Y(t) = Za,-(t)\lli exp(iiit) +Zbk(t)\llkexp(iETkt) an
i k

The indices i denote the emitter states and k those of the collector system. Equation (77)
will be a good approximation if the coupling between the two systems is weak and the
barriers are relatively thick. If the electron is assumed to start from a state {Wo}1, one has as
initial conditions for the coefficients ag(¢ = 0) = 1 and a;(0) = bz (0) = 0. The preceding
total wave function may now be inserted into the time-dependent Schrodinger equation
ihW = HW. If one assumes a weakly coupled system, a perturbation approach may be
taken, which starts with the assumptions a;(¢t) ~ 1, be(¢) = 0, and da;(t)/dt ~ 0 for all
times ¢. This leads to the expression W (¢) &~ W;—9 = V1 for the total wave function, and the
time-dependent Schrédinger equation takes the form

.. dbyg i Eyt iEqn
2 ad.X\ 7 _Ee ) = — _o=r
ik o kexp( 5 ) (H EI)\Illexp( W ) (78)

k

After multiplication with a state Wk taken from the set of possible states in the collector
system and repeating the same procedure familiar from standard time-dependent pertur-
bation theory, one obtains for the transition probability between the states ¥y and W the
expression

lbr@)> 27

t Ok

with a transition matrix element given by Mg = (Wg|H — E1|\W1). Note that in the present
context Er does not denote the Fermi level but the energy of the final state. To obtain the
total transition probability, one has to sum over all initial and final states and to weight
every term in the usual way by the combined probability to find the initial state occupied
and the final state empty. This leads to the expression

|Mie|® 8(Er — EY) (79)

2
P = —hjz 3 IMEP[f(E) — f(ER)]8(E1 — Er +eWb) (80)

m,n ky kg

The § function ensures the conservation of energy. Note that in the previous equation
it is already assumed that a bias voltage is applied, which drops completely across the
tunneling barrier and, hence, simply leads to a relative shift in the Fermi levels of the
emitter and collector systems. Furthermore, the summation is carried out over all electron
wave vectors ky and k, parallel to the barrier and all 2D subbands n, m of the initial and
final 2DEGs. It can be easily shown that the matrix element Mg can be transformed into
the following expression [154]:

h? o
M= [ dZS[w;;—_‘ ] 81
2m =20 az =20

The integration over the surface elements d.S has to be carried out in the plane of the barrier,
which separates the initial and final side at z = z¢.

We first evaluate the matrix element Myp for the case where both the initial and the final
states are purely two-dimensional electron systems, as is the case for unstructured 2D-2D
tunneling samples. In a two-dimensional system, the states are quantized in the z direction,

o\
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Fig.42. Schematic illustration of a 1D-2D tunneling process. The arrow represents an electron tunneling
from the quantum wire system into the 2DEG. The x component of the electron momentum is not considered
here, as it is conserved during the tunneling process.

but free motion of electrons exists parallel to the barrier in the x and y directions. The wave
functions for the initial and final states thus have the form

W1 = Y1(2) exp(ikx 1x) exp(iky 1y)
Vg = Yr(2) exp(iky,px) exp(iky Fy)

Inserting these wave functions into the expression for the matrix element and evaluating
the integrals yields

(82)

n? B RRVe
Mp=——|yf—| —r—=% 8(kx1 — kx ) 8ky 1~k 83
IF m* |:l/,F 3z —t0 Y1 3z Z:ZO:I ( x,1 x,F) ( y,I y,F) (83)
The first term defines the transmission coefficient of the barrier in the z direction:
p aw* 2
Tip = z/f;a—'“— —nt (84)
2 lz=z9 2 lz=z9

The § functions in Eq. (83) are the evaluated overlap integrals between the wave functions
in the x and y directions of the initial and final states. Because for tunneling between 2D
states these wave functions are plane waves, the overlap integrals reduce to § functions.
In this case, one thus obtains as a condition for resonant tunneling between 2D states that
the electron wave vectors (kx, ky) parallel to the barrier have to be conserved during the
tunneling process.

Next, we consider transitions between a 2D system and a quantum wire as the emit-
ter. In this case, the wave functions are plane waves in the x and y directions in the 2D
collector. For the quantum wire side, however, one has plane waves in the x direction but
quantized states in the y direction. This situation is schematically sketched in Figure 42
for an electron tunneling from a 1D quantum wire state (» = 3) into an unoccupied 2D
subband. For this situation, the wave functions are written as

W1 = ¥1(2) exp(iky,1x) exp(iky,1y)

Wk = YF(2) exp(ikx,rx) PnF(y)
and the corresponding matrix element for the 1D-2D tunneling process reads
— ¥

K2 9 Ve
ME = — [,/,;; v1 Vg ]
=20 =20

2m*| "F o7 9z
x ket — k. B) / expliky.1y) nr(y) dy (86)

We now assume that a voltage V4, is applied across the tunneling barrier and use Eq. (86)
to calculate the total tunneling probability per unit time according to Eq. (80). The corre-
sponding tunneling current is then given by I = 2e Pir, where the factor of 2 accounts

(85)
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for the spin. The tunneling matrix element, Eq. (86), has two remarkable features. First,
the § function indicates that the x component of the electronic momentum is still con-
served in a tunneling process. The second feature is the appearance of the overlap integral
f exp(iky 1y) ®np(y) dy between the final and initial states in the y direction, which is
recognized to be simply the Fourier transform of the quantized wire state forming the
starting point of the tunneling process. This means that there are two main contribu-
tions to A, leading to observable structure in the measured tunnel current: the trans-
mission coefficient of the tunneling barrier [see Eq. (84)] and the overlap integral. For
a single-barrier tunneling device, the transmission coefficient Tir of the barrier adds no
resonance structures to the tunneling current. Consequently, it will only be the overlap
integral between the initial and final states that is responsible for all structures in the tun-
neling current. If we assume that the electron systems on both sides of the barrier are
shifted in energy by eV}, with respect to each other, total energy conservation requires
that

h22 R k§ Rk ¢

Tt + o +eV=E,p+ —— Y 87)
where w is the subband index. Because we can ignore the free-electron motion in the x
direction, this equation can be expressed in terms of ky:

En,I +

2m*
ky(V)=:|:\/—hT[Eu,F"En,I_eV] (88)

This means that the wavevector of the tunneling electron, k,, appearing in the overlap
integral, is controlled by the external voltage. Consequently, the measured current—voltage
characteristics of the tunneling device basically reflect the Fourier transform of the 1D
emitter wave functions.

6.3. Influence of the Potential Profile on 2D-1D Tunneling Processes

The “real” profile of the confining potential in a quantum wire is determined by vari-
ous effects such as Fermi-level pinning at exposed surfaces, free-carrier contributions, and
many-body effects such as electron—electron interactions or screening at low temperatures.
The bottom part of the quantum wire potential is especially influenced by the densities of
free as well as fixed carriers, resulting in potential shapes ranging from almost parabolic to
almost square well like.

To analyze the influence of the shape of the confining potential on the overlap integral
in Eq. (86), one may calculate the wave function overlap for different model potentials. To
do this, we consider as the emitter system an array of shallow etched quantum wires. If
one assumes periodic boundary conditions, the following cosine-shaped potential can be
considered as a reasonably good approximation of the real situation:

1 1 2
V(y) = Vmodb +5 cos< z (y - %))] (89)

Here, Vinod is the potential amplitude and w is the electrical width of an individual quantum
wire. Using Eq. (88), we now calculate the overlap integrals I, = [{exp(ikyy)|¢n ())[? as
a function of the applied bias voltage. The results for the tunneling transitions from the
four lowest 1D subbands (n =0, ..., 3) into an unoccupied 2D subband are plotted in
Figure 43. We first discuss the result for the lowest 1D subband (n = 0), which is shown in
the uppermost curve.

At bias voltages where the 1D subband edge is energetically below the 2D subband edge
(Vb > Vp), resonant tunneling is forbidden because the total energy cannot be conserved in
such a process. If the bias voltage reaches V4, = Vp, the subband edges of the 2D subband
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Fig. 43. Plot of the overlap integrals for the lowest four 1D subbands (n =0, ..., 3) in a cosine-shaped
potential [Eq. (89)], with a single 2D subband; Vj, is the resonance position of the subband edges (ky = 0),
whereas AV, denotes the deviation between the first overlap maximum and the position of the subband edge
resonance Vj, (only present for even n). The parameters for the 1D potential were Vipoq = 60 mV, w = 350 nm.
The lowest curve represents the sum of the upper four. (Source: Reprinted with permission from [23]. © 1993
American Physical Society.)

and of the lowest 1D subband (n = 0) are in resonance, and the overlap integral of the
lowest 1D subband, Iy, reaches its maximum value. As Vj, is decreased further, Iy drops
gradually toward zero. Note that [y indirectly reflects the spatial extent of the wave func-
tion, because it is nothing else than its Fourier transform. For the first excited 1D subband
(n = 1), the tunneling probability, moreover, reflects the parity of this state. If the subband
edges of both the 2D and the n = 1 subband coincide at V;, = Vj, 1 is still zero because
the corresponding 1D state has odd parity, I; (ky = 0) = 0. The tunneling probability then
increases with decreasing bias voltage and reaches its maximum, which is slightly shifted
by AV; from the subband edge resonance. With further decreasing bias voltage, I; drops
toward zero. The behavior of the tunneling probabilities for the higher 1D subbands can,
in principle, be understood in an analogous way.

It is obvious from Figure 43 that the maxima of I, at the positions of the subband
edge resonances (even 1D subband index, V3,) or most close to them (odd 1D subband
index, Vap4+1 + AVa,41) are much more pronounced than all the other structures caused
by the nodes of the 1D wave functions. In addition, the values of AV;, | become smaller
and smaller with increasing n (e.g., AV} > AVj etc.). Therefore, resonances caused by an
energetic alignment between the subband edges of the 1D and 2D states can be expected
to be dominant in the 1D-2D tunneling experiments, but are by no means the only reason
for structures in the tunneling characteristics.

