

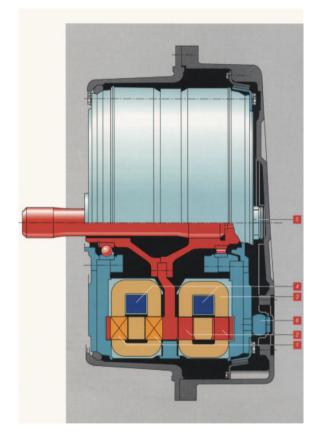
Anwendung der Finite Elemente Methode bei Elektrischen Maschinen

Erich Schmidt

Institut für Elektrische Antriebe und Maschinen Technische Universität Wien Wien, Österreich

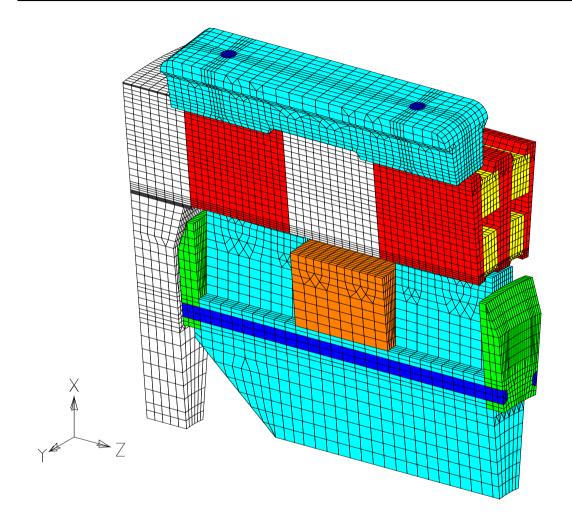
Inhalt

- Einleitung
- Analyse einer Transversalflussmaschine
 - Modellierung von Stator-Rotor-Positionen
 - Optimierung des Reluktanzmoments
- Analyse von Wasserkraft-Generatoren
 - Wicklungsausführung und Reaktanzen
 - Wirbelströme in den Stator-Pressteilen
- Zusammenfassung


Einleitung

- Im Bereich der elektrischen Maschinen sind Finite Elemente Analysen im normalen Entwurfsverfahren und insbesonders für Design-Review und Design-Optimierung immer mehr etabliert.
- Im Hinblick auf Modellerstellung und Reduzierung des Rechenaufwandes sind dabei spezielle Methoden zur Modellierung der verschiedenen Stator-Rotor-Positionen unverzichtbar.
- Damit werden einfach und rasch Design-Varianten bezüglich Geometrie und Materialeinsatz ermöglicht, sodass bestehende Betriebsmittel optimiert werden und zukünftig öfter auf Prototypen verzichtet werden kann.
- Gemäß diesen Gesichtspunkten werden Anwendungen aus den Bereichen Antriebstechnik und Energieerzeugung vorgestellt.

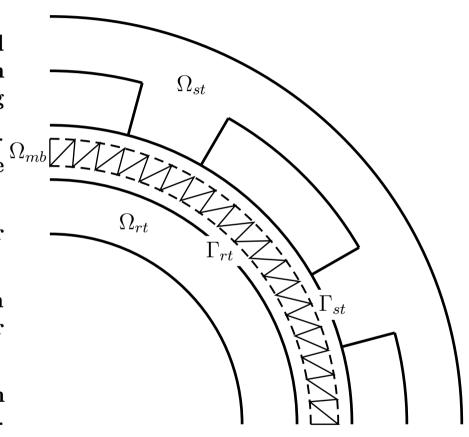
Analyse einer Transversalflussmaschine


HAUPTDATEN DER
TRANSVERSALFLUSSMASCHINE (VOITH)

Nennleistung	150	kW
Nenndrehmoment	1800	Nm
Nenndrehzahl	800	1/min
Maximaldrehzahl	2400	1/min
Anzahl der Pole	56	
Rotordurchmesser aussen	380	mm
Rotordurchmesser innen	290	mm
Rotorpaketlänge	315	mm

