Hadronic EDMs & Form Factors from Dyson-Schwinger Equations

ario Pitschmann

May 5th, 2014 / Ubatuba

Introduction

- Introduction
- Part A: DSE Contact Interaction Model
- Part B: *The ρ Meson*
- Part C: The Nucleon
- Conclusion & Outlook

Introduction: The Energy Scale

Introduction: The Energy Scale & Effective EDM Operators for dim \geq 4 at scale \sim 1 GeV

Calculation of hadronic EDMs naturally splits into 2 parts

- Calculation of Wilson coefficients by integrating out short distances
- Switching from perturbative quark-gluon description to non-perturbative treatment
 - (much harder and larger uncertainties)

Effective EDM Operators for dim \geq 4 at scale \sim 1 GeV

$$\mathcal{L}_{M}^{1GeV} = \frac{g_{s}^{2}}{32\pi^{2}} \Theta G_{\mu\nu}^{a} \tilde{G}^{a,\mu\nu}$$

$$-\frac{i}{2} \sum_{i=e,u,d,s} d_{i} \bar{\psi}_{i} (F \cdot \sigma) \gamma^{5} \psi_{i} - \frac{i}{2} g_{s} \sum_{i=u,d,s} \tilde{d}_{i} \bar{\psi}_{i} (G \cdot \sigma) \gamma^{5} \psi_{i}$$

$$+ \sum_{i,j=e,u,d,s} C_{ij} (\bar{\psi}_{i} \psi_{i}) (\bar{\psi}_{j} i \gamma^{5} \psi_{j}) + \cdots$$

Part A: DSE Contact Interaction Model

1. Dyson-Schwinger Equations

- Non-perturbative continuum approach to any QFT
 DSE is an infinite tower of equations relating all correlation functions
- DSE are exact relations and are the quantum Euler-Lagrange equations for any QFT
- Perturbative Expansion yields standard perturbative QFT
- DSE provides Dynamical Chiral Symmetry Breaking, i.e dynamically induced mass even in the chiral limit ("mass from nothing")

Gluon Propagator

• DSE and unquenched QCD lattice studies show that the

full gluon propagator

$$D^{ab}_{\mu
u}(p) = \delta^{ab} rac{\mathcal{G}\ell(p^2)}{p^2} \left(\delta_{\mu
u} - rac{p_{\mu}p_{
u}}{p^2}
ight)$$

is IR finite, i.e.

$$\lim_{p^2 \to 0} D^{ab}_{\mu\nu}(p) = finite$$

- the gluon has dynamically generated mass in the IR

 EM Observables in the static limit (q_µ → 0) probe gluon propagator for small transversed momenta ⇒

point-like vector \times vector contact interaction

$$g^2 D^{ab}_{\mu\nu}(p) = \delta^{ab} \delta_{\mu\nu} \frac{1}{m_G^2}$$

Contact Interaction Model

This implies

- Non-renormalizable theory
- Introduce proper-time regularization
- $\Lambda_{uv} = 1/\tau_{uv}$ cannot be removed but plays a dynamical role and sets the scale of all dimensioned quantities
- $\Lambda_{ir} = 1/\tau_{ir}$ implements *confinement* by ensuring the *absence of quark production tresholds*
 - Scale *m_G*, is set in agreement with *observables*
 - In the static limit $q^2 \rightarrow 0$ results "indistinguishable" from any other however sophisticated DSE approach
 - For q² ≥ M²_{dressed} deviations are expected from other experimental values

Part C: The ρ Meson

The ρ Meson

- "Per se" from an experimental point of view uninteresting
- Short lifetime (~ 10⁻²⁴ s) makes EDM measurements hard (or rather impossible)
- Simplest system possibly providing EDM and hence perfect prototype particle
- Results available in QCD sum rules and other techniques

Profile

$$I^{G}(J^{PC}) = 1^{+}(1^{--})$$

2
$$m = 775.49 \pm 0.34$$
 MeV,

 $\Gamma = 149.1 \pm 0.8 \text{ MeV}$

3 Primary decay mode (~ 100%): $\rho \rightarrow \pi \pi$

The ρ -Meson in Impulse Approximation

Impulse Approximation

$$\Gamma_{\alpha\mu\beta}^{(u)} \propto \int \frac{d^4k}{(2\pi)^4} \operatorname{Tr}_{CD} \left\{ \Gamma_{\beta}^{\rho(u)} S(k_{++}) \Gamma_{\mu}^{(u)} S(k_{-+}) \Gamma_{\alpha}^{\rho(u)} S(k_{--}) \right\}$$