As has been shown previously, the confining potential in split-gate structures is rather
“boxlike” than cosine shaped. Therefore, it is necessary to study also the influence of the
steepness of the confinement walls. For this purpose, we choose an analytical expression
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Fig. 44. Potential profiles for a series of o values, tuning the shape of V (y) from smooth parabolic like
(a = 8) to almost rectangular box like (& = 192).

for the potential, which allows us to control the steepness by a single parameter . To obtain
a potential profile that is smooth within one period of the multiple quantum wire system
under consideration, we use the one-dimensional Woods—Saxon potential [42], which was
already introduced in Section 2:

1 1
Vi) =V d[ +
"1+ exp(—i—“(wwz‘y)) 1+ exp(“——L—(wwz”))

The last term Viin = Vinod{2/[1 + exp(e/2)]} sets the potential minimum to zero. The
parameter ¢ allows a continuous variation of the potential shape from an approximately
parabolic to a nearly rectangular form.

Figure 44 shows the potential profiles for a series of « values, starting at o = 8 (nearly
parabolic) and ending at & = 192 (nearly rectangular box). The other parameters used in
the calculation are Vo4 = 50 meV and w = 250 nm.

In analogy to the case depicted in Figure 43, the overlap integral for the 1D ground state
n =0 and the third excited 1D subband n = 3 as well as their sum (3>_n =0,...,3) is
calculated for various values of «. The results are plotted in parts a— of Figure 45.

Because of the variation of the potential profile, the energies of all 1D subband edges
are shifted to lower values with increasing parameter «. The change in shape of the wave
functions has a pronounced effect on the corresponding overlap integrals. This is illustrated
for the 1D ground state in Figure 45a. With rising o, the spatial extent of the wave function
is increased. As a result, the overlap integral of the single 1D wave function is squeezed on
the wavevector scale k, and, consequently, on the bias voltage scale Vp, too. In addition,
the maximum tunneling probability is increased by more than 50%, whereas the integral
tunneling probability, which is represented by the area enclosed by the curve, decreases
simultaneously by a factor of 2. This behavior is even more pronounced for the overlap
integrals of the higher quantum wire states, as shown in Figure 45b for the subband in-
dex n = 3. While « increases, the resonance structure close to the position of the subband

] = Vi (90)
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Fig. 45. Plot of the overlap integrals for the 1D subbands n =1 (a) and n = 3 (b) with a single 2D
subband as a function of the parameter . (c) Sum of the overlap integrals of the lowest four subbands. (Source:
Reprinted with permission from [23]. © 1993 American Physical Society.)

edge resonance (labeled V; in Fig. 43) is systematically degraded. In contrast to that, the
tunneling probability at the bias voltage position of the second maximum (labeled V3’ in
Fig. 43) is drastically increased and becomes the by far most dominant structure for high
values of . Comparing the amplitudes of the overlap integral at the voltage positions V;
and V!, their ratio increases from 1.4 for @ = 8 to above 8 for o = 192. For the rectan-
gular potential profile, the maximum in the tunneling probability at V3’ coincides with the
subband resonance position of the lowest 1D subband, that is, V, = V.

To illustrate this remarkable behavior more clearly, we have recalculated the results
shown in Figure 43 for a box potential with infinitely high walls and a width of w =
100 nm. For this potential profile, the values of I, (n =0, ..., 3) as well as their sum are
plotted in Figure 46. Although the shapes of the curves are qualitatively identical with
the corresponding curves of Figure 43, the intensity ratios of the structures within a curve
show a completely different behavior. As pointed out previously, only the structures in
the vicinity of the resonance of the lowest 1D subband (labeled Vg, V/, V', and V3” ) re-
main important. The width of these resonance structures, however, increases as the 1D
quantum number increases. All other peaks of I, for the higher 1D subbands at voltage
positions V;, > Vp are of minor importance, because their intensity can be neglected. All
these features are also present in the sum of all overlap integrals, which determines the total
tunneling probability (lowest curve of Fig. 46). There is only one broad maximum domi-
nant, peaking at a bias voltage of Vy. This result is valid for all quantum wire subbands,
but particularly pronounced for higher subband indices.

The total tunneling probability exhibits less and less structures as the potential profile
is tuned from a smooth parabolic shape to a rectangular shape, as shown in Figure 45c.
In the latter case, just one broadened maximum, located at V4, = Vj, characterizes the tun-
neling probability for all 1D subbands. Therefore, a single, but broad resonance structure

59



SMOLINER AND PLONER

N/gj V(y)uoo
¢ %Eﬂ’ L,
=
- 0

V'
GTE=1
] - A/W

| — En-2 V'

eva
E/\/Vz
l " n=3 {V'3
e%

V'3
Vs
v

n)_‘,ol(e"’@y &, ) + x 1/4

14510 -5 0 5 10 15
BIAS VOLTAGE Vj, (mV)

SUM SINGLE WAVE FUNCTION OVERLAP

Fig. 46. Plot of the overlap integrals for the lowest four 1D subbands (n =0, ..., 3) with a single 2D
subband (not occupied) for a box potential with infinite high walls and a width of 100 nm. The lowest curve
represents the sum of the overlap integrals for the four lowest subbands. (Source: Reprinted with permission
from {23). © 1993 American Physical Society.)

is expected at the position of the former 2D-2D resonance (which in the ideal case of
zero-level broadening is a § function), but only very weak additional structures resulting
from the 1D subbands should occur at higher bias voltages. For a smooth potential profile,
however, all quantum wire states give rise to a series of resonances that interfere within the
voltage range mentioned previously.

With these insights into the nature of the 1D-2D tunneling process, an attempt can be
made to simulate the corresponding tunneling characteristics and to compare them with
the experimental results depicted in Figure 37. First, note that the experimental /-V curve
displays a multitude of resonant structures. From the preceding analysis we know that a
rectangular potential would lead only to a weak fine structure in the overlap integrals and,
consequently, in the total tunneling probability Pp [cf. Egs. (80) and (86)]. One therefore
concludes that the confinement leading to the characteristics of Figure 37 is due to a smooth
potential profile. In the following, we shall only be interested in the numerical reproduction
of the average number and spacing of the experimental tunneling structures. We, therefore,
describe the 1D confinement by the cosine function of Eq. (89), which was found previ-
ously to be a good approximation of the potential of shallow etched wires [140]. The res-
onant tunneling current I (V) is calculated according to I = 2e Pir together with Eq. (88)
and its first derivative d1(V;)/d V4, is obtained numerically. To account for generic broad-
ening effects caused by the limitation of the carrier lifetime in the states involved in the
resonant tunneling process and by the interaction between electrons and acoustic phonons,
the tunneling probability near a resonance at V; is assumed to have Lorentz form, which
we denote by L(Vy — V;):

r

1
- 91
7 (Vo — V)2 + T2 eD

L(Vo- V) =
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Fig. 47. Comparison of the measured and calculated 1D-2D tunneling characteristics (see also Fig. 37).
(Source: Reprinted with permission from [23]. © 1993 American Physical Society.)

In this equation, I" represents the linewidth of any resonance position on the scale of the
applied voltage. The application of Eq. (91) to the model calculation also accounts for
broadening effects caused by the sample preparation technique, such as fluctuations of
the wire width and so on. The total tunneling current is then given by the convolution of
the current represented by the bare tunneling probability and the Lorentz function given
previously [154, 156]:

ot = f AV (W)L (Vo — W) ©92)

The positions of the 2D subbands in the inversion (collector) layer needed for the calcula-
tion can be obtained from the tunneling experiments on non-nanostructured samples.

The final result is shown in Figure 47, curve 2, assuming a temperature of 7 =2 K
and a level width I' = 0.5 mV. The parameters of the cosine potential were chosen to be
Vinod = 55 meV and w = 350 nm. The corresponding experimental result is plotted as
curve 1 in the figure. All structures in the calculated d1/dV}, curves are mainly caused by
the overlap integral. As a major difference between the measured and calculated curve, one
may note that in the former the resonant tunneling structure is superposed on a background
that increases monotonically with decreasing bias voltage. This background presumably
reflects a possible energy (i.e., bias voltage) dependence of the transmission coefficient of
the tunneling barrier [Eq. (84)]. Note that the structures of the calcuiated curve are deter-
mined by the sum of overlap integrals as discussed previously. Any influence of the applied
bias voltage on the transmission coefficient of the barrier itself is neglected in the calcu-
lation. Nevertheless, the qualitative features of the measured tunneling characteristics, for
example, the average peak amplitude and peak distance, are well reproduced within the
outlined model. However, as one has to sum up over all closely spaced 1D emitter and
2D colector subbands, it is not possible to identify and analyze the contributions of each
single 1D state to the total tunneling current. The main factor, which limits the resolu-
tion, is the doped barrier between the 1D and 2D systems. It introduces scattering in the
tunneling process and, therefore, broadens the linewidth of the resonances in the d1/dVj,
curves. Because of the large number of resonance structures in the d1/dV, curves, the
peaks will overlap and also smear out, which makes a more detailed quantitative analysis
rather difficult.
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6.3.1. 1D-1D Tunneling: Probing the Fourier Transform of
One-Dimensional Wave Functions

In the experiment outlined previously, it was not possible to explain all measured features
of the tunneling characteristics in detail, although its numerical analysis gave valuable in-
sight into how the presence of numerous 1D subbands influences the 1D-2D tunneling
current when the conservation of the k, momentum component is relaxed because of the
confinement in the y direction. The particular form of the tunneling matrix element in
Eq. (86) also suggests the possibility of measuring directly the Fourier transform of the
wave functions of the confined emitter states. To this end, however, the number of 1D sub-
bands contributing to the tunneling characteristics within a given bias voltage interval has
to be considerably reduced. Progress in this direction has been achieved by manufactur-
ing single-wire tunneling devices from double-barrier resonant tunneling diode (DBRTD)
structures [157]. The corresponding device geometry is shown in Figure 39 together with
the definitions of some notation used later on. Depending on the width /; of the top line,
a situation can be achieved where only one 1D subband is occupied in the emitter and the
subband spacing in the well, fiwy, is on the order of 10 meV [144]. For this situation, a set
of tunneling /-V's is shown in Figure 48, obtained for different magnetic fields applied
perpendicular to the tunneling direction (and parallel to the top line). Each of the displayed
tunneling peaks now corresponds to transitions from the single 1D emitter level (labeled
by i = 0) into a single collector level(labeled by the index j).