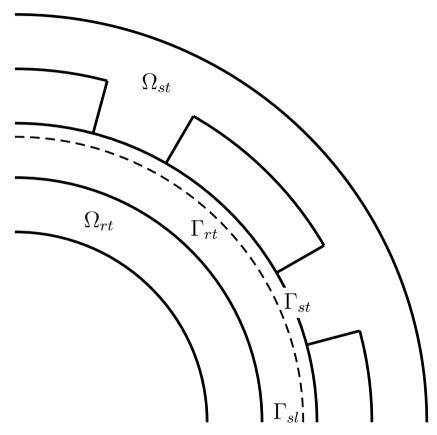
Zweisträngige Transversalflussmaschine in vereinfachter Darstellung (VOITH)

Finite Elemente Modell von zwei Polteilungen eines Stranges der zweisträngigen Transversalflussmaschine

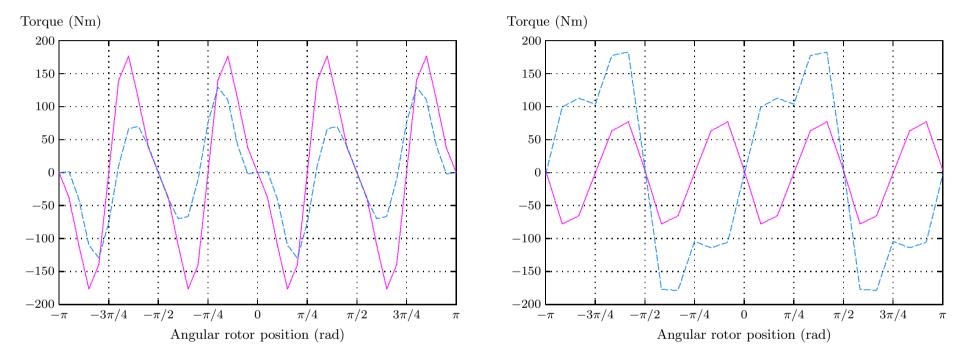

- Rotor-Permanentmagnete
- Rotor-Blechpakete
- Stator-Pulvermagnetjoche
- Stator-Ringwicklung
- Statorpressteile
- Rotorträgerteile

Moving Band Modellierung

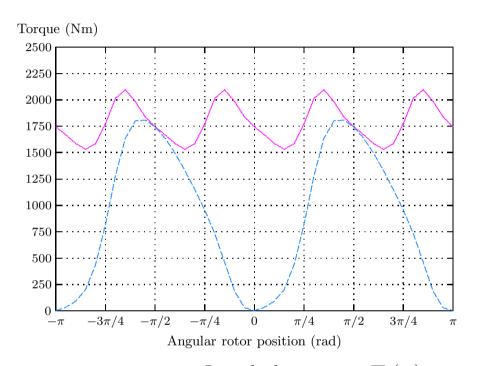
- Getrennte Modelle für Stator und Rotor mit einer meist äquidistanten Diskretisierung in Umfangsrichtung
- Kopplung der Stator- und Rotor-Teilmodelle über eine Elementlage im Luftspalt
- Simultane Anwendung periodischer Randbedingungen schwierig
- Neuvernetzung der Elementlage im Luftspalt in Abhängigkeit von der aktuellen Rotorposition
- Ungleiche Qualität der numerischen Ergebnisse für verschiedene Rotorpositionen