EDM sources induce CP violating corrections to the

- **1** $q\gamma q$ vertex
- 2 Bethe-Salpeter amplitude
- Propagator

The $\rho\gamma\rho$ vertex

$$\begin{aligned} d_{\alpha\nu}(p)\Gamma_{\nu\mu\sigma}d_{\sigma\beta}(p') &= \\ d_{\alpha\nu}(p)\Big\{(p+p')_{\mu}[-\delta_{\nu\sigma}\,\mathcal{E}(q^2) + q_{\nu}q_{\sigma}\,\mathcal{Q}(q^2)] \\ &+ (\delta_{\mu\nu}q_{\sigma} - \delta_{\mu\sigma}q_{\nu})\,\mathcal{M}(q^2) - i\varepsilon_{\nu\sigma\mu\rho}q_{\rho}\,\mathcal{D}(q^2)\Big\}d_{\sigma\beta}(p') \end{aligned}$$

with CP conserving form factors

- for *charge* $\mathcal{E}(0) = 1$
- magnetic dipole moment $\mathcal{M}(0)$ in units $e/(2m_{\rho})$

• *quadrupole moment* Q(0) with form factor $Q(0) = (2/m^2)(Q + \mu - 1)$

and CP violating term

• *electric dipole moment* $\mathcal{D}(0)$ in units $e/(2m_{\rho})$

Form factors will be *projected out* by appropriate *projection operators*

The Magnetic Moment

Results for $\mathcal{M}(0)$ in units $e/(2m_{\rho})$

DSE - CIM	2.11
DSE - RL RGI-improved	2.01
DSE - EF parametrisation	2.69
LF - <i>CQM</i>	2.14
LF - <i>CQM</i>	1.92
QCD sum rules	1.8 ± 0.3
point particle	2

$$\mathcal{L}_{\mathsf{eff}} = -i ar{\Theta} rac{g_s^2}{32\pi^2} \, G^a_{\mu
u} ilde{G}^a_{\mu
u}$$

- No suppression by heavy scale (strong CP problem)
- *U*(1)_A anomaly allows to rotate it into complex mass for evaluation (*effective propagator correction*)

$$\mathcal{L}_{\mathsf{eff}} = -i ar{\Theta} rac{g_s^2}{32\pi^2} \, G^a_{\mu
u} ilde{G}^a_{\mu
u}$$

- No suppression by heavy scale (strong CP problem)
- *U*(1)_A anomaly allows to rotate it into complex mass for evaluation (*effective propagator correction*)

$$\mathcal{L}_{\mathsf{eff}} = -i ar{\Theta} rac{g_s^2}{32\pi^2} \, G^a_{\mu
u} ilde{G}^a_{\mu
u}$$

- No suppression by heavy scale (strong CP problem)
- *U*(1)_A anomaly allows to rotate it into complex mass for evaluation (*effective propagator correction*)

$$\mathcal{L}_{\mathsf{eff}} = -i ar{\Theta} rac{g_s^2}{32\pi^2} \, G^a_{\mu
u} ilde{G}^a_{\mu
u}$$

- No suppression by heavy scale (strong CP problem)
- *U*(1)_A anomaly allows to rotate it into complex mass for evaluation (*effective propagator correction*)

$$\mathcal{L}_{\mathsf{eff}} = -i ar{\Theta} rac{g_s^2}{32\pi^2} \, G^a_{\mu
u} ilde{G}^a_{\mu
u}$$

- No suppression by heavy scale (strong CP problem)
- *U*(1)_A anomaly allows to rotate it into complex mass for evaluation (*effective propagator correction*)

$$\mathcal{L}_{\mathsf{eff}} = -i ar{\Theta} rac{g_s^2}{32\pi^2} \, G^a_{\mu
u} ilde{G}^a_{\mu
u}$$

- No suppression by heavy scale (strong CP problem)
- *U*(1)_A anomaly allows to rotate it into complex mass for evaluation (*effective propagator correction*)

The Quark-EDM

• The intrinsic EDM of a quark itself

$$\mathcal{L}_{\mathsf{eff}} = -\frac{i}{2} \sum_{q=u,d} d_q \, \bar{q} \sigma_{\mu\nu} \gamma^5 q \, F_{\mu\nu}$$

DSE - CIM	$0.79\left(d_u-d_d\right)$
DSE	$0.72\left(d_u-d_d\right)$
Bag Model	$0.83\left(d_u-d_d\right)$
QCD sum rules	$0.51\left(d_u-d_d\right)$
Non-relativistic quark model	$1.00\left(d_u-d_d\right)$

