Fast neutron irradiation on K-doped Ba-122 Single Crystals.

D. Kagerbauer,¹ V. Mishev,¹ S. Ishida,² D. J. Song,² H. Ogino,² H. Eisaki,² M. Nakajima³ and M. Eisterer¹

¹ Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria

² Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan

³ Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan

Introduction

The doping dependence of the critical current density, J_c , and the transition temperature, T_c , are qualitatively different from each other in Ba-122 single crystals. A sharp peak was observed in the doping dependence of J_c for all dopants (K, P and Co), while T_c varies much smoother around its maximum [1]. We investigated the change of this behavior in the K-doped system after fast neutron irradiation. This technique is known to introduce defects up to a size of a few nanometers, which have proven to be more efficient for flux pinning than the crystallographic defects in the pristine crystal. Therefore, the doping dependence of J_c after irradiation can help to understand the pinning behavior in Ba-122. The K-doped system was chosen since it was shown that the achievable J_c s after fast neutron irradiation are the highest [2]. This is of particular interest, because understanding the pinning behavior may enable an optimization of the defect structure for achieving even higher J_c values by introducing artificial pinning centers during the crystal growth. The irradiation shifts the peak in J_c to higher doping levels than in the pristine crystal. Furthermore, the peak broadens, but is still sharper than the variation of T_c around its maximum.

Samples

• Iron based superconductors, **K** doped $\mathbf{Ba}_1\mathbf{Fe}_2\mathbf{As}_2$ single crystals (Ba122): $\mathbf{Ba}_{1-x}\mathbf{K}_x\mathbf{Fe}_2\mathbf{As}_2$

- Crystals were grown by the **self flux method** [3]
- Typical size: 1 mm x 1 mm, 30 μ m thick

Experiments

- T_c was obtained by AC susceptibility measurements in a **SQUID** magnetometer. For the definition of T_c the 10% criterion was used.
- J_c was calculated from magnetization measurement performed in a vector **VSM**. A self field correction was performed for the calculation of $J_c(B)$.
- The samples were irradiated with fast neutrons to introduce more efficient flux pinning centers. This was performed in a **TRIGA** Mark-II **research reactor**.

• The measurements before and after irradiation were done on the same crystals to avoid sample variations.

Results

CRITICAL TEMPERATURE

Pristine single crystals → sharp transitions due to high sample quality:

• T_c as a function of the K concentration: 1.) **smooth** variation over the whole doping range, 2.) broad maximum

- Fast neutron irradiation with a fluence of $1.7 \cdot 10^{21} \text{ m}^{-2}$ $\Rightarrow T_c$ decreases for all doping levels.
- ▶ Transition after irradiation widens, but is still sharp \rightarrow no sample damage due to the irradiation
- The crystal with **K** concentration $\boldsymbol{x} = \boldsymbol{0.3}$ before and after irradiation:

• Similar relative change of T_c for all K concentrations:

CRITICAL CURRENTS

• J_c of the pristine crystals at ${\bf 5}$ ${\bf K}$ and different applied fields as function of the doping level \to sharp peak:

• Introduction of defects from fast neutron irradiation \Rightarrow increase of J_c over the whole doping range. J_c at ${\bf 5}$ ${\bf K}$ and different applied fields:

• Enhancement of J_c due to fast neutron irradiation as a function of the K concentration:

PEAK POSITION

- Position of the peak in T_c does not change.
- Peak in J_c shifts to higher doping levels:

References

Journal of the Physical Society of Japan, 85, 2016.

- [1] S. Ishida, D.J. Song, H. Ogino, A. Iyo, H. Eisaki, M. Nakajima, J. Shimoyama, and M. Eisterer. Doping-dependent critical current properties in K, Co, and P-doped BaFe2As2 single crystals. *Physical Review B*, 95, 2017.
- [2] V. Mishev, M. Nakajima, H. Eisaki, and M. Eisterer.

 Effects of introducing isotropic artificial defects on the superconducting properties of differently doped Ba-122 based single crystals.

 Scientific Reports, 6, 2016.
- [3] K. Kihou, T. Saito, K. Fujita, S. Ishida, M. Nakajima, K. Horigane, H. Fukazawa, Y. Kohori, S. Uchida, J. Akimitsu, A. Iyo, C. Lee, and H. Eisaki.
 Single-Crystal Growth of Ba_{1-x}K_xFe₂As₂ by KAs Self-Flux Method.

Summary and Outlook

- Pristine crystals: ${\bf smooth}$ variation of $T_c \to {\bf irradiated}$ crystals: ${\bf decrease}$ of $T_c \to {\bf relative}$ change ${\bf similar}$ for all doping levels
- Distinct **peak** in $J_c \rightarrow$ irradiated crystals: **shift** of the peak and **smoother** curve
- Next steps: 1.) Further irradiation of the crystals. 2.) Investigation of Ba122 with other doping atoms.

