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Abstract

The main goal of this diploma thesis was the supervision and implementation of a setup
for a neutron spectrometer. This spectrometer is part of the qBounce experiment
and was designed with the neutron and quantum physics group at the Atominstitut in
Vienna. The spectrometer itself is located at the Ultra Cold Neutron (UCN) beam line
PF2 of the Institut Laue-Langevin (ILL) in Grenoble, France. The goal was to perform
Ramsey spectroscopic measurements using UCNs bound in the Earths gravitational field
for the first time. Various calibration measurements were performed, as well as an
intermediate measurement with a Rabi spectrometer. I will present a concise overview
of the setup and measurements as well as a general theoretic foundation, pertaining to
various aspects of the experiment.

Zusammenfassung

Hauptteil dieser Diplomarbeit war die Betreuung und Umsetzung eines Neutronenspek-
trometers. Das Spektrometer wurde im Rahmen des qBounce Experiments in der
Neutronen und Quantenphysik Arbeitsgruppe am Atominstitut der Technsichen Uni-
versität Wien konstruiert. Standort des Spektrometers ist der Ultra Cold Neutron
(UCN) Strahl PF2 am Institut Laue-Langevin (ILL) in Grenoble, Frankreich. Zweck
war die Durchführung von Ramsey Spektroskopie Messungen unter Verwendung von
UCNs, die im Gravitationsfeld der Erde gebunden sind, was auch gelungen ist. Eben-
falls durchgeführt wurden diverse Kalibrationsmessungen und Messungen mit einem
Rabi Spektrometer. In dieser Arbeit gebe ich einen kurzen Überblick über den Auf-
bau des Neutronenspektrometers und die Kalibrationsmessungen sowie eine theoretische
Grundlage der wichtigsten Aspekte des Experiments.
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1 Introduction to Gravity Resonance Spectroscopy

Gravitational Resonance Spectroscopy (GRS) applies the methods of resonance spec-
troscopy in Earth’s gravitational field. The transition frequencies of bound states in this
field are then analysed using spectroscopic methods which are and have been widely
used in many scientific fields. The qBounce experiment uses energy transitions of ultra
cold neutrons (UCNs), produced at the PF2 instrument at the Institut Laue-Langevin
(ILL) in Grenoble, to study their quantum behaviour. The present experiment uses
and expands methods of previous experiments, with the goal of increasing accuracy
and precision. The qBounce group also measures bouncing neutrons above a neutron
mirror by analysing the spatial density distribution of propagating neutrons. The GRS
method used in the past was the Rabi method and the current iteration of the qBounce
uses the Ramsey method. This is the logical expansion of the spectrometer, after Rabi
measurements. The main thesis work was the supervision of the setup of the Ram-
sey spectrometer. This was done during two cycles at the ILL. Part of this work was
the setup and characterisation of the spectrometer components. Additionally test mea-
surements were done and analysed with parts of the spetrometer. A short theoretical
introduction to the theory of GRS is also given in this thesis.

1.1 Quantum experiments in Earth’s gravitational field

The first experimental observation of quantum states in the gravitational field was
demonstrated in [1, 2]. In this experiment UCNs were confined above a flat surface,
a neutron mirror. UCNs are neutrons which are reflected on all surfaces they come into
contact with and under all angles [3]. Above the mirror discrete energy eigenstates in
the linear gravitational potential should be present. The wave function for UCNs does
not enter the mirror significantly which leads to a quantisation of the energy states. The
first two eigenstates have an energy of about 1.4 peV and 2.45 peV respectively when
compared to the classical energy, as calculated in [4].
The experiment used neutrons as quantum bouncers because the electric polarisability
is extremely small when compared to atoms. On top of the mirror an absorber, a rough
glass plate, was placed. Between the mirror and the absorber the neutrons propagated.
In order to show the discrete nature of the eigen energies of this system, the distance of
the absorber to the mirror was varied. If the neutron wave function overlaps with the
absorber the neutrons are scattered out of the system, which is the case for higher en-
ergy neutrons where the wave function extends farther above the mirror. Lower energy
neutrons remain in the system. Using this setup and measuring the transition rate, it
was shown for the first time that there are quantised energies and that there is a lowest
energy state in the gravitational field, in contrast to a classical system.
One use could be to search for a hypothetical electrical charge of the neutron [5]. By
introducing an additional electric field the energies would shift and the charge could be
measured. Since the energy resolution is well below the 10 peV range, we plan to lower
the upper bound on the neutron charge. For this purpose the Ramsey method needs to
be used, described in section 1.5, needs to be used, where the electric field is applied in
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the propagation Region of a Ramsey type spectrometer [5].

1.2 The Quantum Bouncing Ball

The experimental methods were further developed and the propagation and evolution of
the bouncing neutron above a mirror was observed. This bouncing is quantum mechani-
cal in nature and leads to interference effects, which have first been observed in [6, 7, 8].
These bouncing ball experiments were later improved in [9]. Key to this experiment
was the development of detectors, which have a spatial resolution in the µm-range [10].
These detectors are 10B coated CR-39 plates, which can reach the desired resolution.
This resolution makes the experimental setup uniquely suitable to probe gravitation on
small length scales. Especially small scale deviations from Newtonian gravity could be
probed, without the residual effects of a charge or polarisation of the measured particle,
such as Casimir or Van der Waals forces [11].

1.3 Gravity Resonance Spectroscopy

GRS is a method, where transitions between quantum states in the gravitational po-
tential are induced. The transitions are driven by oscillations of a piezo table. The
transition probability is directly related to the driving frequency and the time the oscil-
lation is applied. From this, the difference between energy states can be inferred.
In the linear gravitational potential these energy eigenstates of UCNs above a neutron
mirror are separated by different energies, so any transition can be driven, without much
interference from other states. The transition probabilities can then be measured via
the neutron transmission rate, by measuring only neutrons in the ground state, there-
fore discarding all excited neutrons. The key to good measurements with this method
is to limit external influences, which can introduce large errors, because the measured
energies are in the peV range. The basic spectroscopic principles used are resonance
methods known from atomic and molecular physics.

1.4 Resonance spectroscopy

The standard tools for spectroscopic experiments are the Rabi and the Ramsey method.
They are widely used to investigate transitions in atoms, and are also used in medicine
in nuclear magnetic resonance imaging (NMR).
The basis of these methods are two quantum states, |0〉 and |1〉, that differ by an energy
∆E. The system starts out in a well defined state and a perturbation is added, to induce
transitions.
To visualize this process the Bloch sphere is a useful tool. Any two state system can be
written as |ψ〉 = cos( θ2) |0〉+ sin( θ2)eiϕ |1〉. Using the Pauli matrices the direction of this
state in an IR3 space can be calculated. The expectation value of this direction is given
by

〈r〉 =

sin(θ) cos(ϕ)
sin(θ) sin(ϕ)

cos(θ)

 . (1)
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This vector is oriented on the unit sphere with the direction determined by the two an-
gles θ and ϕ. In NMR this vector can be interpreted as the direction of the spin, whereas
in GRS this vector is a useful visualisation of an abstract two state quantum system,
with no relation to spin. In spectroscopy perturbations are applied to a quantum system
which results in a mixing of the two states and therefore in a change of the state on the
Bloch sphere. In GRS these perturbations are induced by mechanical oscillations of the
neutron mirror.
If the state starts out in the z-direction and ends in the −z-direction after the pertur-
bation, it is called a “π-flip”. Similarly when the state ends in the xy-plane it’s called a
“π2 -flip”, corresponding to the flip angle on the sphere. Using the time dependent state

|ψ(t)〉 = cos( θ2)e−iω0t |0〉+ sin( θ2)eiϕe−iω1t |1〉, where ω0,1 = E0,1/h̄, one can seperate out

the global phase e−iω0t, which leads to |ψ(t)〉 = cos( θ2) |0〉+sin( θ2)ei
(
ϕ−(ω1−ω0)t