• The Intrinsic Chromo-EDM of a quark itself

$$\mathcal{L}_{\mathsf{eff}} = -\frac{i}{2} g_s \sum_{q=u,d} \tilde{d}_q \bar{q} \frac{1}{2} \lambda^a \sigma_{\mu\nu} \gamma^5 q \, G^a_{\mu\nu}$$

DSE - $q\gamma q$	$-0.07 \widetilde{ed}_{-} - 0.20 \widetilde{ed}_{+}$
DSE - BSA	$-0.12 \tilde{ed}_{-} + 0.11 \tilde{ed}_{+}$
DSE - Propagator	$1.35\tilde{ed}_{-} - 0.60\tilde{ed}_{+}$
DSE	$1.16\tilde{ed}_{-} - 0.69\tilde{ed}_{+}$
QCD sum rules	−0.13 ed_

• The Intrinsic Chromo-EDM of a quark itself

$$\mathcal{L}_{\mathsf{eff}} = -\frac{i}{2} g_s \sum_{q=u,d} \tilde{d}_q \bar{q} \frac{1}{2} \lambda^a \sigma_{\mu\nu} \gamma^5 q G^a_{\mu\nu}$$

DSE - $q\gamma q$	$-0.07 \widetilde{ed}_{-} - 0.20 \widetilde{ed}_{+}$
DSE - BSA	$-0.12 \tilde{ed}_{-} + 0.11 \tilde{ed}_{+}$
DSE - Propagator	$1.35\tilde{ed}_{-} - 0.60\tilde{ed}_{+}$
DSE	$1.16\tilde{ed}_{-} - 0.69\tilde{ed}_{+}$
QCD sum rules	−0.13 ed_

• The Intrinsic Chromo-EDM of a quark itself

$$\mathcal{L}_{\mathsf{eff}} = -\frac{i}{2} g_s \sum_{q=u,d} \tilde{d}_q \bar{q} \frac{1}{2} \lambda^a \sigma_{\mu\nu} \gamma^5 q G^a_{\mu\nu}$$

DSE - $q\gamma q$	$-0.07\tilde{ed}_{-}-0.20\tilde{ed}_{+}$
DSE - BSA	$-0.12 \tilde{ed}_{-} + 0.11 \tilde{ed}_{+}$
DSE - Propagator	$1.35\tilde{ed}_{-} - 0.60\tilde{ed}_{+}$
DSE	$1.16\tilde{ed}_{-} - 0.69\tilde{ed}_{+}$
QCD sum rules	−0.13 ed_

• The Intrinsic Chromo-EDM of a quark itself

$$\mathcal{L}_{\mathsf{eff}} = -\frac{i}{2} g_s \sum_{q=u,d} \tilde{d}_q \bar{q} \frac{1}{2} \lambda^a \sigma_{\mu\nu} \gamma^5 q G^a_{\mu\nu}$$

DSE - $q\gamma q$	$-0.07 \widetilde{ed}_{-} - 0.20 \widetilde{ed}_{+}$
DSE - BSA	$-0.12 \tilde{ed}_{-} + 0.11 \tilde{ed}_{+}$
DSE - Propagator	$1.35 \tilde{ed}_{-} - 0.60 \tilde{ed}_{+}$
DSE	$1.16\tilde{ed}_{-} - 0.69\tilde{ed}_{+}$
QCD sum rules	−0.13 ed_

• The Intrinsic Chromo-EDM of a quark itself

$$\mathcal{L}_{\mathsf{eff}} = -\frac{i}{2} g_s \sum_{q=u,d} \tilde{d}_q \bar{q} \frac{1}{2} \lambda^a \sigma_{\mu\nu} \gamma^5 q G^a_{\mu\nu}$$

DSE - $q\gamma q$	$-0.07 \widetilde{ed}_{-} - 0.20 \widetilde{ed}_{+}$
DSE - BSA	$-0.12 \tilde{ed}_{-} + 0.11 \tilde{ed}_{+}$
DSE - Propagator	$1.35 \tilde{ed}_{-} - 0.60 \tilde{ed}_{+}$
DSE	$1.16\tilde{ed}_{-} - 0.69\tilde{ed}_{+}$
QCD sum rules	−0.13 ed_

• The Intrinsic Chromo-EDM of a quark itself

$$\mathcal{L}_{\mathsf{eff}} = -\frac{i}{2} g_s \sum_{q=u,d} \tilde{d}_q \bar{q} \frac{1}{2} \lambda^a \sigma_{\mu\nu} \gamma^5 q G^a_{\mu\nu}$$