For the numerical analysis of the measured /-V's, a modified form of the transfer Hamil-
tonian formalism is applied [145, 146]. In the form used by Beton et al. [144] and Wang
et al. [143], level broadening is included in the formalism from the very beginning by re-
placing the & functions used in Eq. (80) with spectral density functions [158, 159]. The
corresponding expression for the tunneling current as a function of bias voltage V, applied
across the barrier, is

de
I=2)" Z|T,-k2‘ky,kz|2/ o Aclky, Kz, £) X Aw(jk, e +eV)fe)  (93)
kyk; .,

The coordinate system underlying this equation is shown in Figure 38. T denotes the
tunneling matrix element already introduced in Eq. (86). The spectral density functions
A and Ay for the emitter and the well have Lorentzian shape. In addition, it is assumed
that there is no charge accumulation in the well and that all collector states are empty. If a
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Fig. 48. I-V characteristics of a ID~1D submicrometer tunneling diode in the presence of a magnetic
field applied parallel to the z direction. The curves are measured for magnetic field strengths ranging from 0 T
(lowest curve) up to 10 T (uppermost curve), varied in 1-T steps. The curves are offset for clarity. The inset shows
I-V at B =0T for a large-area device. The device geometry is shown in Figure 38. (Source: Reprinted with
permission from [144). © 1995 American Physical Society.)
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magnetic field is applied parallel to the top line (cf. Fig. 39), the tunneling current can be

expressed as [145]:

I 1 Z{ 2[er — (i +1/2)hid]
4

Iy hiwe

FZ

94
(i +eV* —g))2+ T2 G

1/2

} M’ (B)
ij

Here, w, is the confining frequency of the emitter quantum wire whose confinement po-
tential is assumed to be parabolic. @ = we(2//Q2 + w?) is the emitter frequency in the
presence of a magnetic field.” Iy is a renormalized tunneling current that is solely due to the
transmission coefficient ¢ of the barrier: Iy = 4et?/mwe/A(L;/ T'). The main information
on the tunneling process is contained in the matrix element M;;, which now reads

dk eBAs
M;;(B) =/ 5 2

T

@; (zg%; ky — ) ®; (15, T ky) (95)

Here, ®; ; are the Fourier transforms of the corresponding wave functions in the emitter (i)
and the well (j) and the l¢ v, are given by lo w = (B/ mwe,w)l/ 2 (in lAe,w the corresponding
frequencies @, have to be inserted). The magnetic field dependence enters through a pa-
rameter ko = ¢ BAs /k in the tunneling matrix element, where As is the spatial separation
of the 1D states in the emitter and in the well. The ko dependence can be derived quantum
mechanically, but it can also be motivated from a simple classical picture. In the given ge-
ometry of B|jz, an electron moves on a curved orbit. While it is traveling the distance As in
the x direction, the electron momentum in the y direction changes by e BAs = fikg through
the influence of the Lorentz force. In a quantum mechanical picture of 2D-2D tunneling,
this means that the magnetic field introduces a wavevector shift of kp between the initial
and final states, which is achieved by applying the translation operator (exp(—ikoy)) to the
corresponding wave function. For 1D-1D tunneling, however, ko enters as a wavevector
shift between the Fourier transforms of the initial and final wave functions of the 1D states.

Now, if only one subband is occupied in the emitter and the subband spacing in the
well is large enough, one has realized the unique situation that the Fourier transform of the
probability density of the laterally confined states in the well can be determined directly,
if the resonant tunneling current is measured as a function of the magnetic field applied
parallel to the wires. Note that the occupation of only one emitter state is crucial for this
purpose; otherwise, the measured I (B) curve will be a convolution of many resonances of
all occupied states. In the case of a single-emitter subband, resonant 1D-1D tunneling via
the jth state in the well occurs when the voltage is adjusted in a way that the emitter state
is aligned in energy with the jth state in the well, which is for (see also Fig. 39)

A

h 1 .
eV*+Eo+%=E1+(j+§>hww (96)

Here, Ej is the emitter subband energy, £ the subband energy in the well (both are mag-
netic field dependent in the special notation used in [145]), V* is the voltage drop across
the barrier, and @, and &y the magnetic field-dependent oscillator frequencies of the lat-
eral confining potentials in the emitter and the well, respectively. At resonance, the current
flowing through the jth state, I;(B), is proportional to the modulus squared of the overlap
integral M;(B) between the initial and final state. This is given by Eq. (95), which can be
rewritten as [144):

+00
MyB) = [ expiikon) g5 0} ) dy
+00
= f O (ky — ko) DY (ky) dky 97)

In the special notation used by Mori et al. [145], Q¢ quantifies the confinement in the growth direction, which
is assumed to be parabolic for simplicity. In a magnetic field, this confining frequency also becomes magnetic
field dependent.
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Fig. 49. (a) Peak currents as a function of magnetic field for the j = 1,2, 3 resonance peak. The ex-
perimental data are displaced for clarity. (b) Probability densities for the j =0, 1, 2 simple harmonic oscillator
states plotted versus ky/kyw. A value of Aww = 10 meV was assumed for this calculation. (Source: Reprinted
with permission from [143]. © 1994 American Physical Society.)

where ®f(ky) = fj;o ¢5(y) exp(ikyy) dy and d>}"(ky) are the Fourier transforms of the
emitter and well wave functions. As discussed previously, the magnetic field thus induces
a relative shift in k space between the emitter and the collector states. If the emitter state
has a narrow spread in k space, Eq. (97) shows that the Fourier transform of the jth 1D
wave function in the well can be probed by simply measuring the peak tunneling current
as a function of the magnetic field. Due to the asymmetry of the 1D-1D tunneling device,
the assumption of narrow k spread of the emitter wave function is justified because the
confining potential in the y direction is much stronger between the double barriers than for
the emitter electrode owing to side-wall depletion.

Figure 49a shows the peak currents of the magnetotunneling peaks labeled j =0, 1,2
in Figure 48, plotted as a function of the magnetic field. In Figure 49b the calcu-
lated Fourier transforms of the probability densities, corresponding to the three lowest
states in a simple harmonic oscillator potential, are also shown for the purpose of com-
parison. For convenience, the calculated probability density was plotted versus &y /ky,
where ky = (mwy/h)!/? and ky is calculated from k, = eBAs/h. If one chooses Awy
such that the measured and the calculated positions of the j = 1 maximum coincide,
one obtains excellent agreement between the measured and the calculated results. How-
ever, one has to be aware of the fact that the width of the emitter Fourier transform
®F (ky) = 1/(wk2)'* exp(—k2/k2), characterized by ke = (mae/h)!/? is finite. This limits
the resolution of the minimum of the j = 2 state.

6.3.2. 2D-1D Surface Superlattice Tunneling: Measuring
Potential Profiles

In the preceding experiment, vertical transport through quantum wires and the transfer
Hamiltonian formalism were used to determine the probability density for electrons in
quantum wire states. The measured (k space) probability density was found to agree well
with the one expected for a parabolic confinement potential. This justifies the assumptions
on the shape of the confinement made to get tractable expressions in the formalism used
for the analysis of the experiments. As will be shown in this section, this type of wave
function spectroscopy allows one to gain even more detailed information on the shape of
confining potentials. A particularly well elaborated example of this is ? by the results of
Kardynal et al. [147-149], who have used the tunneling geometry shown in Figure 40.

As already mentioned earlier, their device allows them to perform equilibrium tunnel-
ing spectroscopy, that is, the measurement of the differential tunneling conductance as
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a function of the Fermi energy in the emitter without applying a bias voltage across the
tunneling barrier. Due to the particular sample layout this can be done as a function of
different parameters, such as magnetic fields or front-gate voltages. The latter offers the
possibility of using, alternatively, a set of independent quantum wires [147] or a lateral
surface superlattice (1DSSL) [148] as the collector system. For the quantitative analysis of
their experimental results, Kardynal et al. also employ a transfer Hamiltonian formalism
similar to the model discussed in the previous section. They obtain for the derivative of the
tunneling current the following expression [148]:

I,
v ! kzk Bi(ks, ky, u) Aa(kx, ky, 1) (98)
xRy

where the so-called augmented spectral function

Bk ky, 1) = 3 | Bl (—hy) > A1 Cha, by, v, 1) 99)
v

has been introduced, whose detailed form will be discussed later for the case of tunneling
into a lateral 1DSSL. A; and A, are Lorentzian spectral functions accounting for level
broadening just as in Eq. (93). #? is again the transmission coefficient of the tunneling bar-
rier. In fact, Eq. (98) is equivalent to Eq. (93), because the differentiation with respect to V
removes the integration over the energy ¢. Note, however, that in the preceding expression
the general overlap integrals are already cast in a form appropriate for a 2D emitter and
a set of tightly bound superlattice states in the collector. In the notation of Kardynal et
al. [148], the spectral functions are written as

r
2 [(T/2)% + (u — 52
where 51 = (kx, ky, 1) and so = (ky, ky) are the relevant quantum numbers for the 2DEG
and the 1DSSL, A/ T is the quasiparticle lifetime, and u is the electrochemical poten-
tial. 55(21) = (h* /2m)(k£ + kg) + V3 is the energy dispersion in the 2DEG. If tunneling
into a 1DSSL is studied, the energy dispersion of the collector electron gas is written as
£ = h2%k2/2m* + Ey,,» + V1, where the miniband structure of the 1DSSL is character-
ized by Ej,,v (termed the crystal part of the 1DSSL band structure in [148]), v being the
miniband index. V(; 2) are the energy levels of the 2D subbands in the upper and lower
channels, respectively. Because of the superlattice nature of the collector system, the wave
functions perpendicular to the 1DSSL are Bloch functions. If a tight binding picture is
adopted, they are given by a linear combination of the ¢, ,(y) obtained by solving the
Schrodinger equation in the range 0 < y < a + b for a single potential well of the 1DSSL:

Dr,v(y) = D _exp(ikyn(a +b))gr,.(y —nia+b)) (101)

(100)

Aa (51,2, ) =

The Fourier transforms of ¢, (y) will be denoted by Pk, v (k). They already appear in the
definition Eq. (99) of the augmented spectral density function.