)
|1〉. The

vector on the Bloch sphere is then given by

〈r〉 =

sin(θ) cos(ϕ− (ω1 − ω0)t)
sin(θ) sin(ϕ− (ω1 − ω0)t)

cos(θ)

 , (2)

This vector rotates around the z-axis, with an angular frequency that is given by the
difference of the energies of the states. In NMR spectroscopy this rotation is directly
linked to a precession of the magnetisation and can be measured. In GRS the vector
on the Bloch sphere does not correspond to any spin, it is simply a visualisation of the
abstract, two state, quantum system.
In spectroscopy, a system with two states is prepared and then a perturbation is applied.
One possibility is to apply a π-flip around the y-axis. The duration, the magnitude of the
perturbation and the energy difference determines the flip angle, which can be varied
by modifying the perturbation until the final state is exactly the second state which
corresponds to a π-flip. This is the basic principle of the Rabi spectroscopic method.
An example of this type of transition is shown in fig. 1.
It has been shown by Ramsey [12], that the accuracy of this method can be improved, by

first applying a π
2 -flip, then letting the system evolve for a time T without perturbation

and then adding a second π
2 -flip to complete the transition. In spectroscopy this is known

as the Ramsey method.
The Ramsey method is generally less susceptible to errors in the specific interaction
times used. This is important, for example, if the experimental setup contains a beam
of particles, which fly through different regions where the flips and propagation occurs.
In this case, the particles have a velocity distribution and therefore the interaction
time for different particles, changes. Another benefit of the Ramsey method is that it
is less sensitive to an error in the applied perturbation, and is therefore, in a realistic
experimental setting, the de facto standard to perform spectroscopic measurements. The
downside is, that the Ramsey method can be experimentally more complicated than the
Rabi method, since multiple interaction regions have to be realised. The basic procedure
can be seen in fig. 2.
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Fig. 1: Bloch sphere showing a π-flip of the initial vector around the y-axis. This tran-
sition is used in Rabi spectroscopy.

Fig. 2: Bloch sphere showing a π
2 -flip around the y-Axis in the first line, then a propa-

gation in the second line and then again a π
2 -flip around the y-axis in the third

line. These types of transitions are used in Ramsey spectroscopy.



1 Introduction to Gravity Resonance Spectroscopy 5

I II III IV V D

Fig. 3: Schematic of a Ramsey type spectrometer. The neutrons move from left to right.
Region I is preparation, II induces the first π

2 -flip, III is free propagation, IV the
second π

2 -flip, V is the selection of the final state and D is the detector.

1.5 Gravity Resonance Spectroscopy using the Ramsey method

Following the demonstration of Rabi transitions in [13], a setup for GRS using the
Ramsey method was now realised for the first time. The main part of this master thesis
was the implementation and supervision of the setup of this spectroscopic instrument.
The current qBounce experiment uses, just like previous iterations, glass mirrors over
which the neutrons are bound by the Earth’s gravitational potential [1, 2] (also section
2). The schematic of a Ramsey type spectrometer can be seen in fig. 3. The neutrons
enter from the left, where there is a slit apperture, which selects UCNs with a specific
velocity in flight direction. There are also B4C mats covering the slot aperture, which
shield the spectrometer from neutrons scattering inside the spectroscope without passing
the aperture.
In total there are five regions. The first is used to prepare the neutrons in the ground state
above the mirror, by scattering all neutrons in excited states. In Region II the mirror
is oscillating and thereby inducing transition between energy eigenstates. Region III is
used for free propagation. In Region IV the second perturbation is applied. Finally in
Region V the neutrons in the ground state are selected. The neutrons are then measured
by the detector to the far right. The regions were tested one after the other and the
whole spectrometer was built successively. With regions I, II and V a Rabi spectrometer
was realised and test measurements with Rabi transitions were made. An analysis of
these measurements is done in section 3.6.
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2 Theory

A system with neutrons above a surface can be described by a one-dimensional Schrödinger
equation. The behaviour in x- and y-direction is not constrained and these two directions
can be described by free particle solutions. The Schrödinger equation in z-direction is
given by

Ĥ |ψ〉 =
( h̄2

2m
k̂2 +mgẑ + V0Θ(−ẑ)

)
|ψ〉 = ih̄

d

dt
|ψ〉 , (3)

where k is the wave vector, m the neutron mass, g the gravitational acceleration, V0 the
Fermi potential of the surface for neutrons and Θ the Heaviside step function. Using
the fact that when using UCNs the neutron energy, a few peV, is much smaller than
the Fermi energy, about 100 neV, the potential term can be neglected by enforcing the
boundary condition, that the solution |ψ〉 vanishes at the boundary of the surface at
z = 0. Equation (3) can be cast into a time independent form by assuming a solution of

the form |ψ〉 = e−i
E
h̄
t |ψ0〉, where |ψ0〉 satisfies the time independent equation

Ĥ |ψ0〉 = E |ψ0〉 . (4)

2.1 Energy eigenstates

Using (4) with the Hamiltonian from (3) without the V0 term one arrives at

( h̄2

2m
k̂2 +mgẑ

)
|ψ0〉 = E |ψ0〉 . (5)

In position space, using |ψ0〉 → ψ(z), k̂ → 1
i
d
dz and ẑ → z, this leads to

− h̄2

2m

d2

dz2
ψ(z) +mgzψ(z) = Eψ(z) . (6)

By making the substitution z = z0z̃, with z0 = 3

√
h̄2(2m2g)−1, the characteristic length

scale for this system, equation (6) reads( d2

dz̃2
+ (

E

mgz0
− z̃)

)
ψ(z̃) = 0 . (7)

After shifting z̃ = z′ + E
mgz0

this results in

( d2

dz′2
− z′

)
ψ(z′) = 0 , (8)

the Airy differential equation. The two solutions to this equation are well known in the
literature [14]. They are shown in fig. 4 A derivation of these two solutions is done in
appendix A using the Laplace transformation of (8). The physically relevant solution is
the solution which goes to zero as z → ∞ and is known as the Airy Ai function. The
diverging solution is called Airy Bi function.
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Fig. 4: The two solutions to the Airy differential equation (8).

The solutions to equation (5) need to obey the boundary condition ψ(0) = 0 when
considering UCNs, so the eigen solutions need to be shifted, such that the zeros of the
Airy function coincide with z = 0. This boundary condition leads to a quantisation of
the allowed energies. From the equation z̃ = z′+ E

mgz0
the energy can be calculated. Let

ψn be the eigenfunction to the energy value En where E0 is the lowest energy state. Then
the eigenfunctions can be normalised such that

∫∞
0 ψ∗m(z)ψn(z)dz =

∫∞
0 ψm(z)ψn(z)dz =

δmn, where the complex conjugation was dropped because the ψn(z) can be chosen to
be real functions. The first few of these solutions, with their corresponding energies, are
shown in fig. 5.