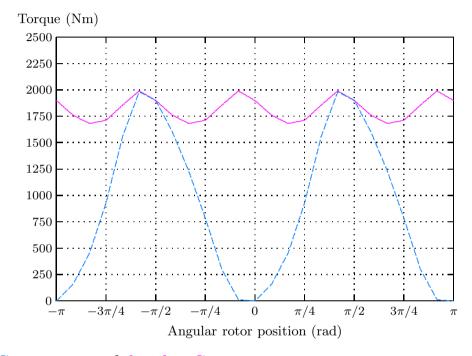

Bereiche bei der Moving Band Modellierung

Sliding Surface Modellierung

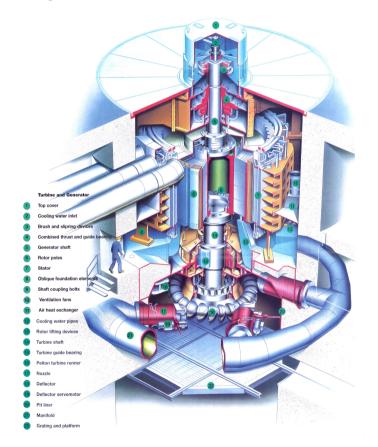

- Getrennte Modelle für Stator und Rotor mit einer meist äquidistanten Diskretisierung in Umfangsrichtung
- Kopplung der Stator- und Rotor-Teilmodelle über Randbedingungen in Abhängigkeit der Rotorposition
- Simultane Anwendung periodischer Randbedingungen möglich
- Invariante Diskretisierung der Teilmodelle ohne einer Neuvernetzung für verschiedene Rotorpositionen
- Identische Qualität der numerischen Ergebnisse für verschiedene Rotorpositionen

Bereiche bei der Sliding Surface Modellierung





Reluktanzmoment $T_z(\varphi)$ eines Stranges und beider Stränge, symmetrische Rotornuten und geblechte Joche (links), asymmetrische Rotornuten und Pulvermagnetjoche (rechts)



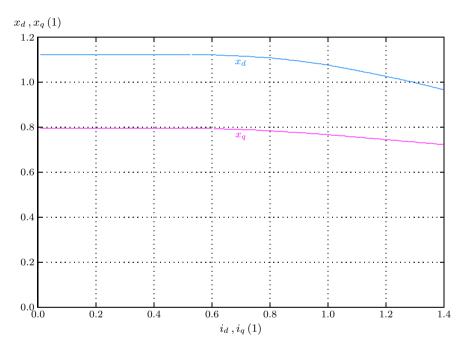
Lastdrehmoment $T_z(\varphi)$ eines Stranges und beider Stränge, Erregung mit $\hat{\Theta}_C = 7.2 \text{ kA}$, $\gamma_i = -\pi/2$, symmetrische Rotornuten und geblechte Joche (links), asymmetrische Rotornuten und Pulvermagnetjoche (rechts)

Analyse von Wasserkraft-Generatoren

Gesamt-Anordnung des Wasserkraft-Generators samt Turbine (ALSTOM)

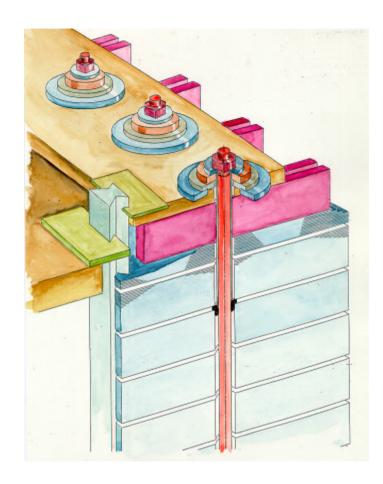
HAUPTDATEN DES WASSERKRAFT-GENERATORS (ALSTOM)

Nennscheinleistung	500	MVA
Nennspannung	21000	V
Nennstrom	13745	A
Leistungsfaktor	0.9	
Nennfrequenz	50	Hz
Nenndrehzahl	428	1/min
Maximaldrehzahl	800	1/min
Anzahl der Pole	14	
Anzahl der Statornuten	138	
Stator-Bohrungsdurchmesser	5350	mm
Stator-Paketlänge	2900	mm



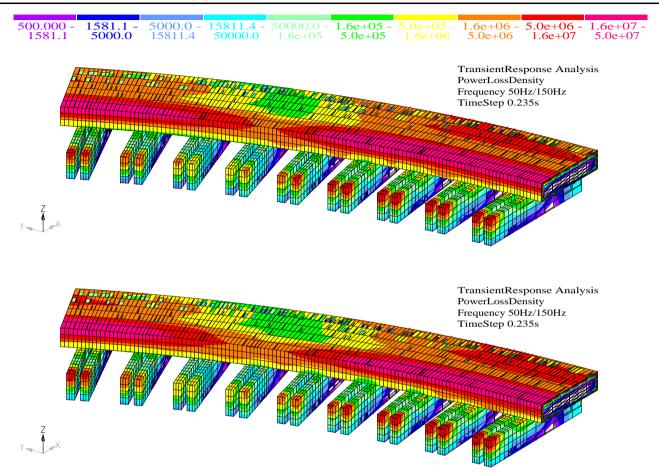
OBERWELLEN IN DER VERTEILUNG DER RADIALKOMPONENTE DER MAGNETISCHEN FLUSSDICHTE MIT VERSCHIEDENEN WICKLUNGSSCHRITTEN DER BRUCHLOCHWICKLUNG IM STATOR, ERREGUNG MIT STATORNENNSTROM