To illustrate the meaning of the spectral density functions, we first consider the case of
zero potential modulation. In this case, Eq. (98) describes pure 2D-2D tunneling processes
and the spectral density functions at the Fermi energy simply have circular shape. The
circles will be broadened by the linewidth I'". If an appropriate front-gate voltage is applied
to the nanostructured front gate, the electron density is modulated under the gated area and
a 1DSSL is induced. A typical situation is shown in Figure 50.

The spectral density function A1 for a 1DSSL, calculated according to Eq. (100) and
with the appropriate dispersion relation given previously, is plotted in Figure 51a. The
1DSSL induces a set of Brillouin zone boundaries in & space. In the extended-zone scheme,
a cut through the spectral density function at the Fermi energy will consequently appear as
a set of circles displaced by the reciprocal lattice vector G, = 2n/(a + b), as is shown
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Fig. 50. 1DSSL potential, which is induced by the nanostructured front gate. The total period of the
1IDLSSL is equal to (a + b). (Source: Reprinted with permission from [148]. © 1996 American Physical Society.)
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Fig.51. (a) Cut at the Fermi energy through the spectral density function A of the potential discussed in
the text. (b) Same as (a) but for the augmented spectral density function Bj. (Source: Reprinted with permission
from [148]. © 1996 American Physical Society.)

in Figure 51. If the 1DSSL potential is sufficiently deep, bound states will also exist in the
potential wells. These states have no dispersion in ky, and appear, therefore, as lines parallel
to the k,, direction in Figure 51a.

According to Eq. (98), the tunneling differential conductance (TDC) is proportional to
the convolution of A, and the augmented spectral function B;. The main features of the
measured TDC, shown in Figure 41, are, therefore, due to the overlap integrals contained
in B;. Assume a shape of the confining potential as shown in Figure 50, giving rise to a
number of tightly bound Bloch states. The k, dependence of the bound states will be weak
and, consequently, the overlap integrals in the expression for B; will essentially be given by
the Fourier transform ¢, , (—ky) of the wave functions corresponding to a single well. The
corresponding k-space plot of Bj is given in Figure 51b. The vertical lines in Figure 51a
are now replaced by the modulus squared of the Fourier transforms of the bound state wave
functions. In addition to the quasi-—bound states, quasi—free states will also be present in the
1IDSSL. These give rise to the approximately circular features of B; in Figure 51b. To see
this, one may approximate the free-state Bloch functions according to Kardynal et al. [148]
by Kronig-Penney wave functions. If ¢k, ,(y) = A exp(iky) + B exp(—iky) represents the
free states in the ungated regions and ¢k, v (y) = C exp(iqy) + D exp(—iqy) the free states
in the gated regions of the LSSL, it becomes immediately clear that |<'ﬁky,v (—ky) 12 will dis-
play peaks at k, = +k and ky, = +q. If a smooth potential is assumed instead of the rect-
angular Kronig—Penney potential, these peaks will be broadened but otherwise remain at
the same k-space positions. They are responsible for the k and g peaks in the experimental
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data shown in Figure 41. Their position in the differential tunneling conductance gives the
electron concentration in the gated and ungated regions of the 1DSSL and, consequently,
the values of the potential minima and maxima. The positions of the smaller peaks, denoted
by arrows in Figure 41, are exclusively determined by the shape of the 1DSSL potential.
Excellent agreement between the calculated d1/dV curves and the experimental data can
be achieved, if the 1DSSL potential is properly chosen. The potential shown in Figure 50
gives the best fit to the experimental data in a broad range of the top-gate and back-gate
voltages Vg and Vpg. It has the typical shape expected for confinement potentials induced
by the split-gate technique at relatively low gate bias.

With the same sample layout, the voltage applied to the nanostructured front gate can be
increased to yield a collector system that consists of a set of separated quantum wires. For
this case the analysis of potential shapes can be extended by performing magnetotunnel-
ing spectroscopy, just as it was discussed in the previous section [149]. For this purpose,
a magnetic field is applied parallel and also perpendicular to the layers of the sample and
the equilibrium tunneling conductance d//dV is measured as a function of the magnetic
field B. Typical experimental results are shown in Figure 52 (solid lines).

From the discussion of the transfer Hamiltonian formalism given previously, it is clear
that the detailed shape of the confining potential will have a strong influence on the mea-
sured tunneling conductance. Hence, a plot of d1/dV versus magnetic field is a unique
fingerprint of the confining potential. By incorporating the magnetic field into the calcula-
tion of the tunneling differential conductance [Eq. (98)] and by fitting the calculated curves
to the corresponding experimental data, a quite realistic picture of the confining potential
and the corresponding wave functions can be constructed (see parts e and f of Fig. 52). To

di/dV (arbitrary units)

l;_igate . gate |

L 1

100 200 300 100 200 300 400 500
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Fig. 52. Experimental (solid lines) and calculated tunneling conductance (dotted lines) for Vg, =
—0.48 V for By (a) and (b) and B, (c) and (d). (a) and (c) are the data of a device with a 350-nm superlat-
tice period; (b) and (d) belong to a device with a 570-nm grating period. (e) shows the best fitting potential
profile for the 350-nm-period device and (f) for the 570-nm-period device. (Source: Reprinted with permission
from [148). © 1996 American Physical Society.)
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obtain better results, the fitting procedure was carried out simultaneously for both magnetic
field directions [149].

As shown in Figure 52, the overall features of the tunneling characteristics are well
reproduced by the transfer Hamiltonian approach. Parts e and f of Figure 52 show the fitted
potential profiles of a 350-nm- and a 570-nm-period device, respectively. For the short-
period device, the confining potential is approximately parabolic at the bottom, giving
rise to equidistant subband spacing. For higher energies, the nonparabolic widening of
the potential will lead to decreasing subband spacings. For the longer-period device, the
confining potential is approximately square well like. The reason for this difference is
simply the different “overlap” of the electrostatic depletion fields of the two gate electrodes
defining the wire region. For the small-period device, the wire region is depleted by the gate
voltage from the very beginning, resulting in an approximately cosine-shaped potential.
The depletion of the wire region is also reflected by the fact that the bottom of the potential
in Figure 52e is higher in energy than in Figure 52f. The electron density in the short-period
wire will, therefore, be substantially influenced by the gate voltage. For the long-period
wire, this will only be the case at high gate voltages, where the confinement potential
will change its character and develop from a flat bottom, nearly rectangular well into an
approximately parabolic one. The discussed experiment, therefore, gives a rather direct
experimental proof for the validity of the general results obtained by the self-consistent
treatment of split-gate-induced confining potentials (see Section 3.2).

7. VERTICAL TRANSPORT THROUGH QUANTUM DOTS

In this section, vertical tunneling through quantum dots will be discussed on the basis
of a few instructive experiments. Lateral transport through quantum dots will be ignored
almost completely because, owing to the vastness of this field, it is beyond the scope of
the present chapter. The lateral transport geometry will only be treated in the context of
Coulomb blockade effects, which are most easily introduced and discussed for this case.
For a comprehensive treatment of lateral tunneling through quantum dots, see, for example,
the book Single Charge Tunneling [160], the clear and concise exposition by Meirav and
Foxman [161], or the very recent article by Kouwenhoven et al. [162], and, of course, the
references cited therein.

In the following, emphasis will again be placed on the question of how to gain some
information on the confining potential and the corresponding wave functions in quantum
dots. In this respect, it is important to note that the -V curves of quantum dot devices have
to be interpreted with some care. As shown in the previous section, information on con-
fining potentials is obtained from the resonance structures in the /-V curves. However, in
the case of 0D tunneling, a wealth of structure is observed in the /-V characteristics that
is not necessarily due to resonant tunneling processes in the sense discussed previously
for quantum wires. Other physical effects such as tunneling via donor states or Coulomb
blockade effects can also lead to a multitude of structures in the IV curves. The discus-
sion of early experiments on tunneling in quantum dots is, therefore, followed by a brief
discussion of these “parasitic” effects and of some instructive experiments that allow us to
separate Coulomb blockade-mediated structure from resonant tunneling through quantum
dot states.

7.1. First Experiments

The first measurements on vertical quantum dot tunneling were reported by Reed and co-
workers [163]in 1988. In this early work, GaAs—-AlGaAs-InGaAs—AlGaAs—GaAs double-
barrier resonant tunneling diodes (DBRTDs) were used as the basic material. The InGaAs
was introduced between the barriers because it allows us to lower the quantum well states
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Fig. 53. Left, top: Schematical view of a quantum dot sample realized on double-barrier resonant tun-
neling diodes. The barriers have a thickness of 40 A; the undoped InGaAs well is 50 A wide. On both sides of
the barriers, there is an undoped GaAs spacer (100 A) and a graded region, where the doping is changed from
1 x 10" cm=3 t0 2 x 10'8 cm™3. The top contact is highly n doped. Left, bottom: Radial component of the
confining potential in the pillar-shaped structure. Right: Conduction band profile of the quantum dot structure.
The discrete states in the dot are indicated schematically. (Source: Reprinted with permission from [163]. © 1988
American Physical Society.)

with respect to the conduction band edge without changing the width of the quantum well.
More details about the sample structure are shown in Figure 53. On these samples, ultrafine
pillars were fabricated by electron beam lithography and reactive ion etching. The pillars
had a typical diameter of 250 nm and a height of 0.5 pwm. The main technological problem
in the beginning was the formation of ohmic contacts to the tops of these pillars. For this
purpose, the structures were planarized by covering the whole sample with polyimide,
followed by a reactive ion etch back. In this way, only the uppermost parts of the pillars
were exposed, which finally could be coated by an evaporated gold contact. More details
on the fabrication process can be found in [164, 165].