DSE - $q\gamma q$	$-0.07\tilde{ed}_{-}-0.20\tilde{ed}_{+}$
DSE - BSA	$-0.12 \tilde{ed}_{-} + 0.11 \tilde{ed}_{+}$
DSE - Propagator	$1.35\tilde{ed}_{-} - 0.60\tilde{ed}_{+}$
DSE	$1.16\tilde{ed}_{-} - 0.69\tilde{ed}_{+}$
QCD sum rules	−0.13 ed_

• The Intrinsic Chromo-EDM of a quark itself

$$\mathcal{L}_{\mathsf{eff}} = -\frac{i}{2} g_s \sum_{q=u,d} \tilde{d}_q \bar{q} \frac{1}{2} \lambda^a \sigma_{\mu\nu} \gamma^5 q G^a_{\mu\nu}$$

DSE - $q\gamma q$	$-0.07 \widetilde{ed}_{-} - 0.20 \widetilde{ed}_{+}$
DSE - BSA	$-0.12 \tilde{ed}_{-} + 0.11 \tilde{ed}_{+}$
DSE - Propagator	$1.35\tilde{ed}_{-} - 0.60\tilde{ed}_{+}$
DSE	$1.16\tilde{ed}_{-} - 0.69\tilde{ed}_{+}$
QCD sum rules	-0.13 ed

• The Intrinsic Chromo-EDM of a quark itself

$$\mathcal{L}_{\mathsf{eff}} = -\frac{i}{2} g_s \sum_{q=u,d} \tilde{d}_q \bar{q} \frac{1}{2} \lambda^a \sigma_{\mu\nu} \gamma^5 q G^a_{\mu\nu}$$

DSE - $q\gamma q$	$-0.07 \widetilde{ed}_{-} - 0.20 \widetilde{ed}_{+}$
DSE - BSA	$-0.12 \tilde{ed}_{-} + 0.11 \tilde{ed}_{+}$
DSE - Propagator	$1.35\tilde{ed}_{-} - 0.60\tilde{ed}_{+}$
DSE	$1.16\tilde{ed}_{-} - 0.69\tilde{ed}_{+}$
QCD sum rules	−0.13 ed_

• The Intrinsic Chromo-EDM of a quark itself

$$\mathcal{L}_{\mathsf{eff}} = -\frac{i}{2} g_s \sum_{q=u,d} \tilde{d}_q \bar{q} \frac{1}{2} \lambda^a \sigma_{\mu\nu} \gamma^5 q G^a_{\mu\nu}$$

DSE - $q\gamma q$	$-0.07\tilde{ed}_{-}-0.20\tilde{ed}_{+}$
DSE - BSA	$-0.12 \tilde{ed}_{-} + 0.11 \tilde{ed}_{+}$
DSE - Propagator	$1.35\tilde{ed}_{-} - 0.60\tilde{ed}_{+}$
DSE	$1.16\tilde{ed}_{-} - 0.69\tilde{ed}_{+}$
QCD sum rules	−0.13 ed_

• The Intrinsic Chromo-EDM of a quark itself

$$\mathcal{L}_{\mathsf{eff}} = -\frac{i}{2} g_s \sum_{q=u,d} \tilde{d}_q \bar{q} \frac{1}{2} \lambda^a \sigma_{\mu\nu} \gamma^5 q G^a_{\mu\nu}$$

DSE - $q\gamma q$	$-0.07 \widetilde{ed}_{-} - 0.20 \widetilde{ed}_{+}$
DSE - BSA	$-0.12 \tilde{ed}_{-} + 0.11 \tilde{ed}_{+}$
DSE - Propagator	$1.35\tilde{ed}_{-} - 0.60\tilde{ed}_{+}$
DSE	$1.16\tilde{ed}_{-} - 0.69\tilde{ed}_{+}$
QCD sum rules	−0.13 ed_

• The Intrinsic Chromo-EDM of a quark itself

$$\mathcal{L}_{\mathsf{eff}} = -\frac{i}{2} g_s \sum_{q=u,d} \tilde{d}_q \bar{q} \frac{1}{2} \lambda^a \sigma_{\mu\nu} \gamma^5 q G^a_{\mu\nu}$$

