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Kurzfassung
Das Standardmodell der Teilchenphysik beschreibt erfolgreich drei der vier bekann-
ten Grundkräfte der Physik. Lediglich die vergleichsweise schwache Gravitation
entzieht sich bisher einer quantenmechanischen Beschreibung, sowie einer Ein-
bindung in das Standardmodell. Obwohl die allgemeine Relativitätstheorie als
Beschreibung der Gravitation und als Eckpfeiler moderner Kosmologie äußerst
erfolgreich ist, werfen starke Hinweise auf die Existenz dunkler Energie und
dunkler Materie neue Fragen auf.

Neutronen bieten sich auf Grund ihrer geringen elektrischen Polarisierbarkeit
und ihrer verschwindenden elektrischen Ladung an, um die Gravitation bei kleinen
Abständen zu testen: Im Gravitationsfeld der Erde können ultrakalte Neutronen
gebundene Zustände annehmen. Diese Zustände sind quantenmechanischer Natur
und ihre Eigenenergien nicht äquidistant. Daher lassen sie den Einsatz spektro-
skopischer Methoden zu. Dies macht sich das qBounce Experiment zu Nutze,
um die Eigenenergien der ultrakalten Neutronen sehr genau zu vermessen. In
bisherigen qBounce Experimenten wurden Rabi-artige spektroskopische Experi-
mente realisiert, was zum Beispiel zu Grenzen auf Dark Energy und Dark Matter
Modelle führte — diese würden die Eigenenergien des Neutrons beeinflussen.

Diese Arbeit beschreibt den logischen Schritt um die Präzision der qBounce Ex-
perimente weiter zu erhöhen: Die erstmalige Realisierung von Norman F. Ramseys
Methode separierter oszillierender Felder zur Anwendung auf quantenmechani-
sche Zustände der Neutronen im Gravitationsfeld der Erde. Gleichzeitig stellt
das Experiment (nach Kenntnis des Autors) die erste Umsetzung von Ramsey’s
Methode dar, welche nicht auf elektromagnetischer Wechselwirkung (sondern auf
mechanischen Oszillationen) beruht.

Aufgrund der Erweiterung von einem Rabi-artigen auf einen Ramsey-artigen
Experimentaufbau und dem damit einhergehenden erhöhten Platzbedarf, wurde
dafür ein vollkommen neues Instrument realisiert. Das Ramsey-Experiment mit
fünf aneinandergereihten Neutronenspiegeln wurde geplant, gebaut und in Betrieb
genommen. Es gelang der erste Nachweis von Ramseys Resonanzmethode mit
gravitativ gebundenen, ultrakalten Neutronen und mechanisch oszillierenden
Neutronenspiegeln.
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Abstract
The Standard Model of particle physics successfully describes three of the four
fundamental forces in physics. Only gravitation, which is comparatively weak,
eludes a quantum mechanical description as well as an embedding into the Stand-
ard Model. Although general relativity is a successful description of gravitation
and a cornerstone of modern cosmology, new questions arise by strong indications
of the existence of dark energy and dark matter.

Due to their small electrical polarisability and their vanishing electrical charge,
neutrons represent excellent test particles to test gravitation at short distances:
Ultracold neutrons can form bound states in the gravity potential of the Earth.
These states are formed due to quantum mechanics and are non-equidistant.
Therefore, spectroscopic methods are applicable. The qBounce experiment takes
advantage of this feature to measure the eigenenergies of the ultracold neutrons
very precisely. Rabi-like spectroscopic methods have been realised in previous
qBounce experiments, which lead for example to limits on dark energy and dark
matter models that would alter the eigenenergies of the neutrons.

This thesis presents the next logical step to further increase the precision
of qBounce experiments: The realisation of Norman F. Ramsey’s method of
separated oscillatory fields applied to quantum mechanical states of neutrons in
the gravitational field of the Earth. In addition, the experiment presented is (to
the author’s best knowledge) the first realisation of Ramsey’s method that is not
based on electromagnetic interaction but purely on mechanical oscillations.