Current—voltage curves were measured at low temperatures and also capacitance mea-
surements were performed to characterize large quantum dot arrays [166]. We restrict the
discussion to the /-V measurements that are more instructive in the present context. Fig-
ure 54 shows a typical I-V curve of a nanostructured DBRTD. An unstructured sample
fabricated on the same wafer behaves “normal” and a clear negative differential resistance
region is observed above V. =09 V. .

The nanostructured sample, however, exhibits several extra features at low temperatures.
As shown in Figure 54, the expected negative differential resistance region is somewhat
less pronounced and a series of equidistant structures in the -V curve is revealed instead.
These peaks are due to resonant tunneling processes through the zero-dimensional states
in the quantum “dot” or quantum “disk,” which is formed in the InGaAs well cladded by
the two AlGaAs barriers and the radial confinement in the small pillar. At higher tempera-
tures, these small peaks disappear again and the -V curves of the nanostructured DBRTD
resemble those of large-area samples. The equidistant peak spacing suggests a parabolic
confinement, which can be estimated quantitatively using the following considerations:
The edge depletion width in the pillars, W, can be derived if one assumes that the current
density in the small pillars is the same as in the large-area samples. Because the Fermi level
pins at the midgap position of &1 = 0.7 eV, the confining potential can be written as
1—(R—r) ] 2

(102)

CD(")=(I>T[ W
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Fig. 54. Typical current-voltage characteristics of a single quantum dot measured at liquid helium tem-
peratures. (Source: Reprinted with permission from [163]. © 1988 American Physical Society.)

where r is the radial coordinate, R is the geometrical radius of the pillar, and W is the
depletion width (R — W < r < R). For R ~ W, the corresponding energy spacing between
the single electron levels is given by

o\ 1/2
AE = (2 f) % (103)
m

This yields a value of 26 meV for the OD states in the InGaAs well, which can be compared
with the peak positions in the measured /-V curve. If one assumes that the applied voltage
drops homogeneously across the whole structure, approximately half of the voltage will
drop between the emitter and the confined states at the center of the well. As a consequence,
the measured energy spacing AE is equal to e times half the voltage spacing AV between
the peaks. One obtains a subband spacing of approximately 25 meV from the experimental
I-V curve, showing that the preceding considerations give a fairly accurate description of
the situation.

For the previous analysis, however, an important assumption was made that caused
some confusion in the early stages of low-dimensional tunneling experiments. As already
stated by Reed et al., their samples represent a system with electrons in the pillar traveling
through a freestanding quantum wire, tunneling through a quantum dot, and continuing to
flow in another quantum wire. The correct description of this 1D-0D-1D tunneling process
necessitates the calculation of transmission coefficients that takes the dimensionality of the
involved states into account [167-169].

In the previous experiment, however, excellent agreement with the experiment is
achieved by simply assuming that resonance structures in the /-V curve occur whenever
the Fermi energy in the emitter electrode is energetically aligned with a zero-dimensional
state in the dot. Because this assumption is only true if the emitter and collector electrodes
do not contain any quantized states and can, therefore, be considered as perfectly three-
dimensional systems, one might conclude that the sample quality was too poor to observe
the influence of the different dimensionality in the emitter and collector electrodes.

At this point, it should be mentioned, however, that besides poor sample quality there
are also several other possibilities for the missing evidence of 1D-0D-1D tunneling pro-
cesses even if the sample quality is sufficiently good. To illustrate this, we just consider
one possible example: To improve the sample quality, undoped spacer layers were intro-
duced in front of the double-barrier structure, which under bias form a triangular potential
well, resulting in electron confinement in the growth direction (cf. Fig. 39b for a similar
situation in the 1D-1D case). Together with the radial confinement caused by the etching
process, the emitter itself will represent a second quantum dot in front of the double barrier,
which, in principle, should lead to 0D-0D-1D tunneling behavior. Because confinement
in the growth direction is weak, many closely spaced subbands will exist in this direction,
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each of them having a ladder of corresponding (and also closely spaced) 0D states resulting
from the lateral confinement. These states will be broadened at finite temperatures and in
the presence of a certain amount of scattering. The overlap of the resonant peaks and the
scattering-induced broadening will smear out the expected fine structure completely and
only the main resonances resulting from the OD states in the InGaAs well will be dominant.
Thus, proper sample design is required if tunneling processes between states of different
dimensionality are to be studied on quantum dot samples.

Tarucha et al. [170] were the first to report experimental evidence of the expected di-
mensionality effects for the emitter electrode in DBRTDs. In their work, focused ion beam
implantation is used to define rectangular quantum dot or quantum wire structures of vari-
able size. This also allows one to vary the dimensionality as well as the geometry of the
nanostructured collector system and enables studies of tunneling processes through 0D
and 1D states in rectangular geometry. Although the experimental results look very sim-
ilar to the results of Reed et al., additional spectral features in the measured /-V curves
suggested a mixing of the 1D or 0D states between the barriers and the 2D states in the
contacts.

7.2. Lateral and Vertical Transport through Quantum Dots:
Coulomb Blockade Effects

7.2.1. Coulomb Blockade in Planar Quantum Dots

In the previous section, vertical resonant tunneling through quantum dots was used for an
investigation of the energy spectrum caused by 0D lateral quantization. The structure ob-
served in the tunneling characteristics was thereby assigned to resonant tunneling processes
via 0D states, just as in the case of quantum wires discussed in Section 6. For quantum dots,
especially for those containing only a few electrons, this simple interpretation can be ob-
scured by other mechanisms, which will also lead to structure in /-V characteristics. One
of them, the so-called Coulomb blockade, will be the topic of the present section. The fol-
lowing discussion will be short and very elementary. The reader particularly interested in
an in-depth exposition of Coulomb blockade and related effects is referred to the existing
excellent reviews on this subject (see, e.g., [160-162]).

The Coulomb blockade effect in semiconductor nanostructures was first demonstrated
and subsequently extensively studied on planar quantum dot devices, defined by properly
designed split-gate geometries. Because the particular nature of the Coulomb blockade is
most easily understood for these planar devices, we make a short digression from our dis-
cussion of vertical transport. The typical features of a planar quantum dot are depicted in
Figure 55. The two constrictions formed by the gates GO, G1, and G2 define together with
the independently biased plunger gate GP a small electron island within the underlying

G1 GPG2

2DEG

Fig. 55. Typical planar quantum dot geometry, which consists of the metallic gate areas G0, ... ., G2, GP,
and the two-dimensional electron gas underneath. (Source: Reprinted with permission from {161].)
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Fig. 56. Typical data showing the conductance of a planar quantum dot as a function of the plunger
gate voltage V. The measurement was carried out at a temperature of 7 = 100 mK. (Source: Reprinted with
permission from [161].)

2DEG. The point contacts between GO, G1, and G2 can be narrowed until they form
low-energy barriers, through which electrons can be transferred by tunneling processes.
Detailed information on the potential distribution and the corresponding electron energy
spectrum can be obtained from self-consistent calculations [171]. It is also worth noting
that, if the narrow constrictions are operated below pinch-off voltage, the planar dot struc-
ture of Figure 55 can be regarded as a short quantum wire, displaying transport properties
characteristic of ballistic transport, such as, for example, quantized conductance (for de-
tails, see [160, 161]).

The plunger gate GP is a very common feature of all planar quantum dot struc-
tures [172-174]. It is coupled capacitively to the electron island and is used to change
the electron concentration in the dot as well as the confinement strength. The relation be-
tween the plunger gate voltage V}, and the electron concentration is found to be linear. In
a properly designed planar structure, the tunneling barriers at the entrance and exit of the
dot are not influenced by the plunger voltage.

If the current through the dot is measured as a function of the plunger voltage at low
temperatures (usually below 0.5 K) and a given source drain bias Vps, the conductance
G = 1/ Vps displays a series of sharp spikes, as shown in Figure 56. These spikes are
called Coulomb blockade oscillations and they occur whenever an additional electron is
added to a low-capacitance, few-electron system. Coulomb blockade oscillations were first
observed in a system of metallic junctions [175]. For the case of semiconductor quantum
dots, they were theoretically explained by Beenakker and van Houten [176, 177] as single-
electron charging of the dot.

For an elementary explanation of the basic physics of the Coulomb blockade effect,
we assume that N electrons are present in the dot, leading to a total charge of Q = Ne.
Because the plunger is capacitively coupled to the dot, Q can be varied by varying Vp.
However, owing to the discrete nature of the electron charge, Q must increase in discrete
steps when the plunger gate voltage is swept continuously. The electrostatic energy of the
dot is given by

(Ne)?
2C
where the first term represents the capacitive charging of the dot and the second term is
the potential energy. C is the total capacitance of the dot with respect to its surroundings
and ¢ is the electrostatic potential. If the plunger gate is assumed to be the only gate with
significant capacitive coupling to the dot, one has C = Cp and ¢ = V},.

The previous equation can be easily solved for those integer values of N minimiz-

ing E(N) for a given value of V},, which immediately leads to the staircase relationship

E(N)= —@Ne (104)
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Conductance Charge on dot, Q

Jw}\

Plunger gate Voltage, Vp

Fig. 57. (a) Charge on the quantum dot according to the relation Q = CVp (dashed line) and single
electron charging (solid line). (b) Schematic plot of the conductance showing peaks each time an electron is
added to the system. (Source: Reprinted with permission from {161].)

depicted in Figure 57a. The situation where a new electron is added to the dot corresponds
to E(N) = E(N + 1). This occurs periodically at plunger gate voltages given by

_e(N+1/2)

(105)
If V} is adjusted according to this relation, the corresponding charge on the dot would be
given by a half-integer multiple of e. Because half-integer values of e cannot occur, this
means, of course, that the actual lowest energy state is degenerate and corresponds to either
N or N + 1 electrons. At the gate voltage given by Eq. (105), the dot is thus free to fluctuate
between the N or N + 1 electron state.