2.2 Oscillating boundary condition

Oscillating boundary conditions have been discussed in [15]. In order to drive transi-
tions between the energy states, the surface, above which the neutrons are bound, is
mechanically moved up and down periodically. Using the moving surface, equation (4)
has to be modified to

ih̄
d

dt
|ψ〉 =

( h̄2

2m
k̂2 +mgẑ + V0Θ(a sin(ωt+ φ)− ẑ)

)
|ψ〉 =̂

ih̄
d

dt
ψ(z, t) =

(
− h̄2

2m

d2

dz2
+mgz + V0Θ(a sin(ωt+ φ)− z)

)
ψ(z, t) ,

(9)

where a is the amplitude and ω the angular frequency of the driving oscillation. Making
the substitution z̃ = z−a sin(ωt+φ) and t̃ = t, the operators in (9) transform according

to d
dz = ∂z̃

∂z
d
dz̃ + ∂t̃

∂z
d
dt̃

= d
dz̃ and d

dt = ∂z̃
∂t

d
dz̃ + ∂t̃

∂t
d
dt̃

= −aω cos(ωt̃ + φ) ddz̃ + d
dt̃

and the
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Fig. 5: Time independent bound states in the gravitational potential for neutrons.

equation reads

ih̄
d

dt̃
ψ(z̃, t̃) =

(
− h̄2

2m

d2

dz̃2
+mgz̃ + V0Θ(−z̃)+

+mga sin(ωt̃+ φ) + ih̄aω cos(ωt̃+ φ)
d

dz̃

)
ψ(z̃, t̃) .

(10)

Taking solutions of the time independent equation (5), which satisfy

− h̄2

2m

d2

dz̃2
ψn(z̃) +mgz̃ψn(z̃) = Enψn(z̃) (11a)∫ ∞
0

ψm(z̃)ψn(z̃)dz̃ = δmn , (11b)

an ansatz for ψ(z̃, t̃), as a linear combination of these solutions with time dependent
coefficients, can be made:

ψ(z̃, t̃) =
∞∑
n=0

Cn(t̃)e−i
En
h̄
t̃ψn(z̃) . (12)



2 Theory 9

m/n 0 1 2 3 4 5

0 0. 97373.5 −53539.9 38301.5 −30393.8 25489.9

1 −97373.5 0. 118935. −63135.8 44185.7 −34528.6

2 53539.9 −118935. 0. 134572. −70304.5 48653.3

3 −38301.5 63135.8 −134572. 0. 147213. −76204.2

4 30393.8 −44185.7 70304.5 −147213. 0. 157984.

5 −25489.9 34528.6 −48653.3 76204.2 −157984. 0.

Tab. 1: The first few components of the interaction potential Vmn.

Inserting this into equation (10) leads to

∞∑
n=0

(
ih̄e−i

En
h̄
tψn(z̃)Ċn(t̃) + Cn(t̃)e−i

En
h̄
tEnψn(z̃)

)
=

=

∞∑
n=0

(
Cn(t̃)e−i

En
h̄
t̃
(
− h̄2

2m

d2

dz̃2
+mgz̃ + V0Θ(−z̃)

)
ψn(z̃)+

+ Cn(t̃)e−i
En
h̄
t̃
(
mga sin(ωt̃+ φ) + ih̄aω cos(ωt̃+ φ)

d

dz̃

)
ψn(z̃)

)
=

=
∞∑
n=0

(
Cn(t̃)e−i

En
h̄
t̃Enψn(z̃)+

+ Cn(t̃)e−i
En
h̄
t̃
(
mga sin(ωt̃+ φ) + ih̄aω cos(ωt̃+ φ)

d

dz̃

)
ψn(z̃)

)
,

(13)

where, in the second step, (11a) and the boundary condition ψ(z0) = 0 was used. After
simplifying, multiplying by ψm(z̃), integrating over z̃ and using (11b) this results in

ih̄Ċm(t̃) = ei
Em
h̄
t̃
∞∑
n=0

(
mga sin(ωt̃+ φ)e−i

En
h̄
t̃δmn+

+ ih̄aω cos(ωt̃+ φ)e−i
En
h̄
t̃

∫ ∞
0

ψm(z̃)
d

dz̃
ψn(z̃)dz̃

)
Cn(t̃) =

=mga sin(ωt̃+ φ)Cm(t̃) +
∞∑
n=0

(
ih̄aω cos(ωt̃+ φ)ei

Em−En
h̄

t̃Vmn

)
Cn(t̃) ,

(14)

where Vmn :=
∫∞

0 ψm(z̃) ddz̃ψn(z̃)dz̃ = −Vnm is antisymmetric. The first few Vmn can be
seen in tab. 1.

Making another transformation Cn(t̃) = f(t̃)C̃n(t̃) and (Em − En)/h̄ := ωmn leads to

ih̄ḟ(t̃)C̃m(t̃)+ih̄f(t̃) ˙̃Cm(t̃) = mga sin(ωt̃+ φ)f(t̃)C̃m(t̃)

+
∞∑
n=0

(
ih̄aω cos(ωt̃+ φ)f(t̃)eiωmn t̃Vmn

)
C̃n(t̃) ,

(15)
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m/n 0 1 2 3 4 5

0 0. −254.535 −462.925 −647.101 −815.462 −972.345

1 254.535 0. −208.39 −392.566 −560.927 −717.81

2 462.925 208.39 0. −184.176 −352.537 −509.42

3 647.101 392.566 184.176 0. −168.361 −325.244

4 815.462 560.927 352.537 168.361 0. −156.883

5 972.345 717.81 509.42 325.244 156.883 0.

Tab. 2: The first few transition frequencies ωmn/2π.

where the first few transition frequencies ωmn/2π can be seen in tab. 2.

With the requirement ih̄ḟ(t̃) = mga sin(ωt̃+ φ)f(t̃) it follows that f(t̃) = ei
mga
h̄ω

cos(ωt̃+φ)

and equation (15) simplifies to

˙̃Cm = aω cos(ωt̃+ φ)

∞∑
n=0

eiωmn t̃VmnC̃n(t̃) . (16)

Taking the complex conjugate leads to

˙̃C∗m(t̃) = aω cos(ωt̃+ φ)
∞∑
n=0

e−iωmn t̃VmnC̃
∗
n(t̃) , (17)

since the Vmn are purely real. Then equations (16) and (17) can be combined to give

d

dt

(
C̃m(t̃)C̃∗n(t̃)

)
= ˙̃Cm(t̃)C̃∗n(t̃) + C̃m(t̃) ˙̃C∗n(t̃) =

∞∑
l=0

(
aω cos(ωt̃+ φ)eiωml t̃VmlC̃l(t̃)C̃

∗
n(t̃) + C̃m(t̃)C̃∗l (t̃)aω cos(ωt̃+ φ)e−iωnl t̃Vnl

)
=

∞∑
l=0

(
aω cos(ωt̃+ φ)eiωml t̃VmlC̃l(t̃)C̃

∗
n(t̃)− C̃m(t̃)C̃∗l (t̃)aω cos(ωt̃+ φ)eiωln t̃Vln

)
,

(18)

where, in the second equality, the antisymmetry of ωmn and Vmn was used. Defining the
density matrix ρmn = C̃m(t̃)C̃∗n(t̃) and also Uml = aω cos(ωt̃ + φ)eiωml t̃Vml (leaving the
time dependence implicit) this can be concisely written as

ρ̇mn =
∞∑
l=0

(Umlρln − ρmlUln) . (19)

The probability to be in a state χ =
∑∞

i=0 aiψi(z̃) is given by

P (χ) =
∞∑

i=0,j=0

aiC̃
∗
i (t̃)a∗j C̃j(t̃) =

∞∑
i=0,j=0

aia
∗
j C̃j(t̃)C̃

∗
i (t̃) =

∞∑
i=0,j=0

aia
∗
jρji . (20)
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Defining ρaij = aia
∗
j , this can be written as

P (ρa) =
∞∑

i=0,j=0

ρaijρji = Tr (ρaρ) , (21)

where, in the last step, ρaij and ρji are used as matrices and Tr is the trace of the resulting
matrix. This is the probability of finding a state with density matrix ρ in the state with
density matrix ρa.

