

Introduction

Nb₃Sn is the principally envisaged superconductor for the Future Circular Collider (FCC-hh) dipole magnets. We present the superconducting and magnetic characterization of prototype internal tin Nb_3Sn wires, manufactured at the Bochvar Institute (RU) with different designs and heat treatments. AC susceptibility was used to assess the critical temperatures, evaluating as well the longitudinal inhomogenities. The local properties were investigated using scanning Hall probe microscopy (SHPM): field maps of the Meissner-state revealed the effective geometry of prototype designs (sub-elements structure, barriers, width of resistive separators) whereas scans of the remnant fields enabled us to calculate the local critical currents.

Results

AC MAGNETOMETRY

• T_c measured via AC susceptibility over 8 different samples

FCC-hh Nb₃Sn wire development:

superconducting and magnetic properties of prototype samples

M. Ortino,¹ A. Moros,² M. Alekseev,³ A. Tsapleva,³ P. Lukyanov,³ M. Abdyukhanov,

³ V. Pantsyrny,³ B. Bordini,⁴ A. Ballarino,⁴ S. C. Hopkins,⁴ J. Bernardi,² and M. Eisterer¹

¹ Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria

² USTEM, TU Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria

³ A. A. Bochvar High-Technology Research Institute on Inorganic Materials, Moscow, Russia

⁴ CERN, 1211 Geneva 23, Switzerland

- ► Small step found at 6.9K in all samples (bigger in Nb+Ta distributed barrier)
- ► Small step found at 8.55 K in samples with Cu-Mn resistive separators

State of the art

Pushing Nb₃Sn to its performance limits ► FCC-hh dipole-magnets conductor standards are:

 1.5 kA/mm^2 non-Cu J_c at 4.2 K and 16 T

- ► Performances not yet reached with Nb₃Sn but J_c still enhanceable
- Nb_3Sn is a cheaper conductor than HTS and produced worldwide

► Longitudinal inhomogeneity in the signal magnitude of $\sim 20\%$ over a short length

SCANNING HALL PROBE MICROSCOPY

Remanent-field scans (sample fully magnetized, then scanned in self-field)

1900

1800

1700

(単 1500

1400

1300

x coordinate [um]

Samples

2 samples prepared in thin slices:

Wire identification	"Standard layout"	"Clusters layout"
Wire dia, mm	0.7	0.7; 0.36
Barrier	Distributed Nb	Distributed
		Nb+Ta
Subelement number	37	37
Subelement size, µm	80	80; 40
Clusters number	-	37×3
Clusters size, µm	-	47; 24
Resistive separator	-	Cu
Number of filaments	29082	29082
Filament diameter, µm	1.6	1.6
Nominal doping, at%Ti	1.4	1.4
Cu-non-Cu ratio	1.3	1.15

Local properties investigation methods require high-quality sample preparation:

- ► Specimens cut with diamond saw and polished with gradually decreasing-roughness grinding paper (Al/Sioxide)
- ► Thickness of the sample should be reduced towards the thinnest achievable slice(best result = $20\mu m$)

allow the evaluation of single sub-element magnetization profiles at different temperatures

By inverting the remanent field profiles it is possible to evaluate the local currents flowing over the cross section

► Same slices are used for SHPM and SEM/TEM ► Cu-etching is sometimes required in order to bet-

ter

evaluate the A-15

phase homogeneity of

single sub-elements over

Remanent-field profile at 10 K

Summary and Outlook

- T_c assessed for all specimens, local J_c evaluated for 2 layouts
- ► Sn radial concentration analysis not achievable via magnetization methods within these layouts configuration
- Further investigation on Cu-etched samples ongoing
- ▶ Next steps: investigation of the common Nb+Ta clusters-layout samples with Cu-Mn resistive separators

Acknowledgments

the radial direction

This work is part of the Marie Sklodowska-Curie Action EASITrain - European Advanced Superconductivity Innovation and Training, funded by the European Union within the H2020 framework Programme under the agreement no. 764879

Scan QR-Code to download poster.