If a current flows through the dot, an electron must cross the barrier at the entrance and
be able to stay inside the dot for a finite amount of time before exiting it through the other
barrier. It is clear that this can happen only for those values of V;, where charge in the dot
can fluctuate between Ne and (N + 1)e, that is, where electron transfer into the dot is pos-
sible for constant energy. Away from these so-called charge degeneracy points, the electron
transfer is suppressed by the Coulomb charging energy. This explains the occurrence of the
Coulomb blockade oscillations shown in Figure 56.

The electrostatic charging energy necessary to add another eleéctron to the dot is
equal to e times the voltage spacing between two neighboring charge degeneracy points:
e(V¥*1 — V) = €2/ C. The resonances in the conductance are periodic and have a volt-
age separation of AV, = e/Cp. A detailed theoretical explanation of the exact shape of
Coulomb blockade resonances and also of some additional fine structure observed in the
experiment is rather complex and takes tunneling rates, bias voltages, and temperature ef-
fects into account [178, 179]. Coulomb blockade effects completely disappear if the tem-
perature exceeds the Coulomb charging energy, that is, for kg7 = €2/ C.

7.2.2. Excitation Spectrum

Consider a situation where the plunger gate voltage and, hence, the electron concentra-
tion in the dot are kept constant. Electrons can now be injected into the dot by sweep-
ing the voltage Vps applied across the dot [180-182]. The schematic band diagram in
Figure 58 is intended to illustrate this situation. Because of 0D confinement, a series of
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Fig. 58. Conduction band profile of a quantum dot, showing both occupied and empty levels in the dots
having a Coulomb gap in between. (Source: Reprinted with permission from [161].)
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Fig. 59. Differential conductance dI/dVpg as a function of Vpg. The flat region at zero bias reflects
the Coulomb gap. The peaks are due to higher energy states in the dot. (Source: Reprinted with permission
from [181]. © 1993 American Physical Society.)

equidistant electron levels exists in the dot. Occupied and unoccupied levels are separated
by the Coulomb blockade gap ¢2/C.

As long as the applied voltage is so small that the corresponding electron energy is
below the electrostatic charging energy, electrons are not allowed to tunnel into the dot and
the conductance is zero. With increasing Fermi level on the left-hand side, current begins to
flow as soon as the Coulomb gap is overcome and EF is aligned with the lowest empty level
of the dot. The differential conductance d1/dVps, plotted as a function of the source drain
bias, therefore, displays a flat region around Vps = 0, which is a direct consequence of the
Coulomb gap, followed by a number of resonant structures associated with the quantized
levels of the dot. An example of this so-called excitation spectrum of the dot is shown in
Figure 59.

Although it is clear from the preceding arguments that the peaks in dI/d Vps are asso-
ciated with higher energy levels inside the dot, a quantitative analysis of the peak positions
is nevertheless difficult because of the interplay between resonant and Coulomb blockade
effects. There will be a one-to-one correspondence between the peaks in the excitation
spectrum and the quantum dot levels only if just one electron at a time is allowed to tunnel
through the dot. Even if there are many empty states available, an additional electron will
be able to enter the dot only if it has enough energy to overcome the additional Coulomb
barrier of the first electron and if it is in resonance with an empty state of the dot. The same
arguments are valid for all other electrons that could enter the dot at sufficiently high bias
voltages. Taking into account that the tunneling rates and dwell times will be different for
electrons in different 0D states, it is easy to imagine that a quantitative analysis of the sub-
band energies in the presence of Coulomb blockade effects will not be a straightforward
matter.
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Fig. 60. Cross section of a double-barrier tunneling device used for single-electron tunneling spec-
troscopy. (Source: Reprinted with permission from [185].)

7.2.3. Tunneling and Coulomb Blockade Effects in
Vertical Quantum Dots

Coulomb blockade effects in vertical transport through quantum dots were first demon-
strated by capacitance spectroscopy on strongly asymmetric double-barrier structures
[183, 184]. In vertical tunneling experiments, it is possible to detect them also if samples
with a relatively wide central well and asymmetric barriers are used [185, 186]. A cross
section of such a double-barrier tunneling device is shown in Figure 60. For the depicted
sample structure, the emitter and collector electrodes are degenerate at low temperatures
and, therefore, contain no quantized states. This is an important point concerning the inter-
pretation of the resulting tunneling spectra because OD states in the emitter electrode would
cause a multitude of additional structure in the corresponding /-V curves in zero [187] as
well as in nonzero magnetic fields [167, 188]. Some theoretical considerations concerning
this topic are found in [168, 169, 189-191].

Owing to the asymmetric conduction band profile of this 3D-0D-3D tunneling struc-
ture, the /--V characteristics exhibit an asymmetric bias voltage dependence, because com-
pletely different physical processes dominate the measured /-V curves, depending on the
polarity of the bias voltage. A schematical view of the band diagram under bias and the
corresponding /-V curves are shown in Figure 61. For positive bias direction (Fig. 61a),
the emitter barrier is thicker than the collector barrier, and, as a consequence, the tunneling
rate through the emitter barrier will be low compared to the tunneling rate out of the cen-
tral well. It is, therefore, reasonable to expect that the electrons will be transferred through
the central well one by one and all structures in the measured /-V curves are due to new
channels for tunneling electrons, which open as soon as the emitter Fermi level matches
their energetic position.

For opposite bias, the collector barrier is thick and the tunneling rate out of the dot
is small. Thus, charge will accumulate inside the dot and Coulomb blockade effects can
be expected. As shown in Figure 61b, one indeed observes a Coulomb staircase, which is
shifted in voltage because of the confinement energy inside the dot [192-194]. Note that the
step height is dominated by the transmission coefficient of the collector barrier. Systematic
studies of devices with different barrier thickness have shown that the step height increases
exponentially with increasing barrier thickness [195].

As shown by Nomoto et al. [196] for a vertical double-dot system [197], both the exci-
tation spectrum and the Coulomb staircase can be used to extract some information on the
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Fig. 61. I-V curves measured on vertical quantum dots with asymmetric barriers. (a) Situation for
positive bias and thick emitter barrier (excitation spectrum); (b) situation for the thick collector barrier (charging
regime). (Source: Reprinted with permission from [185).)

confining potential in the dot. We outline the underlying ideas in the following considera-
tions, which refer to an asymmetric tunneling system similar to that shown in Figure 60.
Assume a cylindrical symmetric confinement whose radial part is given by a harmonic os-
cillator potential: V (r) = mw3r?/2. Here, r is the radial coordinate, wp = 1/R/2®/m¥,
® =0.7 eV is the Fermi level pinning at the surface, and R is the lithographically defined
radius of the diode. As mentioned earlier, this approximation will give a fairly correct de-
scription only for a certain range of dot radii R. In the limit of very small R, the diode
will be totally depleted, whereas for relatively large values of R the potential will not be
parabolic but rather exhibit a flat center part. For a parabolic potential, the eigenstates can
be easily calculated, and, provided the scaling factor between electron energy and sample
bias is known, it should yield the peak positions in the excitation spectrum correctly. For
the forward bias situation of Figure 61a, a direct comparison of the outlined simple calcula-
tion with the experimental excitation spectrum is feasible and can be used to determine the
strength of the confinement potential. From the latter, the radial extension of an electron in
the ground state can be estimated according to ryave = [A/ (m*awp)]V2.

As shown by Nomoto et al. [196], this value is in good agreement with the radius of
the internal capacitor, which can be estimated from the (reverse bias) Coulomb staircase
as follows. The dot is considered as a planar capacitor with circular electrodes. The corre-
sponding capacitance is simply given by C = eeonrczond /d, where ¢ is the permittivity of
the AlGaAs barrier and d is the corresponding thickness. The radius rcopg of this capacitor
is defined as the radius of the conducting area in the dot. According to the orthodox theory
of Coulomb blockade, the width of a current step, AV, is always equal to AV =e/C,
which offers the possibility of determining the junction capacitance directly from the volt-
age positions of current steps. By inserting the preceding expression for the capacitance
and solving for the radius reond, good agreement with the radius of the wave function in
the ground state ryaye is obtained.
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Fig. 62. Energy band diagram of a resonant tunneling device, where a layer of donors was incorporated
between the barriers. Tunneling occurs from the two-dimensional electron gas via the main resonance level and
also via single-donor and impurity-related levels. (Source: Reprinted from [199]. © 1994 American Institute of
Physics.)

7.3. Tunneling via Zero-Dimensional Doner States

Besides quantized states and Coulomb blockade effects, tunneling processes through single
impurities can also result in additional resonance structures in the measured /-V curves
of a quantum dot. Although tunneling through donor states is not at all restricted to 0D
systems, it is treated here in the framework of quantum dot tunneling for two reasons.
First, the donors themselves can be considered to be natural OD systems, giving rise to a
set of localized states that can serve as some kind of collector in tunneling experiments.
Second, as will be shown that the natural way to achieve a better understanding of the
tunneling through donor states is to reduce the number of donors involved. This can be
attained by reducing the lateral dimensions of the underlying tunneling devices, thereby
entering the quantum dot regime.