2.3 Two state system and Rabi oscillation

Equation (16) can not be solved exactly in all generality. One simplification is to only
take into account two states where the state 0 is the lower energy state and state 1 the
higher energy state, so that ω10 > 0. Then (16) can be written as a matrix equation(

˙̃C0(t̃)
˙̃C1(t̃)

)
=

(
0 aω cos(ωt̃+ φ)eiω01 t̃V01

aω cos(ωt̃+ φ)eiω10 t̃V10 0

)(
C̃0(t̃)

C̃1(t̃)

)

=

(
0 aω cos(ωt̃+ φ)e−iω10 t̃V01

−aω cos(ωt̃+ φ)eiω10 t̃V01 0

)(
C̃0(t̃)

C̃1(t̃)

)
,

(22)

where the antisymmetry of Vmn and ωmn has been used. To solve this equation an
additional approximation has to be made. The term cos(ωt̃+φ)e−iωt̃ = 1

2

(
ei((ω−ω10)t̃+φ)+

e−i((ω+ω10)t̃+φ)
)

can be approximated by ei((ω−ω10)t̃+φ)

2 . The faster oscillating term is
assumed to have little effect on the total evolution of the system, since these terms
average to zero fast when compared to the slower oscillating term. A similar argument
is used for the second term in the matrix equation. This leads to the equation(

˙̃C0(t̃)
˙̃C1(t̃)

)
=

(
0 aω

2 e
i(ω̃t̃+φ)V01

−aω
2 e
−i(ω̃t̃+φ)V01 0

)(
C̃0(t̃)

C̃1(t̃)

)
, (23)

where ω̃ := ω−ω10. The coefficient matrix in this equation can be made time independent

by the further substitutions C̃0(t̃) = ei
ω̃t̃+φ

2 C ′0(t̃) and C̃1(t̃) = e−i
ω̃t̃+φ

2 C ′1(t̃), resulting in(
Ċ ′0(t̃)

Ċ ′1(t̃)

)
=

(
−i ω̃2

aω
2 V01

−aω
2 V01 i ω̃2

)(
C ′0(t̃)
C ′1(t̃)

)
. (24)

This equation can be solved by diagonalisation. After defining r cos(Ω) := | ω̃2 | and

r sin(Ω) := |aω2 V01| so that r =
√

( ω̃2 )2 + (aω2 V01)2, the eigenvalues of the matrix in (24)

are ±ir. The corresponding eigenvectors are

vir =

(
sin(Ω

2 )

i cos(Ω
2 )

)
, v−ir =

(
cos(Ω

2 )

−i sin(Ω
2 )

)
(25)
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and the solution to (24) can be written as(
C ′0(t̃)
C ′1(t̃)

)
= αeirt̃vir + βe−irt̃v−ir =

=

(
cos(rt̃)− i sin(rt̃) cos Ω sin(rt̃) sin(Ω)

− sin(r(̃t)) sin(Ω) cos(rt̃) + i sin(rt̃) cos Ω

)(
C ′0(0)
C ′1(0)

)
,

(26)

where α and β are constants. With this, the final solution to (12) is given by

ψ(z̃, t̃) = ei
mga
h̄ω

(cos(ωt̃+φ)−cos(φ))(
(cos(rt̃)− i sin(rt̃) cos(Ω))C0(0) + sin(rt̃) sin(Ω)eiφC1(0)

)
ei(

ω̃
2
−E0

h̄
)t̃ψ0(z̃)+

+
(
(cos(rt̃) + i sin(rt̃) cos(Ω))C1(0)− sin(rt̃) sin(Ω)e−iφC0(0)

)
e−i(

ω̃
2

+
E1
h̄

)t̃ψ1(z̃) =

t0(t̃, φ)ψ0(z̃) + t1(t̃, φ)ψ1(z̃) ,

(27)

with

t0(t̃, φ) = ei
mga
h̄ω

(cos(ωt̃+φ)−cos(φ))(
(cos(rt̃)− i sin(rt̃) cos(Ω))C0(0) + sin(rt̃) sin(Ω)eiφC1(0)

)
ei(

ω̃
2
−E0

h̄
)t̃

t1(t̃, φ) = ei
mga
h̄ω

(cos(ωt̃+φ)−cos(φ))(
(cos(rt̃) + i sin(rt̃) cos(Ω))C1(0)− sin(rt̃) sin(Ω)e−iφC0(0)

)
e−i(

ω̃
2

+
E1
h̄

)t̃ .

(28)

From this the probability of finding a neutron in the state ψm(z̃) can be extracted via

P (ψm) =
∣∣∣ ∫ ∞

0
ψ∗m(z̃)ψ(z̃)dz̃

∣∣∣2 , (29)

where property (11b) is useful. Taking the definition Ω = arccos(aωV01
2r ) it is clear that

this is unsymmetric with respect to the resonant frequency ω10, since r =√
( ω̃2 )2 + (aω2 V01)2. This asymmetry can be removed by using the maximum velocity of

the oscillation, aω, as the parameter defining the perturbation rather than the maximum
displacement a. For example when considering the transition from the first to the second
energy eigenstate, ω10 ≈ 1599.29 ≈ 2π · 254.53, V01 = 97373.5 and a velocity of aω =
10−3, the transition probability from state ψ0 → ψ0 is given by

P (ψ0) =
∣∣∣ cos(rt̃)− i sin(rt̃) cos(Ω))

∣∣∣2 = 1− sin2(rt̃) sin2(Ω)) , (30)

and can be seen in fig. 6 where the interaction time t̃ = 0.152
8.878 = 0.0171 s corresponds to

the one for the most probable velocity (see section 3.2). The probability for a transition
ψ0 → ψ1 is shown as the solid orange line. If the initial state is not a pure state but a
mixture between ψ0 and ψ1, the transition probabilities have to be calculated by squaring
the general transition amplitudes ti defined in equation (27). The probability of finding
the system to be in a certain state is given by

P (ψ0) = |t0|2

P (ψ1) = |t1|2 .
(31)
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Fig. 6: Example of transition probabilities between two states with the same perturba-
tion time as was used in the experiment.

2.4 Mixed state

When using the same values as in fig.6 but with the occupation numbers C0(0) =
√

2
3

and C1(0) =
√

1
3 , the transition probabilities can be seen in fig.7. This reduces the

contrast of the transition, which requires more accurate measurements.

2.5 Velocity smearing

All the previous plots were calculated with the most probable velocity of the PF2 UCNs.
In the experiment the interaction time is given by the velocity of the neutrons and the
length of the interaction region. The interaction region has a length of 152 mm. Using
the velocity spectrum, given in section 3.2, the transition probabilities are given by

〈P (ψ0)〉 =

∫
P (ψ0|v)ρ(v)dv

〈P (ψ1)〉 =

∫
P (ψ1|v)ρ(v)dv ,

(32)

where the P (ψi|v) are from equations (31) and v = 0.152
t̃

is explicitly displayed. These
can not be given in analytical form, since the velocity distribution is not known in closed
form. Averaging the transition probabilities in fig. 7 over the velocities results in fig.
8. This causes a reduction in the side bands and the width of the transition. In the
experiment the vibrational amplitude is fixed and the perturbation varies only with the
interaction times and therefore with the velocities. This causes some transition peaks to
lose more details than others.