DSE - $q\gamma q$	$-0.07 \widetilde{ed}_{-} - 0.20 \widetilde{ed}_{+}$
DSE - BSA	$-0.12 \tilde{ed}_{-} + 0.11 \tilde{ed}_{+}$
DSE - Propagator	$1.35\tilde{ed}_{-} - 0.60\tilde{ed}_{+}$
DSE	$1.16\tilde{ed}_{-} - 0.69\tilde{ed}_{+}$
QCD sum rules	−0.13 ed_

• The Intrinsic Chromo-EDM of a quark itself

$$\mathcal{L}_{\mathsf{eff}} = -\frac{i}{2} g_s \sum_{q=u,d} \tilde{d}_q \bar{q} \frac{1}{2} \lambda^a \sigma_{\mu\nu} \gamma^5 q G^a_{\mu\nu}$$

DSE - $q\gamma q$	$-0.07 \widetilde{ed}_{-} - 0.20 \widetilde{ed}_{+}$
DSE - BSA	$-0.12 \tilde{ed}_{-} + 0.11 \tilde{ed}_{+}$
DSE - Propagator	$1.35\tilde{ed}_{-} - 0.60\tilde{ed}_{+}$
DSE	$1.16\tilde{ed}_{-} - 0.69\tilde{ed}_{+}$
QCD sum rules	−0.13 ed_

• The Intrinsic Chromo-EDM of a quark itself

$$\mathcal{L}_{\mathsf{eff}} = -\frac{i}{2} g_s \sum_{q=u,d} \tilde{d}_q \bar{q} \frac{1}{2} \lambda^a \sigma_{\mu\nu} \gamma^5 q G^a_{\mu\nu}$$

DSE - $q\gamma q$	$-0.07\tilde{ed}_{-}-0.20\tilde{ed}_{+}$
DSE - BSA	$-0.12 \tilde{ed}_{-} + 0.11 \tilde{ed}_{+}$
DSE - Propagator	$1.35\tilde{ed}_{-} - 0.60\tilde{ed}_{+}$
DSE	$1.16\tilde{ed}_{-} - 0.69\tilde{ed}_{+}$
QCD sum rules	−0.13 ed_

• The Intrinsic Chromo-EDM of a quark itself

$$\mathcal{L}_{\mathsf{eff}} = -\frac{i}{2} g_s \sum_{q=u,d} \tilde{d}_q \bar{q} \frac{1}{2} \lambda^a \sigma_{\mu\nu} \gamma^5 q G^a_{\mu\nu}$$

DSE - $q\gamma q$	$-0.07\tilde{ed}_{-}-0.20\tilde{ed}_{+}$
DSE - BSA	$-0.12 \tilde{ed}_{-} + 0.11 \tilde{ed}_{+}$
DSE - Propagator	$1.35\tilde{ed}_{-} - 0.60\tilde{ed}_{+}$
DSE	$1.16\tilde{ed}_{-} - 0.69\tilde{ed}_{+}$
QCD sum rules	−0.13 ed_

• The Intrinsic Chromo-EDM of a quark itself

$$\mathcal{L}_{\mathsf{eff}} = -\frac{i}{2} g_s \sum_{q=u,d} \tilde{d}_q \bar{q} \frac{1}{2} \lambda^a \sigma_{\mu\nu} \gamma^5 q G^a_{\mu\nu}$$

DSE - $q\gamma q$	$-0.07\tilde{ed}_{-}-0.20\tilde{ed}_{+}$
DSE - BSA	$-0.12 \tilde{ed}_{-} + 0.11 \tilde{ed}_{+}$
DSE - Propagator	$1.35\tilde{ed}_{-} - 0.60\tilde{ed}_{+}$
DSE	$1.16\tilde{ed}_{-} - 0.69\tilde{ed}_{+}$
QCD sum rules	−0.13 ed_

$$\mathcal{L} = i \frac{\mathcal{K}}{\Lambda^2} \varepsilon_{ij} (\bar{Q}_i d) (\bar{Q}_j \gamma^5 u) \quad \text{with} \quad \bar{Q}_i = \begin{pmatrix} \bar{u} \\ \bar{d} \end{pmatrix}$$

- No results obtained in other methods yet
- Effective qyq vertex correction

$$\mathcal{L} = i \frac{\mathcal{K}}{\Lambda^2} \varepsilon_{ij} (\bar{Q}_i d) (\bar{Q}_j \gamma^5 u) \quad \text{with} \quad \bar{Q}_i = \begin{pmatrix} \bar{u} \\ \bar{d} \end{pmatrix}$$

