1. Gegeben sei die Differentialgleichung

$$\sin y + 2x + (x\cos y + \cos y)y' = 0.$$

- (a) Untersuchen Sie, ob die Differentialgleichung exakt ist und berechnen Sie ggf. das erste Integral $\Phi(x, y)$.
- (b) Gegeben sei ein Vektorfeld

$$f(x,y) = \begin{pmatrix} \sin y + 2x \\ x \cos y + \cos y \end{pmatrix},$$

und eine Kurve C mit Parametrisierung $\boldsymbol{r}(t) = \begin{pmatrix} 2t+3\\4t+5 \end{pmatrix}$ mit $t \in [0,1]$. Berechnen Sie das Kurvenintegral des Vektorfelds \boldsymbol{f} entlang der Kurve C.

- (c) Berechnen Sie die Lösung des Anfangswertproblems $y(0) = \pi$ der gegebenen Differentialgleichung.
- 2. Gegeben sei für y = y(t) die Differentialgleichung

$$y'' + 4y = 2\sin(2t).$$

- (a) Berechnen Sie die reelle homogene Lösung $y_h(t)$ der Differentialgleichung.
- (b) Berechnen Sie eine reelle partikuläre Lösung $y_p(t)$ der Differentialgleichung, sowie die allgemeine Lösung y(t) zu den Anfangswerten y(0) = 9, y'(0) = 8.
- 3. Gegeben sei eine Wahrscheinlichkeitsfunktion

$$P(X = x) = \begin{cases} 0, & x \le 0 \\ \frac{1}{7}, & x = 1 \\ \frac{3}{14}, & x = 2 \\ a, & x = 3 \\ \frac{5}{14}, & x = 4 \\ 0, & x \ge 5 \end{cases}$$

- (a) Berechnen Sie a, sodass P(X = x) eine Wahrscheinlichkeitsfunktion darstellt.
- (b) Bestimmen Sie die Verteilungsfunktion $F_X(x)$ und fertigen Sie eine Skizze an.
- (c) Berechnen Sie P(A) und P(B), sowie $P(A \cup B)$ und $P(A \cap B)$ für $A = \{0 \le X \le 3\}$ und $B = \{1 \le X \le 4\}$.
- (d) Berechnen Sie P(A|B) für A und B aus (c).