2 Theory 14

150 200 250 300 350 400
0.0

0.2

0.4

0.6

0.8

1.0

f[Hz]

P P(ψ0)

P(ψ1)

Fig. 7: Transition probabilities for a mixed state with C0(0) =
√

2
3 and C1(0) =

√
1
3 .
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Fig. 8: Velocity averaged Rabi transition for a mixed state.
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2.6 Ramsey transition

The basis for the Ramsey method is to split the interaction in two separate parts. Unlike
with the Rabi method with a single π-flip, there are two perturbation regions. In each
region a π

2 -flip is applied. Between the two flips, the system is allowed to propagate
freely. This leads to sharper transition peaks, as can be seen in fig. 9. Using this
method can greatly increase the accuracy with which the transition frequency can be
determined. The width of the Ramsey fringes is dependent on the propagation between
the two interaction regions. As with the Rabi method, the transmission spectrum gets
washed out when averaging over the velocity distribution. This can be seen in fig. 10.
The first maxima in the probability around the central minimum are still clearly visible
and can be used to determine the transition frequency more accurately than with the
Rabi method. This makes the Ramsey method a very versatile tool for spectroscopy.
One drawback is the more complicated experimental setup, where two interaction regions
and a propagation region are needed. The lengths of regions II, III and IV of the GRS
Ramsey setup are 152 mm, 340 mm and again 152 mm.
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Fig. 9: Rabi transition in comparison with a Ramsey transition.
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Fig. 10: Ramsey transition in comparison to the same transition averaged over a velocity
spectrum.
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3 Measurements during 3-14-358

The experiment consists of a vacuum chamber, lined with µ-metal, to suppress the am-
bient magnetic field. Inside the chamber, there is an optical table made from granite.
On this table the rest of the setup is placed. On one end of the vacuum chamber (hence-
forth called “front”) there is a beam guide and the turbo molecular pump, and on the
other end (“back”) there are various feedthroughs for the cables of different components.
There are components to maintain a level granite table, measure the relative position
of the mirrors, piezos to position and oscillate the mirrors and laser interferometers to
monitor the movement of the mirrors. The beam guide in the front comes directly from
the UCN source at the ILL, and enters the vacuum chamber. At the end of the beam
guide there is an end cap with an aluminium window. This window is in a height of
about 79 mm above and positioned in the middle of the granite table. Then there is a slit
aperture to select neutrons of a certain velocity in flight direction. Around the window
and aperture, there is a box made of B4C, to reduce background neutrons. After this
the five regions of the spectrometer follow.
After the aperture, the first neutron mirror, Region I, is placed. Above Region I there
is a glass absorber to prepare the neutrons in the initial state. Then follows the second
mirror, Region II, mounted on a piezo, in oder to induce oscillations. These oscillations
are controlled by a function generator and drive the transitions between energy states.
Region III, a longer, stationary, neutron mirror is used for the undisturbed propagation.
Region IV is again controlled by the function generator to drive transitions. Lastly
Region V, again with an absorber, selects the final state. Finally there is the detector
to measure the transition rate. Above the spectrometer mirrors there is an aluminium
structure, to support movable holders for sensors. There are sensors to measure the mir-
ror position and the remaining magnetic field, as well as mirrors for laser interferometers
to check the oscillation amplitudes and frequencies during the experiment.

3.1 Background shielding

To reduce unwanted background neutrons a shielding consisting of B4C mats was built
around the beam guide and the aperture. This can be seen in fig. 11 to the far left in
black. A schematic view from the top is shown in fig. 12. The main purpose is to reduce
direct paths from the end of the beam guide to the detector. Test measurements with
the detector in the neutron path, with no mirrors between detector and aperture and
with a blocked aperture resulted in tab. 3. In this table, background means the neutron
rate with no neutrons entering the spectrometer. This rate is measured to correct for
global variations of the neutron background, unrelated to the experiment. The neutron
flight path was blocked by a sheet of aluminium and tape. These measurements showed
that neutrons which enter the detector do fly through the opening in the shielding and
are not scattered into the detector from somewhere else in the vacuum chamber.
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Fig. 11: The final spectrometer with all essential features.

Measurement Rate Background

Unblocked (222.97± 0.21) Hz (0.14± 0.01) Hz

Blocked (0.34± 0.13) Hz (0± 0) )Hz

Tab. 3: Rates as measured behind the shielding. The second measurement is with a
blocked neutron path.

Fig. 12: Schematic of the placement of the B4C mats, as shielding. The slit aperture
is placed in the space in the middle. The neutrons enter from the top and fly
down, where the ramsey spectrometer follows.
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Fig. 13: Image of the slit aperture.

3.2 Aperture

The aperture consists of two independently movable plates, made of boronated steel,
which can be positioned to create a slit aperture (see fig. 13). The upper and lower slit
plates can be adjusted using the micrometer screws seen on top. This slit is used to select
a velocity component in the horizontal flight direction. To estimate the velocity of the
neutrons, the classical flight path of a point particle in a homogeneous gravitational field
is considered. The trajectory can then be described by a parabola. As an approximation,
it is assumed that the absorber above Region I is so close that the parabola has its vertex
exactly at the surface of the mirror (see fig. 14). An analysis of this approximation is
done in appendix B. The parabola also has to intercept the surface of the first mirror,
which uniquely fixes the flightpath. Using vz and vx as the velocities in x- and z-direction
at the time t = 0 and g as the gravitational acceleration of the Earth, the motion of the
particle is given by

z(t) = vzt−
g

2
t2

x(t) = vxt
(33)

Using the fact that the vertex of the parabola has to be at the height h of the mirror
surface it follows that vz =

√
2hg. Inserting this into (33) and using, that the vertex

also has to be at a distance d from the origin, the velocity in flight direction is given

by vx = d
√

g
2h . From this the velocity in flight direction is limited from below by the

lower aperture plate and from above by the upper plate. The calculation is classical
and quantum mechanical corrections are not taken into account. These calculations are
only used to make rough estimations of the velocity, since there are many effects not
taken into account. Using these approximate results, the neutron velocity spectrum was
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Fig. 14: Schematic illustration of the classical parabolas used to estimate the velocity
distribution of the neutron beam, in flight direction. The lower aperture plate
limits the lower velocity, and the upper plate the upper velocity.

characterised. To do this the slit was opened to let a velocity window of 1 m/s pass, and
the velocity was swept from 3 m/s to 15 m/s. By detecting the neutron rate after the
mirror and the absorber, the velocity spectrum was estimated. One correction taken into
account is that the distances to the mirror, from the upper and lower aperture plates, are
not equal. The upper plate is at a distance of du = (164.912± 0.020) mm and the lower
at dl = (164.568± 0.020) mm. From this the aperture slit heights above the granite can
be calculated and were measured to within 0.01 mm. The calculated values can be seen
in tab. 4 with corresponding errors for the upper and the lower velocities.