- No results obtained in other methods yet
- Effective qyq vertex correction

$$\mathcal{L} = i \frac{\mathcal{K}}{\Lambda^2} \varepsilon_{ij} (\bar{Q}_i d) (\bar{Q}_j \gamma^5 u) \quad \text{with} \quad \bar{Q}_i = \begin{pmatrix} \bar{u} \\ \bar{d} \end{pmatrix}$$

- No results obtained in other methods yet
- Effective Bethe-Salpeter amplitude correction

DSE - $q\gamma q$	$-1.00 imes10^{-5}\mathcal{K}e u_H/\Lambda^2$
DSE - BSA	$-9.11 imes10^{-7}\mathcal{K}e u_H/\Lambda^2$
DSE - Propagator	$-6.91 imes10^{-6}\mathcal{K}e u_{H}/\Lambda^{2}$
DSE	$-1.79 imes10^{-5}\mathcal{K}e u_H/\Lambda^2$

$$\mathcal{L} = i \frac{\mathcal{K}}{\Lambda^2} \varepsilon_{ij} (\bar{Q}_i d) (\bar{Q}_j \gamma^5 u) \quad \text{with} \quad \bar{Q}_i = \begin{pmatrix} \bar{u} \\ \bar{d} \end{pmatrix}$$

- No results obtained in other methods yet
- Effective Bethe-Salpeter amplitude correction

$$\mathcal{L} = i \frac{\mathcal{K}}{\Lambda^2} \varepsilon_{ij} (\bar{Q}_i d) (\bar{Q}_j \gamma^5 u) \quad \text{with} \quad \bar{Q}_i = \begin{pmatrix} \bar{u} \\ \bar{d} \end{pmatrix}$$

- No results obtained in other methods yet
- Effective Bethe-Salpeter amplitude correction

DSE - $q\gamma q$	$ -1.00 imes10^{-5}\mathcal{K}e u_H/\Lambda^2 $
DSE - BSA	$-9.11 imes10^{-7}\mathcal{K}e u_H/\Lambda^2$
DSE - Propagator	$-6.91 imes10^{-6}\mathcal{K}e u_{H}/\Lambda^{2}$
DSE	$-1.79 imes10^{-5}\mathcal{K}e u_H/\Lambda^2$

$$\mathcal{L} = i \frac{\mathcal{K}}{\Lambda^2} \varepsilon_{ij} (\bar{Q}_i d) (\bar{Q}_j \gamma^5 u) \quad \text{with} \quad \bar{Q}_i = \begin{pmatrix} \bar{u} \\ \bar{d} \end{pmatrix}$$

- No results obtained in other methods yet
- Effective Bethe-Salpeter amplitude correction

$$\mathcal{L} = i \frac{\mathcal{K}}{\Lambda^2} \varepsilon_{ij} (\bar{Q}_i d) (\bar{Q}_j \gamma^5 u) \quad \text{with} \quad \bar{Q}_i = \begin{pmatrix} \bar{u} \\ \bar{d} \end{pmatrix}$$

- No results obtained in other methods yet
- Effective propagator correction

DSE - $q\gamma q$	$-1.00 imes 10^{-5} \mathcal{K}e u_H / \Lambda^2$
DSE - BSA	$-9.11 imes10^{-7}\mathcal{K}e u_H/\Lambda^2$
DSE - Propagator	$-6.91 imes10^{-6}\mathcal{K}e u_{H}/\Lambda^{2}$
DSE	$-1.79 imes 10^{-5} \mathcal{K}e u_H / \Lambda^2$

$$\mathcal{L} = i \frac{\mathcal{K}}{\Lambda^2} \varepsilon_{ij} (\bar{Q}_i d) (\bar{Q}_j \gamma^5 u) \quad \text{with} \quad \bar{Q}_i = \begin{pmatrix} \bar{u} \\ \bar{d} \end{pmatrix}$$

- No results obtained in other methods yet
- Effective propagator correction

DSE - $q\gamma q$	$-1.00 imes10^{-5}\mathcal{K}e u_H/\Lambda^2$
DSE - BSA	$-9.11 imes 10^{-7}\mathcal{K}e u_{H}/\Lambda^{2}$
DSE - Propagator	$-6.91 imes10^{-6}\mathcal{K}e u_{H}/\Lambda^{2}$
DSE	$-1.79 imes10^{-5}\mathcal{K}e u_H/\Lambda^2$

$$\mathcal{L} = i \frac{\mathcal{K}}{\Lambda^2} \varepsilon_{ij} (\bar{Q}_i d) (\bar{Q}_j \gamma^5 u) \quad \text{with} \quad \bar{Q}_i = \begin{pmatrix} \bar{u} \\ \bar{d} \end{pmatrix}$$