Due to the extension from a Rabi-like to a Ramsey-like setup and the increased
required space, a whole new instrument was developed. The Ramsey experiment,
consisting of five aligned neutron mirrors, was planned, constructed, and put
into operation. The first proof of Ramsey’s method with gravitationally bound,
ultracold neutrons and mechanically oscillating neutron mirrors succeeded.
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Introduction
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1. Standard Model and Gravitation

1.1. Overview and Thesis Outline

With the Standard Model of particle physics indisputably being a tremendous
success of the twentieth century and the discovery of the Higgs boson in 2012
recently validating the Standard Model, there are still plenty of open questions
in practically all fields of physics. One big question is whether a Grand Unified
Theory exists, where the electromagnetic, the weak, and the strong interaction
can be explained by manifestations of a single underlying force. Another problem
is the integration of gravitation into such theories. The driving factor behind the
accelerated expansion of the universe remains yet another mystery.

As gravitation plays a major role in several of those open questions, it is
subject to many experimental tests, from astrophysical scales down to table
top experiments. At small distances (tens of micrometer), qBounce is a table
top experiment probing gravity. The qBounce experiment represents a unique
quantum mechanical system, whose eigenenergies are solely defined by natural
constants, and the Earth’s gravitational acceleration. Ultracold neutrons, which
Bounce along flat surfaces, are ideal test particles for gravity because they rep-
resent a systematically advantageous system: The neutron’s electrical neutrality
and its small electrical polarisability let it widely bypass any electromagnetic
perturbations. Together with spectroscopic methods that are well developed
and understood, this system of bound ultracold neutrons can test Newtonian
gravity or cosmological models. Although spectroscopic methods are usually
used by means of electromagnetic radiation, qBounce exhibits spectroscopy
by means of mechanical oscillations. Several different experiments have pre-
viously been realised within qBounce, in the form of Rabi-type setups and the
measurement of the Quantum Bouncing Ball (Jenke (2008, 2011); Cronenberg
(2016); Thalhammer (2019)).

The goal of this thesis was the construction of an advanced setup
in the form of a Ramsey-type experiment. Ramsey spectroscopy with
bouncing ultracold neutrons has never been realised before. With such a setup, the
precision for testing Newtonian gravity at small distances increases in comparison
to previously realised methods. However, in the author’s opinion, a mechanically
controlled, coherent superposition of energy eigenstates of a single neutron over
the distance of more than 30 cm, bouncing along an experiment of the length of
almost one metre, shows significant motivation for the experiment on its own.

The implementation of Ramsey spectroscopy lead to the planning and con-
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1. Standard Model and Gravitation

struction of a whole new instrument, within which the new experiment was set
up, commissioned and put into initial operation. The planning, construction, and
many systematic tests took place at the Atominstitut of the TU Wien. The final
setup was installed and started running at the Institut Laue-Langevin in Gren-
oble, France, during the years 2016 and 2017, and is operating (at experimental
beamtimes) until at least the end of 2018.

This thesis is arranged in four parts. In the present introductory part, a
motivation for qBounce experiments is given in the face of the Standard Model
of particle physics, gravity, dark energy, and dark matter, which are presented
in a qualitative overview. A brief summary of ultracold neutrons as well as an
overview of qBounce and Gravity Resonance Spectroscopy (GRS) are shown in
the subsequent sections.
Part II summarises theoretical aspects of the experiment, as well as a simulation
for the classical expectations of selected measurement schemes. In part III, the
planning and the technical realisation of the experiment as well as results are
presented, before part IV concludes with a summary and an outlook.

The aim of the following sections 1.2 and 1.3 is to motivate the experiment
presented in this thesis by providing examples from particle physics or for dark
energy and dark matter models, which are in principle verifiable by qBounce. A
brief and qualitative overview about the currently most established theories of
particle physics (section 1.2), gravitation, and cosmology (section 1.3) is given.

1.2. Standard Model of Particle Physics
Overview
The Standard Model of particle physics is extremely successful in describing the
electromagnetic, the weak, and the strong interaction in the frame of a quantum
field theory. It features 17 elementary particles, from which all (ordinary) matter
and forces (except gravity) can be generated: Six quarks, six leptons, four vector
gauge bosons and one scalar boson (the Higgs particle). The underlying theory
to those particles is an SU(3)⊗ SU(2)⊗ U(1) local symmetrical gauge quantum
field theory.
The SU(3) gauge group describes the strong interaction between quarks and
is called quantum chromodynamics, whereas the SU(2) ⊗ U(1) describes the
electroweak theory — the unification of electromagnetic and weak interactions.
Below an energy scale of around 250 GeV, spontaneous symmetry breaking due
to the Higgs mechanism leads to the production of W± and Z0 bosons (mediators
of the weak interaction) and photons (mediator of electromagnetism). The weak
interaction is also the reason why the free neutron is not stable and decays via β−
decay. By flavour change of one down quark to an up quark, the neutron decays
into a proton, an electron and an electron antineutrino. The inverse process of
β+ decay is suppressed for free protons, because the neutron’s mass is greater
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1.3. Gravitation, Dark Energy and Dark Matter