The velocity spectrum from these measurements can be seen in fig. 15, where count
rate over velocity is plotted. The corresponding values and probabilities can be seen
in tab. 5. From this the expected velocity is given by 〈v〉 = (8.878± 0.108) m/s. The
neutron velocity controls the time a neutron is in the interferometer and therefore also
the interaction time with the perturbation. This ultimately influences the achievable
contrast. With this in mind, the velocity window should be as narrow as possible, op-
timised for the mirror length and the peak of the neutron intensity. However, since the
count rate is very low at the end of the spectrometer, the velocity window should be
as large as possible. With these two competing criteria, the final slit positions were
chosen to be hl = 99.61 mm for the lower plate and hu = (104.21± 0.01) mm for the
upper plate, which correspond to an velocity interval from vmin = (4.630± 0.015) m/s
to vmax = (12.99± 0.27) m/s. The selected velocities are shown in orange in fig. 15.
The errors of the velocities are estimated assuming an accuracy of all the height and
distance measurements of 0.01 mm and an additional error of ∆habsorber ≈ 0.03 mm in
height, because the absorber is not exactly above the mirror (see section 3.3). An addi-
tional analysis of these assumptions is done in appendix B. It turns out that the errors
calculated here are irrelevant compared to systematic errors when using the simplified
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v [m/s] ∆vl [m/s] ∆vu [m/s] hl [mm] hu [mm]

4-5 0.008 0.015 96.7 99.67

5-6 0.016 0.027 99.69 101.3

6-7 0.027 0.043 101.31 102.28

7-8 0.043 0.064 102.29 102.92

8-9 0.064 0.090 102.93 103.35

9-10 0.091 0.125 103.36 103.67

10-11 0.125 0.166 103.67 103.9

11-12 0.166 0.214 103.9 104.07

12-13 0.217 0.273 104.08 104.21

Tab. 4: Calculated velocities for specific aperture heights. The errors shown derive from
an error in the aperture height.

4 6 8 10 12
v[m/s]

100

200

300

400

[mHz]

Fig. 15: Measured neutron rates, when using aperture slits to select a specific veloc-
ity interval. The orange area shows the velocity window selected for the final
experiment.
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v[m/s] r [mHz] ∆r [mHz] P[v] ∆P[v]

4-5 34 3 0.015 0.001

5-6 139 8.8 0.064 0.003

6-7 243 9 0.113 0.003

7-8 339.9 10.41 0.158 0.004

8-9 314.6 6.6 0.146 0.003

9-10 404.6 10.6 0.188 0.004

10-11 329.45 4 0.153 0.002

11-12 235.2 6.1 0.109 0.002

12-13 105 13 0.048 0.005

Tab. 5: Velocities with measured count rates and calculated probabilities.

model of the flight parabola.

3.3 Region I and V

In Region I the neutrons from the aperture hit the first neutron mirror and propagate
(“bounce”) on it. Above the mirror there is a glass absorber at a height of ≈ 23 µm.
The eigen energies of these neutrons is in the peV above the mirror surface and the
Fermi energy of the mirror is in the 100 neV range. Therefore the overlap of neutron
wave function and the mirror is negligibly small and the wave function can be assumed
to vanish on the mirror surface. Higher energy neutrons have a wave function that ex-
tends farther above the mirror than low energy ones. These wave functions overlap with
the absorber, so there is a probability of interacting with it. In this way high energy
neutrons are scattered by the absorber and leave the interferometer. The absorber was
first placed on 30 µm brass feeler gauges and then pressed down by two clamps. Four
micrometer screws are used to accurately move the absorber down, deforming the feeler
gauges, until the desired height is reached. The height calibration was performed by
placing the absorber on the neutron mirror without the feeler gauges, then three linear
gauges were referenced to this height. The absorber was lifted up, the feeler gauges in-
serted and the height was directly measured. With the three linear gauges the absorber
could be placed as close to parallel as possible above the mirror. A picture of this process
can be seen in fig. 16. The requirement to remove most of the higher energy neutrons
from the system meant that the absorber should be placed ≈ 25 µm above the mirror.
The final measured absorber height for region I was l = (25.0± 0.1) µm and for region V
l = (26.0± 0.1) µm. After the absorber was fixed on the mirror, the mirror height was
adjusted to be (105.0± 0.1) mm above the granite surface. Each of these regions was
then placed behind the aperture and the transmission rate was measured. Additionally,
the slit between mirror and absorber was blocked by the aluminium sheet and the rate
was measured. This was done to ensure that the background shielding is still effective
even with the neutron mirrors in place and that the neutrons go through the slit. The
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Fig. 16: Setup to calibrate the absorber above a neutron mirror.

Region Rate Background

I (210.48± 3.75) mHz (0.66± 0.66) mHz

I blocked (0.59± 0.12) mHz (0.73± 0.42) mHz

V (220.77± 2.09) mHz (0.63± 0.37) mHz

V blocked (0.91± 0.24) mHz (0± 0) mHz

Tab. 6: Transmission rates as measured behind regions I and V. With and without
blocked path to check for background.

measured results can be seen in tab. 6. To confirm that the absorber works and indeed
selects appropriate quantum states, a spatially resolving neutron detector, a coated CR-
39 detector, was placed after the mirror and the neutron distribution in vertical direction
was measured. By fitting theoretical neutron wave functions the distribution of neutrons
can be inferred. The observed neutron distribution with the probabilities P (ψn) for the
different states can be seen in tab. 7. These detectors were analysed by Martin Thal-
hammer.

3.4 Region II-IV

Regions II to IV also consist of a neutron mirror, but no absorber is placed above them.
Because of this the preparation was less involved. Only the height was adjusted to the
same as that of regions I and V. Regions II and IV are used to drive the transitions.
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Region P (ψ1) P (ψ2) P (ψ3)

I 0.52 0.37 0.10

V 0.46 0.43 0.11

Tab. 7: Measured Distribution of states behind Region I and V.

Because of this special care was taken to avoid contact with the neighbouring regions.
This was done by using feeler gauges to move them as close together as possible. After
regions I and V were prepared, region two was inserted between them and basic Rabi
transition measurements were performed. An analysis of these measurements can be
found in chapter 3.6. After these the full Ramsey spectrometer was built with all five
regions. In addition the steps between the mirrors were measured with linear gauges
to reduce unwanted steps. These would lead to an additional neutron loss which would
increase measurement time. After this initial setup by hand the mirror steps were
measured by separate capacitive sensor which keep the mirrors level.

3.5 Leveling

The capacitive sensors are held by an aluminium structure and can be moved along the
mirror. Using the capacitive sensors, the mirror height is continually adjusted to remain
stable and to compensate steps, caused by a mirror drift. There are four sensors over the
regions and three more sensors over an additional reference mirror. The final spectrom-
eter setup can be seen in fig. 17. The additional sensors a, b and p are used to reference
the rest of the sensors to a common plane. This is necessary because the aluminium
structure can warp during the movements of the sensors and the sensors over the regions
would measure a changing mirror position. The reference mirror under a,b and p does
not move and is therefore always level. With an established reference frame the neutron
mirrors can then be adjusted to this plane and kept there. During one measurement the
adjustment was done continually. The height measurement was problematic and could
not be calibrated during the experiment time. In theory the sensors would have given
enough information to adjust the mirror positioning so that there are little to no steps,
but the combination of sensors and mirrors in this configuration could not be sufficiently
analysed. The steps between mirrors could not be reliably eliminated and the inclination
of the mirrors could not be controlled accurately. Later we found out, that the surface
of the reference mirror used for calibration was not sufficiently flat and disturbed the
measurement. To compensate the neutron mirrors were adjusted by hand to be as close
to flat as possible. The height profile was then measured using the capacitive sensors.
To ensure stability for future measurements, this height profile was saved and all future
height measurements were adjusted, so that the mirrors remained at their initial position
over the course of a measurement.
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Fig. 17: Final setup of the Ramsey spectrometer. The sensors A, B, A2, B2 are used to
check the region mirrors and the sensors a, b and p above a reference mirror are
used to reference all other measurements to a common plane.
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Fig. 18: Setup of the Rabi experiment. Neutrons enter from the left into Region I with an
absorber, Region II is inducing transitions, Region III selects the final state, the
detector D detects transmitted neutrons and the two sensors A and B measure
the position of all the mirrors during a measurement.