- No results obtained in other methods yet
- Effective propagator correction

DSE - $q\gamma q$	$-1.00 imes 10^{-5} \mathcal{K}e u_H / \Lambda^2$
DSE - BSA	$-9.11 imes10^{-7}\mathcal{K}e u_H/\Lambda^2$
DSE - Propagator	$-6.91 imes10^{-6}\mathcal{K}e u_{H}/\Lambda^{2}$
DSE	$-1.79 imes10^{-5}\mathcal{K}e u_H/\Lambda^2$

Conclusion I

- Chromo-EDM contribution (despite loop suppression) is of comparable size with quark-EDM contribution (corroborates QCD SR result by Ritz & Pospelov)
- Some models suggest $d_f = D_q \frac{e \nu_H}{\Lambda^2} \sim \frac{m_f}{\nu_H} \frac{e \nu_H}{\Lambda^2} \sim 10^{-5} \frac{e \nu_H}{\Lambda^2}$ in which case EDM sources considered here (except θ) give comparable contributions
- DSE CIM yields reliable results for a whole class of observables in the static limit, which makes it important for EDM calculations

Part D: The Nucleon

Introduction

Nucleon's tensor charge

$$\langle P(p,\sigma)|\bar{q}\sigma_{\mu\nu}q|P(p,\sigma)\rangle = \delta q \,\bar{u}(p,\sigma)\sigma_{\mu\nu}u(p,\sigma) \qquad (q=u,d,\ldots)$$

Isoscalar tensor current:

$$(\delta u + \delta d) \,\bar{u}(p) \sigma_{\mu\nu} u(p) = g_T^{(0)} \,\bar{u}(p) \sigma_{\mu\nu} u(p)$$

Isovector tensor current:

hence $\delta u - \delta d$ is experimentally accessible via neutron β -decay

Relation to EDM via $\sigma_{\alpha\beta}\gamma^5 = \frac{1}{2}\varepsilon_{\alpha\beta\mu\nu}\sigma_{\mu\nu}$

$$\langle P(p,\sigma)|\bar{q}\sigma_{\alpha\beta}\gamma^5 q|P(p,\sigma)\rangle = \delta q \,\bar{u}(p,\sigma)\sigma_{\alpha\beta}\gamma^5 u(p,\sigma) \quad (q=u,d,\ldots)$$

$$\Lambda^{+}(p)S\int \frac{d^{4}\ell}{(2\pi)^{4}} S^{(u)}(\ell+p)\sigma_{\mu\nu}S^{(u)}(\ell+p)\Delta^{0^{+}}(-\ell)S\Lambda^{+}(p)$$
$$= \mathcal{N}\,\delta d\,\Lambda^{+}(p)\sigma_{\mu\nu}\Lambda^{+}(p)$$

$$S = s \mathbf{1}_D \qquad (s = 0.8810)$$
$$\Lambda^+(p) = \frac{1}{2m_N} \left(-i\gamma \cdot p + m_N\right)$$

$$\begin{split} \Lambda^{+}(p)\mathcal{A}^{j}_{\alpha}(-p) &\int \frac{d^{4}\ell}{(2\pi)^{4}} S^{(q)}(\ell+p)\sigma_{\mu\nu}S^{(q)}(\ell+p)\Delta^{1+}_{\alpha\beta}(-\ell)\mathcal{A}^{j}_{\beta}(p)\Lambda^{+}(p) \\ &= \mathcal{N}\,\delta q\,\Lambda^{+}(p)\sigma_{\mu\nu}\Lambda^{+}(p) \end{split}$$

$$\mathcal{A}^{j}_{\mu}(p) = a^{j}_{1}(p) i\gamma_{5}\gamma_{\mu} + a^{j}_{2}(p) \gamma_{5}\hat{p}_{\mu} \qquad \left(\hat{p}^{2} = -1, j = +, 0\right)$$
$$a^{+}_{1} = -0.380, a^{+}_{2} = -0.065, a^{0}_{1} = 0.270, a^{0}_{2} = 0.046$$

$$\begin{split} \Lambda^{+} \mathcal{A}^{j}_{\alpha}(-p) \int \frac{d^{4}\ell}{(2\pi)^{4}} \,\Delta^{1+}_{\alpha\alpha'}(\ell+p) \Lambda_{\alpha'\mu\nu\beta'} \Delta^{1+}_{\beta'\beta}(\ell+p) S^{(q)}(-\ell) \mathcal{A}^{j}_{\beta}(p) \Lambda^{+} \\ &= \mathcal{N} \,\delta q \,\Lambda^{+}(p) \sigma_{\mu\nu} \Lambda^{+}(p) \end{split}$$