The first detailed investigations on this subject, which we will discuss briefly at the
beginning of this section, were performed on large-area double-barrier resonant tunneling
diodes (DBRTDs). As mentioned earlier, DBRTDs are often equipped with undoped GaAs
spacer layers in front of the barriers in order to enhance the resolution of the tunneling
experiments. Provided the GaAs spacer is sufficiently thick, a triangular well is formed in
front of the barriers under bias, leading to a two-dimensional accumulation layer of elec-
trons as shown in Figure 62. Because the electron wavevector parallel to the barrier is con-
served during a tunneling process, the transmission coefficient of the barrier only depends
on the electron wavevector component k, perpendicular to the barrier. The wavevector
components parallel to the barrier do not influence the transmission coefficient at all. For
the sample structure under consideration, this means that resonances in the /-V curves are
only expected when the edge of the 2D subband in the emitter (and not the Fermi level as
in similar samples used, e.g., by Reed et al. [163]; see Section 7.1) is in exact coincidence
with the main resonance levels within the double barrier. Because the linewidth of the reso-
nances in a tunneling /-V curve is limited only by the natural width of the 2D subband, the
resolution of fine structure in the /—V curves is enhanced compared to those cases where
the linewidth is determined by the distribution of electrons at the Fermi energy. By proper
design, it can be achieved that only one subband is occupied in the 2D emitter, leading to
an almost perfectly monoenergetic energy distribution in tunneling direction. Note that for
a tunneling process starting from a 2D emitter the shape of the resonance is to first order
independent of the temperature. This is easily understood from the fact that the main effect
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Fig. 63. Left: I-V curves of a DBRT device as a function of temperature. Right: /-V curves of a DBRT
device as a function of doping level: (a) undoped device, (b) 4 x 1013 m~2, and ) 8 x 1013 m~2. (Source:
Reprinted from [199]. © 1994 American Institute of Physics.)

of temperature is to broaden the Fermi distribution function. For a 2D emitter, this only
changes the momentum distribution parallel to the barriers in the emitter, which obviously
has no influence on the transmission coefficient in the tunneling direction.

The strongly enhanced energy resolution obtained for samples with a 2D emitter was
exploited by Geim and co-workers [198-200] to investigate tunneling processes through
single-donor related states on large-area DBRTDs with a delta-doped layer incorporated
between the double barriers. Figure 63 shows typical data. As seen from the inset of Fig-
ure 63 (left) the main resonance of the -V curve has the commonly expected form. Note
that because of the two-dimensional emitter electrode the peak-to-valley ratio of the main
-resonances is much larger than for the samples used by Reed et al. [163], where the elec-
trons in the emitter showed 3D behavior. In the low-bias region of the /-V curve, pro-
nounced additional fine structure is revealed, which is temperature dependent and which
can unambiguously be demonstrated to be impurity related. Consider Figure 63 (right),
where the -V curves of three different samples are plotted. Curve a corresponds to an
undoped sample and exhibits no fine structure. This is in contrast to curves b and ¢, which
correspond to two different donor concentrations in the §-doping layer.

It was shown by Geim and co-workers that the observed effects can be quantitatively ex-
plained if donor pairs of random separation (‘“donor molecules™) are made responsible for
the fine structure in the tunneling 7-V . Because of the relatively low donor concentration in
the well, the average donor separation is in the range of 0.1 to 0.5 ywm. Consequently, only
a small number of donor molecules will exist in a tunneling device with a mesa diameter of
typically 10 um. As shown by Geim and co-workers [198], only donor molecules formed
by nearest-neighbors will play a role at the used doping level. Larger clusters would lead
to binding energies too small to account for the observed peak positions. The multitude of
fine structures in the tunneling characteristics then originates from the random distribution
of the relative nearest-neighbor donor separation and the corresponding multitude of possi-
ble energy states. Although the model is relatively simple, quantitative simulations showed
excellent agreement with the measured tunneling current in the low-bias regime.

The next step toward a more advanced investigation of impurity-related tunneling was
initiated by the introduction of “squeezable” quantum dot structures with side-gate geom-
etry. The sample design, originally developed by Kinard et al. [201] and used later on by
Eaves and co-workers [202-204] for detailed studies of tunneling via single-donor states,
is shown in the inset of Figure 64. The lithographically defined width of the active device
region is 1 um?. In contrast to the previously discussed sample structures, the well en-
closed by the AlAs barriers is not intentionally doped. The lateral confinement, that is, the
effective width of the current path can be controlled by the electrically tunable side-wall
depletion. By determining the current density in the device, the scaling factor of the actual
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Fig. 64. I-V curves of a squeezable quantum dot structure. The different curves show the influence of
the applied side-gate voltage. (Source: Reprinted with permission from [202].)

conducting area as a function of the side-gate voltage can be obtained. The conducting area
is found to decrease down to 0.1 xm? for a gate bias of —5 V.

Figure 64 shows the /-V curves obtained for various values of the side-gate voltage.
The main resonance peak current is seen to decrease when the conducting channel is nar-
rowed. An interesting feature is the asymmetry between the forward and the reverse bias
region which is induced when the tunneling region is squeezed. This behavior can be ex-
plained in terms of a lateral variation of the potential drop across the AlGaAs barriers.
To see this, consider the schematic view of the sample cross section shown in Figure 65.
Figure 65a refers to zero side-gate voltage. The point of maximum depletion is seen to be
slightly above the tunnel barriers. Parts b and ¢ of Figure 65 show the equipotential lines
for forward (V > 0) and reverse bias (V < 0), respectively. The solid circles represent the
electron accumulation layer from which the electrons are injected into the double barrier.
The important point is that for positive bias the equipotential lines converge in the direc-
tion of the electron flow upwards in Figure 65b, implying that the voltage drop between
the accumulation layer and the quantum well is .arger at the center of the device than at
the edge. In reverse bias, the equipotential lines diverge in the direction of the current flow
and the potential difference between the accumulation layer and the quantum well does not
vary over the width of the accumulation layer. The lateral variation of the voltage drop in
forward bias means that the edge of the device goes on resonance at a higher bias than the
center of the device (see Fig. 65b). As a consequence, the main resonance is smeared out
and the peak-to-valley ratio decreases faster for positive side-gate voltages.

The second main feature of these squeezable dots is revealed when the I-V curves close
to threshold are considered as they are plotted in Figure 66. A series of peaks is clearly
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Fig. 65. -Schematic diagram of the equipotential lines and depletion regions for a side-gated double-
barrier resonant tunneling diode. (a) V =0, (b) V > 0, and (c) V < 0. In (a), the cross-hatched area represents
the region that is depleted by the gate. In (b), the conduction band profile indicates how the device can be on
resonance at the edge, but not at the center. (Source: Reprinted with permission from [202].)
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Fig. 66. I-V curve close to threshold for Vg =0 V measured at 7 = 39 mK. The inset shows /-V in
reverse bias for temperatures of 7T = 2, 4.2, 10, and 20 K. (Source: Reprinted with permission from [202].)

observed for both bias directions although for reverse bias the peaks are better resolved.
These peaks are a universal feature and also occur for different samples at similar voltage
positions, but always below the onset of the main resonance. They are attributed to energy
levels lying below the first confined state in the well. The striking feature of these peaks
is, however, that their position is independent of the side-gate voltage and, as can be seen
in the inset of Figure 66, they are also relatively insensitive to temperature. Thus, quantum
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Fig. 67. Dependence of I(V) on the applied side-gate voltage in reverse bias (a) and forward bias (b)
for voltages of Vg =0, 1, 1.5,2.25, and 3 V from top to bottom. (Source: Reprinted with permission from [202].)

confined states or Coulomb blockade effects cannot be made responsible for the structures
in the low-bias range; otherwise, they would occur at a position above the main resonance
and show a distinct voltage dependence.

Tunneling via a local inhomogeneity, such as a donor impurity unintentionally incor-
porated in the well between the AlAs barriers, provides a possible explanation for the
observed behavior. In contrast to the large-area DBRTDs considered previously, the gated
structures now offer the possibility of probing the spatial extent of these donor states us-
ing the following considerations. A peak in the /-V curves will be unaffected until the
depletion edge impinges on the region of the corresponding localized state, through which
the electrons tunnel. If the depletion zone moves across the active area of the localized
state, the amplitude of the corresponding resonance peak will decrease, because electrons
are prohibited from entering the depletion zone. Thus, the current path for electrons flow-
ing through this impurity state becomes smaller. If the side-gate voltage becomes large
enough, the localized states will lie totally within the depletion region and the correspond-
ing resonance will be quenched. This is shown in Figure 67, where the near-threshold /-V
curves are given for various side-gate voltages. If the effective diameter d of the reso-
nant tunneling device as a function of the side-gate voltage is known, the spatial extent
Ax of such an impurity-related level can be determined. If V1 is the highest voltage for
which the resonance peak is still unaffected and Vj> is the lowest voltage, where the peak
is totally suppressed, one estimates Ax = %[d (Vg1) — d(Vg2)]. For the lowest peak in the
I-V curves of Figure 67, one obtains, for example, a spatial extension of approximately
30 nm, which is close to the value for a single-donor bound state, expected from a simple
first-principles calculation.

In the preceding experiment, donor-related tunneling was investigated using squeezable
quantum dot devices, which, however, showed no sign of resonant tunneling via OD states.
It was shown by Blanc et al. [205], however, that the inverse situation can be achieved by
some modifications of the device design. By growing a larger spacer layer in front of the
double barrier (7 nm instead of 3.4 nm in the case of Eaves and co-workers [202]), the unin-
tentional incorporation of shallow donors in the quantum well region is largely suppressed.
A reduction of the mesa size down to 0.1 um leads to relatively high OD quantization
energies, which facilitates the observation of resonant tunneling via quantized states.

With increasing side-gate voltage, the main resonance peak current is reduced in anal-
ogy to the previously discussed experiment, but no asymmetry is observed for forward and
reverse bias. In contrast to the previous experiment, no evidence of donor-related tunnel-
ing processes is found. The low-temperature conductance exhibits a series of well-resolved
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Fig. 68. Conductance measured at 40 mK for a device with a diameter of 0.2 um (Vg = —0.2 V) (a)
and a device with a nominal diameter of 0.8 xm and Vg =0 V (b). The resonance structures are due to resonant
tunneling via 0D states. For the smaller device (curve a), the energy spacing of the quantized states is considerably
enhanced compared to the larger device (curve b). (Source: Reprinted from [205], with permission of Elsevier
Science.)

peaks (Fig. 68), which are attributed to resonant tunneling via OD states. This is confirmed
by the observed dependence of the /-V characteristics on gate voltage as well as magnetic
field.