3.6 Rabi setup

Using the Rabi spectrometer section of the Ramsey spectrometer, briefly described in
section 3.4, a preliminary measurement was carried out. The setup for this measurement
can be seen in fig. 18. The neutrons enter from the left, where the slit aperture is located.
Then region I selects neutrons in the ground state, and region II induces transitions with
oscillations. Then in region V the neutrons in the ground state are again selected and
detected in the detector D. The capacitive sensors A and B are used to monitor the
height of the neutron mirrors, with the goal that no steps are between the regions. They
can move over all three regions. the reference sensors a, b and p are not show, but they
are used for leveling.

3.6.1 Driving transitions in the Rabi setup

Region II is oscillated to induce transitions between states. The transition of choice was
from the ground state to the second excited state. This transition was chosen, because
the third state is reasonably unpopulated, as shown in 7, and the transition frequency
is low. The theoretical transition frequency is calculated in section 2.1 and is given by
f = 462.925 Hz. The velocity of the oscillation was chosen to be aω ≈ 1.6 mm/s. Using
the distribution of states given in tab. 7 and equation (19) the expected transmission
spectrum can be calculated. The numerical solution of this system can be seen in fig.
19, where the first four energy eigenstates and the velocity distribution of the system
were considered.

3.6.2 Measurements and Results

A series of measurements was performed, both while oscillating region II and without
oscillation to check for the baseline transmission. The measured data can be seen in
fig. 20, where the zero rate measurements are in blue and the measurements during
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Fig. 19: Simulated transition, when taking the velocity distribution and the first four
energy eigenstates into account.

oscillations in orange. The zero rate is dropping because of contamination of the vacuum.
This gradual decrease has also been observed in following measurements and was later
found to follow an approximate exponential decrease and was caused by oil from motors
inside the vacuum chamber. These motors were subsequently replaced.
The varying neutron rate from the UCN source was compensated by referencing the
measurements to an external neutron detector in front of the vacuum chamber. The
final dataset referenced to the external neutron rate can be seen in fig. 21, where the
solid line is an exponential fit to the zero rate measurements. The oscillations suffered
from additional systematic effects, which could not be compensated in data analysis.
Since these measurements were done during the setup of the Ramsey spectrometer, no
detailed corrections or repeated measurements were possible. The theoretical curve was
not known at the time of the experiment. Therefore the measured frequencies were
chosen without consideration of the second dip at f = 392.566 Hz shown in 19. This dip
is a result from considering more than two states, as assumed in the ideal Rabi transition
from the first to the third eigen state, in this case the transition from the second to the
fourth state (this frequency can be found in tab. 2).
With the available measurements, no statement can be made about quantum mechanical
effects, since the reduced transition rates in fig. 20 could be the result of systematic
errors unknown at the time of the measurement. With additional measurements a Rabi
transition could have been observed, but these measurements were foregone in favour of
extending the experimental setup to the full Ramsey spectrometer.
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Fig. 20: Measured rates during the Rabi spectroscopic measurements. The time axis is
shown from the first measurement.

0 50000 100000 150000 200000 250000 300000 350000
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

t [s]

a.
u. No Oscillation

Oscillation

Fig. 21: Final cleaned dataset.
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4 Conclusio

During this master thesis the set up of the first Gravity Resonance Spectrometer with
UCNs using the Ramsey method was supervised. The components of the spectrometer
were separately tested and aligned (section 3). Previous measurements, using the Rabi
method, were also replicated (section 3.6). These measurements were inconclusive, be-
cause time constraints didn’t allow for statistically significant measurements. With the
completed Ramsey spectrometer measurements were performed for the first time. These
suffered from systematic effects. Especially the adjustment of the individual mirror
heights was problematic due to an uneven reference mirror. This mirror was replaced by
a new one with a measured surface (section 3.5). In addition, the selection of an appro-
priate transition was difficult because of the uncertainties in the initial state due to the
absorber (section 3.3). The comparison with theoretical predictions is also complicated
by the fact that the velocity spectrum of the neutrons is not known accurately (section
3.2). After the first measurements in 2017 improvements to the setup have been made to
address these issues and to reduce the systematic effects with improved measurements
under way.
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A Airy functions

Here I will derive solutions to the Airy differential equation

y′′ − zy = 0, (34)

In particular both real valued Airy functions Ai and Bi are found, in accordance with
[14]. As an ansatz for the solution,

y(z) =

∫
C
f(s)eszds (35)

is taken, where C is some path in the complex plane. Depending on the choice for C,
different solutions are found. The paths I used to calculate the solutions here were found
without considering literature and lead to the usual integral representations of the Airy
functions. Inserting this ansatz in (34) gives

⇒
∫
C

(
f(s)s2 − zf(s)

)
eszds =

∫
C

(
f(s)s2 − f(s)

∂

∂s

)
esz =∫

C

(
f(s)s2esz − ∂

∂s
(f(s)esz) +

∂

∂s
(f(s)) esz

)
ds =∫

C

(
f(s)s2 + f ′(s)

)
eszds−

∫
C

∂

∂s
(f(s)esz) ds =∫

C

(
f(s)s2 + f ′(s)

)
eszds− [(f(s)esz]C = 0 .

(36)

If the path C is chosen such that

[(f(s)esz]C = 0, (37)

then f(s) has to satisfy
f ′(s) + f(s)s2 = 0 . (38)

A solution to this equation is given by f = e−
s3

3 . Inserting this in the condition in (37)
results in

[(f(s)esz]C =

[
e−

s3

3
+sz

]
C

= 0 . (39)

Since the function does not have any zeroes in the complex plane, the simplest choice are
closed paths to satisfy this condition. However, the integrand in (35) has no singularities,
so the integral vanishes for all closed paths. The solution is the zero solution. To find
non zero solutions the path must not be closed. This can be fulfilled, by choosing the
endpoints of the path C so that

<
(
s3
)
> 0 as |s| → ∞ . (40)
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With this condition (37) is fulfilled. Taking the complex variable s = |s|eiϕ, with ϕ ∈
[0, 2π] leads to

<
(
s3
)

= <
(
|s|3ei3ϕ

)
> 0 ⇒ cos(3ϕ) > 0 ⇒ ϕ ∈


[
−π

6 ,
π
6

][
3π
6 ,

5π
6

][
7π
6 ,

9π
6

] . (41)
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Re(s)
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Im(s)

y1
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y3

Fig. 22: In colour are the regions in which the path C fulfills condition (37). y1, y2 and
y3 are three specific choices for the paths. The paths shown run on top of the
axes.