$$\mathcal{A}^{j}_{\mu}(p) = a^{j}_{1}(p) \gamma_{5}\gamma_{\mu} + a^{j}_{2}(p) \gamma_{5}\hat{p}_{\mu} \qquad \left(\hat{p}^{2} = -1, j = +, 0\right)$$
$$a^{+}_{1} = -0.380, a^{+}_{2} = -0.065, a^{0}_{1} = 0.270, a^{0}_{2} = 0.046$$

$$\Lambda^{+}(p)\mathcal{S}\int \frac{d^{4}\ell}{(2\pi)^{4}} \,\Delta^{0^{+}}(\ell+p)\Lambda_{\mu\nu}\Delta^{0^{+}}(\ell+p)S^{(q)}(-\ell)\mathcal{S}\Lambda^{+}(p)$$
$$= 0$$

"A spinless particle cannot have a vectorial/tensorial structure of any kind!"

$$\Lambda^{+}(p)S\int \frac{d^{4}\ell}{(2\pi)^{4}} \Delta^{0^{+}}(\ell+p)\Lambda_{\mu\nu\alpha}\Delta^{1^{+}}_{\alpha\beta}(\ell+p)S^{(u)}(-\ell)\mathcal{A}^{0}_{\beta}(p)\Lambda^{+}(p)$$
$$= \mathcal{N}\,\delta d\,\Lambda^{+}(p)\sigma_{\mu\nu}\Lambda^{+}(p)$$

$$S = s \mathbf{1}_D \qquad (s = 0.8810)$$

$$\mathcal{A}^0_\mu(p) = a^0_1(p) \, i\gamma_5 \gamma_\mu + a^0_2(p) \, \gamma_5 \hat{p}_\mu \qquad (a^0_1 = 0.270, \, a^0_2 = 0.046)$$

$$\Lambda^{+}(p)\mathcal{A}^{0}_{\alpha}(-p)\int \frac{d^{4}\ell}{(2\pi)^{4}} \Delta^{1+}_{\alpha\beta}(\ell+p)\Lambda_{\beta\mu\nu}\Delta^{0+}(\ell+p)S^{(u)}(-\ell)S\Lambda^{+}(p)$$
$$= \mathcal{N}\,\delta d\,\Lambda^{+}(p)\sigma_{\mu\nu}\Lambda^{+}(p)$$

$$S = s \mathbf{1}_D \qquad (s = 0.8810)$$

$$\mathcal{A}^0_\mu(p) = a^0_1(p) \, i\gamma_5 \gamma_\mu + a^0_2(p) \, \gamma_5 \hat{p}_\mu \qquad (a^0_1 = 0.270, \, a^0_2 = 0.046)$$

1 - JLab 12 2 - Anselmino et al., Nucl.Phys.Proc.Suppl. (2009)

 δ u = 0.54^{+0.09}_{-0.22}, δ d = -0.23^{+0.09}_{-0.16} 3 - Cloet, Bentz and Thomas, Phys.Lett.B (2008)

4 - Wakamatsu, Phys.Lett.B (2007)

5 - Gockeler et al., Phys.Lett.B (2005)

6 - He and Ji, Phys. Rev. D (1995)

7 - Pasquini et al, Phys. Rev. D (2007)

8 - Gamberg and Goldstein, Phys. Rev. Lett. (2001)

9 - Hecht, Roberts and Schmidt Phys. Rev. C (2001)

JLab 12 Proton and He³ targets δ u = 0.54^{+0.02}_{-0.02}, δ d = -0.23^{+0.01}_{-0.01} Statistical errors only

$$\delta q = \int dx \left(h_1^q(x) - h_1^q(x) \right)$$

This work (preliminary): $\delta u = 0.44$, $\delta d = -0.20$

δu

δ **d**

Conclusion II

- Originates at the QCD current quark/gluon level, i.e. all operators are "implemented" at that level (compared to NDA, χPT)
- "Rigid structure" few model parameters
- has shown to work well in the CP conserving sector
- Still a lot to do: other effective operators, PQ, error bars, ...

The results, expounded in this talk, were obtained in Collaboration with

- Craig D. Roberts ANL
- Michael J. Ramsey-Musolf UMass Amherst
- Chien-Yeah Seng UMass Amherst

Thank You For Your Attention!