7.4. 0D-2D Tunneling

So far, the presented experiments on quantum dot tunneling were not or only superficially
analyzed in terms of the properties of the confinement potential defining the dot. Whenever
an attempt of a quantitative comparison between experiment and calculation was made,
the confinement was assumed to be parabolic and subband energies or the spatial extent of
electronic wave functions were calculated within this assumption. The transfer Hamilto-
nian formalism, which was introduced in Section 6.2, can also be employed to gain more
detailed information on the shape of the quantum dot potential from OD-2D tunneling pro-
cesses. This will be discussed in the following for tunneling experiments performed using
the double-heterostructure layout already treated in Sections 6.1 and 6.3 in the context of
1D-2D tunneling. The same sample structure turned out to be also suitable for the fabri-
cation of a 0D-2D tunneling device [206]. For this purpose, the upper (emitter) channel is
nanostructured into quantum dots as schematically depicted in Figure 69. The dot array can
be fabricated by laser holography using a double-exposure technique. In order to deplete
the accumulation layer between the dots, the structures were wet chemically etched 300 A
deep into the GaAs cap layer. An ohmic contact to the dots is obtained by evaporating a
Au/Ge electrode covering the dot array. The experimental data shown in Figure 70 were
obtained for a period of the dot array of @ = 350 nm. The corresponding dot diameter was
estimated to be approximately a /2.

As discussed in Section 6.1, the applied bias voltage can be assumed to drop exclusively
across the potential barrier separating the 2D collector from the 0D islands. A bias volt-
age AV is, thus, equivalent to a relative energetic shift of the 0D states by AE = eA V.
A negative bias voltage V4, < O corresponds to tunneling processes from a 0D state into a
2D subband of the inversion channel. The band structure of the biased sample is shown
in Figure 69b for both the etched and the nonetched regions (upper and lower parts,
respectively).

Some experimental results are plotted in Figure 70. Part a of this figure shows the
d1/dV; characteristics of the nanostructured (0D-2D) sample for various temperatures in
the range between T = 1.7 K (curve 1) and T = 40 K (curve 12). For reference purposes,
the d1/dVy, characteristics of an unstructured sample are plotted in part b of the figure
for two temperature values 7 = 1.7 K (curve 1) and T = 40 K (curve 2). All resonance
peaks of the (0D-2D) d1/dV}, characteristics show a strong dependence on temperature.
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AuGe - contact
pd

2DEG e e e etched area

2DEG

ODEG
|—--— non-etched area
v 0D
GaAs 2DEG Em _ £OD

(a) Alea1 _XAS

Fig. 69. (a) Schematic view of a 0D-2D sample. (b) The corresponding conduction band profile for the
etched and nonetched areas of the sample. (Source: Reprinted with permission from [24].)

Above T = 4.2 K (part a, curve 2), the number of resolved resonance structures is already
considerably reduced. A further increase in temperature results in a monotonic broadening
of the resonance structures, accompanied by a decrease in the peak amplitudes. Generally,
the resonance positions observed for V4, < 0 are slightly shifted toward more negative bias
voltages. This behavior, which also occurs for the subband resonances of the (2D-2D)
tunneling characteristics, is due to the thermally activated occupation of the first excited
subband in the inversion channel causing a modification of the self-consistent potential pro-
file. In both parts a and b of Figure 70, the positions of the (2D-2D) subband resonances
are denoted by arrows.

Similar to the 1D-2D tunneling processes discussed in Section 6.3 it can be shown that
the structures in the measured tunneling characteristics can be traced back to the form of
the overlap integral formed by the initial and final states. To see this, we introduce cylinder
coordinates and write the wave functions for the collector and the emitter system in the
form

1 1

2DEG : w2 — V1, (2) exp(imig) Jm; (k) p)
’ JA ’ 2

re (106)

1 1 )
ODEG: WP = mwn 5= XM AQ)onpma ()

In the expression for WiP, na represents the radial and m, the azimuthal quantum num-
ber. Because prior to the nanofabrication process the upper 2DEG (accumulation layer, in-
dex A) contains only one occupied subband in the z direction, these two quantum numbers
are sufficient to describe the 0D states of the quantum dot system. The wave functions of
the subbands in the lower 2DEG (inversion layer, index I) are given by \IIIZB (p, 0,2, my).
Here, v is the 2D subband index and mj takes the degeneracy of E} (energy of the mo-
tion parallel to the interface) into account. A, represents the normalization area in both

systems.
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Fig. 70. (a) Measured d1/dV} curves in the temperature range between 1.7 and 40 K. (b) For com-
parison, dI/dV;, curves of an unstructured sample are also shown. The comresponding temperatures are 1.7 K
(curve 1), 42K (2), 6.5 K (3), 9.5 K (4), 11.7 K (5), 13.9 K (6), 15.7 K (7), 18.5 K (8), 22.7K (9), 29.0 K (10),
35.5 K (11), and 40 K (12). (Source: Reprinted with permission from [24].)

The matrix element May [Eq. (81)], which is governed by the overlap of the single wave
functions, now has the following form:

h? RN EN
Mpr = — dxdy| W} —2 —wy—1
Al 2m*//sxy(laz A32>

h? [ dya YT,
= - Yy —— —Ya— } X 8mym deppl (k0 Pna,ma (0) (107)
2m* v 3z 97 — 1.ma . my AA

B (Jm (ky P)I(PnA,m (0))

The first term in this equation, tg, represents the transmission coefficient of the barrier.
The Kronecker symbol guarantees the conservation of the angular momentum (quantum
number m) during the tunneling process. The matrix element is nonzero only if mj =
ma =m.

The value of the corresponding matrix element is a function of the radial quantum num-
ber na, the (common) azimuthal quantum number m, and the wavevector k| which de-
pends on the applied bias voltage. Its value, however, is completely determined by the
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requirement of total energy conservation:

~ 2m*
kII(Vb) = \/h_Z[E”A’m - Ev1 —eVp] (108)

As in the case of 1D-2D tunneling, the (0D-2D) matrix element M a1 not only depends
on the quantum numbers n s and m and on the bias voltage V4, but also on the particularities
of the potential profile. Considering the muititude of resonant structures in the tunneling
differential conductance, a strictly rectangular potential profile can be excluded, because
just as in the 1D--2D case it would lead only to weak fine structure (cf. Section 6.3). As in
the case of shallow etched quantum wires, one obtains a relatively realistic description of
the situation by assuming a cosine-shaped radial part of the quantum dot potential profile:

Vaot(p) = VmodIil + lCOS( r (p— Rdot)):l with 0 < Ryot (109)
2 2 Raot

In Figure 71, the tunneling probability, calculated from this potential profile, is com-
pared to the measured d/d VW, at T = 1.7 K. The parameters of the model potential were
adjusted to obtain the best possible agreement with the experimental results. Again, an
energy (i.e., bias voltage) independent transmission coefficient of the tunnel barrier was
assumed for this calculation. Hence, the model is, just as in the 1D-2D case, unable to re-
produce the monotonic background in the experimental tunneling characteristics. It should
be noted that the tunneling probability is proportional to the tunneling current, so that, to
be rigorous, one has to compare the calculated curve directly with the measured tunnel-
ing current. Because the resonant structure is too weak to be observed in I(V}) directly
and because a numerical derivative of the calculated results would somewhat obscure their
structure, a direct comparison is not feasible in this case. Nevertheless, good agreement be-
tween the experimental results and the calculated peak positions is immediately obvious.
The parameter values used in the calculation are Rgor = 62.5 nm and Vi9 = 38 meV.

nA=1

TUNNELING PROBABILITY

dl/dvy,

30 26 -20 -15 -10 -5 0
BIAS - VOLTAGE Vp, (mV)

Fig. 71. Comparison between the calculated tunneling probability and the measured d7/d W}, curve at
1.7 K. The downward arrows denote the n =0, ..., 3 resonance peaks. The upward arrows denote the peak

positions where individual OD and 2D subbands are exactly aligned. As for 1D-2D tunneling, AV, denotes the
distance between the resonance maximum and those positions. (Source: Reprinted with permission from [24].)
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The sharp structures in the total tunneling probability are due to sharp peaks in the wave
function overlap integrals for na =0, 1, 2, 3 and can, therefore, be assigned to single peaks
in the measured tunneling characteristics (denoted by downward arrows). In this way, the
energy spacings of the lowest three OD subbands in the quantum dot can be determined. If
one takes into account that the relative energy shift of the 2D and OD states is approximately
equal to e AV, these subband spacings are given by AEg1 &~ 7 meV, AEj; ~ 6 meV, and
AEj3 =5 meV. AE;; is, thus, found to decrease with increasing subband index, which is
consistent with the assumption of a cosine-shaped dot potential.

Finally, it is worth noting that Coulomb charging effects will play no significant role
in the discussed experiment. This is mainly due to the particular sample layout. As dis-
cussed earlier in the context of an asymmetric double-barrier tunneling device (cf. Fig. 61),
Coulomb blockade effects are not observed, if the emitter barrier is less transmissive than
the collector barrier. This picture is valid for forward bias also in the present situation,
if one identifies the emitter barrier with the AlGaAs layer separating the two electron sys-
tems and the collector barrier with the broad but low barrier between the dot and the alloyed
AuGe contact. Because the collector barrier is then clearly much more transmissive than
the emitter barrier, Coulomb blockade is not expected for positive sample bias. For nega-
tive bias, Coulomb charging effects could, in principle, play a role. In practice, however,
the sample design leads to a large capacitance between the dot and its surroundings: Each
dot is capacitively coupled vertically to two large electrodes covering the whole area of the
quantum dot array, namely, the underlying 2DEG and the top electrode. A rough estimate
shows that this leads to an effective “capacitive” radius of the dot on the order of 150 nm.
The corresponding Coulomb charging energy is far below 1 meV and, therefore, an order
of magnitude smaller than the average subband spacing of the dot. This means that in the
temperature range of the preceding experiments quantization effects are dominant.
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