Erregung	Ordnungszahl	Amplitude	$\frac{W}{\tau_p} = \frac{56}{69}$	$\frac{W}{\tau_p} = \frac{63}{69}$	$\frac{W}{\tau_p} = \frac{70}{69}$
	21/7	B_{21}/B_7	9.83%	8.92%	9.45%
d-Achse	35/7	B_{35}/B_7	2.91%	$\boldsymbol{4.69\%}$	5.48%
	49/7	B_{49}/B_7	1.75%	0.37%	0.91%
q-Achse	21/7	B_{21}/B_7	30.30%	$\boldsymbol{32.17\%}$	31.50%
	35/7	B_{35}/B_7	8.57%	$\boldsymbol{4.88\%}$	6.10%
	49/7	B_{49}/B_7	5.28%	$\boldsymbol{2.86\%}$	3.99%


Stationäre Reaktanzen $x_d(i_d), x_q(i_q)$ in Abhängigkeit des Statorstroms i_S

Stationäre Reaktanzen – Vergleich zwischen Rechnung und Messung


Reaktanz		Rechenwert	Messwert
Streureaktanz	x_{σ}	0.104	0.105
d-Achse, ungesättigt	x_{du}	1.122	1.120
d-Achse, gesättigt	x_{ds}	1.076	1.070
q-Achse, ungesättigt	x_{qu}	0.795	0.800
q-Achse, gesättigt	x_{qs}	0.767	0.780


Statorblechpaket und Presskonstruktion mit durchgehenden Spannbolzen (ALSTOM)

Grundwelle und dritte Oberwelle des Stirnraumfeldes entlang einer Polteilung zufolge einer magnetischen Achsigkeit (oben) und einer hohen Sättigung im Stator (unten)

Verlustleistungsdichte im Statorpresssystem bei Leerlauf, Zeitpunkt $t=0.235\,\mathrm{s}$, nichtlinear transiente Analyse, Erregung mit Grundwelle und dritter Oberwelle zufolge magnetischer Achsigkeit (oben) und hoher Stator-Sättigung (unten)

Wirbelstromverluste [W] je Polpaar im Statorpresssystem bei Leerlauf

	Nichtlinear transiente Analyse				Linear zeit-harmonische Analyse			
	Pressfinger		Pressplatte		Pressfinger		Pressplatte	
	minimal	maximal	minimal	maximal	minimal	maximal	minimal	maximal
Grundwelle ohne dritter Oberwelle	813	814	5534	5536	821	821	5337	5337
Grundwelle und dritte Oberwelle zufolge einer magnetischen Achsigkeit	848	850	5848	5854	848	850	6801	6809
Grundwelle und dritte Oberwelle zufolge einer hohen Stator-Sättigung	846	847	5795	5800	848	850	6801	6809

Zusammenfassung

- Für den routinemäßigen Einsatz der Finite Elemente Methode bei Entwurf und Optimierung von elektrischen Maschinen sind effiziente Methoden für Modellierung und Analyse notwendig.
- In diesem Zusammenhang sind die wichtigsten Methoden einer effizienten Modellierung von Stator-Rotor-Positionen samt den Vor- und Nachteilen vorgestellt worden.
- Die ausgewählten Beispiele zeigen exemplarisch den Einsatz von Finite Elemente Analysen sowohl für Entwurf und Optimierung als auch für die Weiterentwicklung elektrischer Maschinen.
- Die präsentierten Anwendungen dokumentieren auch die erfolgreiche Zusammenarbeit mit bedeutenden Industriepartnern im Hinblick auf den Themenkreis Innovative Energietechnik.