The three regions are shown in fig. 22. Any path that connects two different regions
leads to a solution. A path that enters from one and exits in the same region again leads
to the zero solution, because it can be closed at infinity, where the integrand goes to
0. There are three different paths connecting two regions, so there are three different
solutions given by equation (35). However, since (34) is a second order linear differential
equation, there are only two linearly independent solutions. The three solutions y1, y2,
y3 also satisfy

y1 + y2 + y3 =

∮
e−

s3

3
+szds = 0 , (42)

since the sum of the integrals leads to an integral along a closed path, which is zero. One
choice of three different paths is also shown in fig. 22 and the corresponding solutions
are given by

y1 =

∫ i∞

−i∞
e−

s3

3
+sz ds (43)
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y2 =

∫ ∞
i∞

e−
s3

3
+sz ds (44)

y3 =

∫ −i∞
∞

e−
s3

3
+sz ds (45)

From these, the Airy functions can be constructed. From (43) follows that

y1 =

∫ i∞

−i∞
e−

s3

3
+sz ds

s→is
= i

∫ ∞
−∞

e
i
(
s3

3
+sz

)
ds , (46)

which is proportional to the solution in the main text in equation (??). This can be
further simplified by

y1 =i

(∫ 0

−∞
e
i
(
s3

3
+sz

)
ds +

∫ ∞
0

e
i
(
s3

3
+sz

)
ds

)
=

i

(∫ ∞
0

e
−i

(
s3

3
+sz

)
ds +

∫ ∞
0

e
i
(
s3

3
+sz

)
ds

)
=

i

∫ ∞
0

(
e
−i

(
s3

3
+sz

)
+ e

i
(
s3

3
+sz

))
ds =

2i

∫ ∞
0

cos

(
s3

3
+ sz

)
ds =

2πi
1

π

∫ ∞
0

cos

(
s3

3
+ sz

)
ds = 2πiAi(z) .

(47)

This equation defines the Airy-function Ai as

Ai(z) =
1

π

∫ ∞
0

cos

(
s3

3
+ sz

)
. (48)

Similarly y2 can be written as

y2 =

∫ ∞
0

e−
s3

3
+sz ds +

∫ 0

i∞
e−

s3

3
+sz ds =

∫ ∞
0

e−
s3

3
+sz ds− i

∫ ∞
0

e
i
(
s3

3
+sz

)
ds =∫ ∞

0

(
e−

s3

3
+sz − iei

(
s3

3
+sz

))
ds,

(49)

and y3 as

y3 =

∫ ∞
0

(
−e−

s3

3
+sz − ie−i

(
s3

3
+sz

))
ds (50)

Adding these two solutions leads to

y2 + y3 = −2iπAi(z) , (51)
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which is again proportional to the already known solution. Also the fact that y1 + y2 +
y3 = 0 is evident. On the other hand

y2 − y3 =

∫ ∞
0

(
2e−

s3

3
+sz − i

(
e
i
(
s3

3
+sz

)
− e−i

(
s3

3
+sz

)))
ds =∫ ∞

0

(
2e−

s3

3
+sz − 2i2 sin

(
s3

3
+ sz

))
ds =∫ ∞

0

(
2e−

s3

3
+sz + 2 sin

(
s3

3
+ sz

))
ds =

2π
1

π

∫ ∞
0

(
e−

s3

3
+sz + sin

(
s3

3
+ sz

))
ds = 2πBi(z),

(52)

where

Bi(z) =
1

π

∫ ∞
0

(
e−

s3

3
+sz + sin

(
s3

3
+ sz

))
ds (53)

Thus the three paths give
y1 = 2πiAi(z) (54)

y2 = π(Bi(z)− iAi(z)) (55)

y3 = −π(Bi(z) + iAi(z)) (56)

and the two real Airy-functions are given by

Ai(z) =
y1

2πi
=

1

π

∫ ∞
0

cos

(
s3

3
+ sz

)
(57)

Bi(z) =
y2 − y3

2π
=

1

π

∫ ∞
0

(
e−

s3

3
+sz + sin

(
s3

3
+ sz

))
ds . (58)

These two solutions are the two Airy-functions shown in fig. 4.
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Fig. 23: A classical flight parabola. The height at position x = 0 is z(0) = s and at
x = d, z(d) = h + ε. The height of the absorber is not shown and is given by
h+ l. The traveled height is given by z(d)− s = h− s+ ε

B Slit aperture and flight parabola

In this section I will explain how the aperture setup, also described in section ??, limits
the velocity in flight direction of the UCNs. This is a purely classical description and
problems with this approach are addressed. The quantum mechanical description faces
its own problems and will not be described here.
For the calculation, the neutrons are assumed to be point particles, flying in x-direction
and experiencing the gravitational acceleration a = −g in z-direction. The equations of
motion are

x(t) = vxt, z(t) = s+ vzt−
g

2
t2, vz(t) = vz − gt, (59)

where s is the height at position x = 0, vx is the velocity in the x-direction and vz is
the velocity in z-direction at time t = 0. The function vz(t) is the velocity at arbitrary
times t. Eliminating t = x/vx leads to

z(x) = s+
vz
vx
x− g

2v2
x

x2, vz(x) = vz −
g

vx
x (60)

In fig. 23 a flight path is shown. s is the height of the flight path at the aperture, h
is the height of the mirror, d is the distance of the mirror to the aperture, and ε is the
height of the flight path above the mirror. Defining the vertical velocity at d as α results
in

vz(d) = α = vz −
g

vx
d⇒ vz = α+

gd

vx
. (61)

Assuming the absorber is a distance l above the mirror, and that the neutron passes at
a height of ε above the mirror, the velocity α can be constrained by requiring that the
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kinetic energy is lower than the remaining potential energy to reach the absorber. α is
then constrained to

mα2

2
≤ mg(l − ε)⇒ α2 ≤ 2g(l − ε)⇒ α ∈

[
−
√

2g(l − ε),
√

2g(l − ε)
]
. (62)

Inserting α into eq. (60) gives

vz(x) = α+
g

vx
(d− x) (63)

z(x) =
α

vx
x+

gd

v2
x

x− gx2

2v2
x

=
α

vx
x+

g

2v2
x

x(2d− x) . (64)

The constraint that z(d)− s = h− s+ ε gives

z(d) =
α

vx
d+

g

2v2
x

d2 = h− s+ ε⇒ v2
x −

αd

h− s+ ε
vx −

gd2

2(h− s+ ε)
= 0 (65)

vx =
αd

2(h− s+ ε)
+

√
α2d2

4(h− s+ ε)2
+

gd2

2(h− s+ ε)
, (66)

where only the plus sign is relevant, since the neutrons are supposed to move in the
positive x-direction.
With this expression, a velocity distribution can be obtained by sampling the parameters
α, s and ε. Two examples of this can be seen in fig. 24, where a uniform distribution of
all three parameters is assumed. The blue histograms show the simulation with zero ab-
sorber height and the orange histogram with 100 µm, as was used in the measurements.
The biggest uncertainty with this approach is that the parameters are probably not
uniformly distributed. s should be sampled with the spatial distribution at the slit aper-
ture and α and ε are both dependent on the velocity distribution in z-direction at the
aperture, which can also be z dependent. But since neither the spatial nor the velocity
distribution in z-direction are known, the only way to reconstruct the velocity distribu-
tion is to take these assumptions and compare them with the measurements described
in section 3.2. As can be seen in fig. 25, the results of the piecewise measurements are
not compatible with the predictions of the simulated model. Therefore the unknown
distributions and other systematic effects are not properly taken into account by the
used assumptions. Making further guesses about the velocity and spatial distributions
is not justified, since no simple model can reproduce the two peak structure measured.
Adding weights following a normal distribution to the simulation results in the green
data points in the plot. This assumption can not accurately reproduce the measured
distribution. At this point the only reasonable thing to do is to take the measurements
as given and use the simple model from the main text as a guideline, since no gain results
from the more complex model presented here.
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Fig. 24: Simulated velocity spectra. In blue the simulation for absorber height of zero,
and in orange an absorber height of 100 µm.
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bution.
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