than the mass of the proton.
Despite its predominant consistency with experiments, there also are problems
with the Standard Model: Seemingly arbitrary coupling constants, the baryon
asymmetry of the universe (in favour for matter over anti-matter), absent neutrino
masses, or the fact that dark energy, dark matter, or quantum gravity are not
part of the model (Patrignani and Group (2016)). All these issues lead to the
justified assumption that the Standard Model of particle physics is either not
complete, or there is another underlying theory yet to discover. Currently, string
theoretical models are an important part of research in such a direction, although
increasingly accurate cosmological observations and model building will be an
important factor in the search for a Grand Unification (Patrignani and Group
(2016)).

Beyond the Standard Model
In (supersymmetric) string theoretical approaches for a unified theory, more than
three spatial dimensions are necessary, with a minimum of ten. The solution
to comply with observations is that extra dimensions are compactified, in the
sense of being curled or rolled up. Depending on the size and dimension of the
compactified strings, this leads to a deviation of the gravitational constant G, at
distances smaller than the compactification radius. In general, theories of this
type can be described by adding a Yukawa term to the Newtonian gravitational
potential for two masses M and m:

V (r) = −GMm

r

(
1− α e−r/λ

)
, (1.1)

with strength factor α, and range λ of the hypothetical force. In such a way, best
limits at the time on non-Newtonian forces have already set by the gravitationally
bound states of ultracold neutrons above a neutron mirror (Abele et al. (2003);
Nesvizhevsky and Protasov (2004)).
Other such deviations from Newton’s law have been proposed for supersymmetric
large extra dimensions (SLEDs), which could account for dark energy (which
will be the topic of section 1.3). In theories of this kind, the size of the extra
dimensions is in the order of micrometer (Callin and Burgess (2005)) — in the
same range as the energy levels of gravitationally bound ultracold neutrons.

In summary, different theories altering the Newtonian gravitational potential
are a good motivation to increase the sensitivity of qBounce experiments, to
test gravity at small distances.

1.3. Gravitation, Dark Energy and Dark Matter
Overview
Gravitation is described by the theory of general relativity (GR), developed by
Albert Einstein. Just as the Standard Model of particle physics in 2012 with the
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1. Standard Model and Gravitation

discovery of the Higgs boson (The ATLAS Collaboration (2012)), Einstein’s
theory was once again confirmed with first observations of gravitational waves in
2015 and 2016 — about one hundred years after their prediction (LIGO and
Virgo Collaboration et al. (2016)). This gives rise for a whole new field of
astronomy, complementary to electromagnetic observations. Although there are
indications that general relativity is incomplete (for example due to the lack of a
quantum mechanical description), no measurement yet yielded results that deviate
significantly from the predictions of general relativity. Justified motivations for
some sort of quantum gravity are for example the search for unified theories, or
attempts to understand the thermodynamics of black holes.
The development of GR also marked the start of increasing cosmological consider-
ations. Applying GR to the universe and assuming only two boundary conditions
(isotropy and homogeneity), the ΛCDM model originates. The lambda Cold Dark
Matter model1, sometimes referred to as Standard Cosmology, is a widely used
cosmology model that involves a Big Bang. It contains a cosmological constant
Λ, initially added to general relativity by Einstein to counteract the contraction
through gravity, in order to describe a static universe.

Two terms have occurred excessively in particle physics and cosmology over
past decades: dark matter and dark energy. At the time Einstein published the
theory of general relativity in 1915, the (accelerated) expansion of the universe
was not yet discovered, and neither was the Cosmic Microwave Background
(CMB). The CMB corresponds to a black body radiation at around 2.7 K, being
measurable from all directions of the sky.2 Only when looking at deviations
in the order of 10−5, the radiation is not perfectly isotropic and homogeneous
anymore. On this scale, the CMB map of the sky reveals precious information
about the composition as well as the history of the universe. By studying the
angular power spectrum of the CMB, the energy budget of the universe can
be extracted. Figure 1.1 shows data measured by the Planck telescope (Adam
et al. (2016)). The two largest fraction are represented by dark energy and dark
matter, and baryonic matter accounts only for 4.9 % of the total budget. These
results are also confirmed through complementary observations (see e. g. Clowe
et al. (2006) for dark matter detection via collision of galaxy clusters or Kwan
et al. (2017) for matter constraints via galaxy clustering and lensing).

The largest fraction of the energy budget, dark energy, is often connected to
the cosmological constant Λ in general relativity. Without Λ, general relativity

1Cold refers to non-relativistic particles, whereas hot dark matter implies relativistic particles
involved. Cold dark matter is mostly preferred due to simulations, where hot dark matter is
not able to explain the full amount of dark matter estimated in the universe.

2The CMB’s origin dates back to around 400 000 years after the Big Bang to the phase of
recombination, when the universe became transparent for photons, as ions and free electrons
formed neutral atoms. Before that, photons Thomson scattered with free electrons and the
photons’ mean free path was smaller than the expansion rate of the universe. Thus, the
CMB looks back to this decoupling of photons and baryons, the farthest possible in terms
of electromagnetic radiation.

3 http://sci.esa.int/planck/51557-planck-new-cosmic-recipe/
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1.3. Gravitation, Dark Energy and Dark Matter

Dark Energy

68.3%

Dark Matter

26.8%
Ordinary Matter

4.9%

Figure 1.1.: Currently most precise numbers for the energy budget in the universe,
according to the Planck Collaboration3.

is rigorously tested (see e. g. Will (1993)). The idea of equating the curvature
of space-time with the energy-momentum tensor of any matter or radiation, has
proven itself to be most accurate description of gravity until today. With the
cosmological constant Λ, the Einstein equations read

Rµν −
1
2gµνR + Λgµν = 8πG

c4 Tµν , (1.2)

where the Ricci tensor Rµν describes the curvature of space-time, the Ricci scalar
R stands for the deviation from Euclidean space, gµν is the metric tensor, G is
Newton’s gravitational constant, c the speed of light, and Tµν is the symmetric
energy-momentum tensor. The terms on the left-hand side, Rµν and R, are solely
dependent on the metric gµν (describing the geometrical properties of space-time),
Tµν on the right-hand side describes all matter. While Einstein originally thought
of creating a static universe, Λ receives many different interpretations nowadays.
Many theories introduce new fields or particles (e. g. quintessence theories or scalar
fields with screening mechanisms), or on the other hand modify gravity itsef (e. g.
Einstein-Cartan theory or brane-world models of string theory). Broader reviews
of different origins of the cosmological constant are given for example in Joyce
et al. (2015), Copeland et al. (2006), or Clifton et al. (2012) (focussed more
on modified gravity).

With different theories at hand, the only way to proceed is to test them
experimentally. Astrophysical observations can often set upper or lower bounds
on parameters of hypothetical particles or fields. Within terrestrial experiments,
besides for example torsion pendulum (Kapner et al. (2007); Brax and Fichet
(2018)), atom interferometer (e. g. Brax and Davis (2016)), or parallel plate
experiments (Almasi et al. (2015)), qBounce is sensitive to a range of dark
energy candidates. Some of them are covered in the following section.
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1. Standard Model and Gravitation

Selected Dark Energy Models
Like the Higgs mechanism is giving mass to fundamental particles, it is possible
that dark energy is a scalar field with long range coupling mechanism. But to
conform with experimental tests, these long range forces have to be suppressed
by screening mechanisms. The coupling of the scalar field to matter can be made
dependent on different parameters, all yielding different theories. This screening
mechanism would explain why no terrestrial or orbiting experiment up to now
has found significant hints for dark energy.

Tests with gravitationally bound neutrons are of special interest because of their
ability to test distance ranges inaccessible by astrophysics, where few experiments
at all are able to search (Baeßler et al. (2007); Abele et al. (2010)).

Chameleon

For the chameleon, the mass of the scalar field depends on the local matter
density. On Earth, the interaction range is of the order of one millimetre, whereas
in the solar system it increases to 101–104 ua (Khoury and Weltman (2004))4.
Because of the dependence on matter, a chameleon would be detectable through
violations of the equivalence principle, however due to the screening mechanism,
these violations would only show in space, but not on or around the Earth.

An effective potential for the chameleon field φ can be written in the form

Veff(φ) = V (φ) + ρe
βφ
MPl , (1.3)

with V (φ) = M4+nφ−n, a constant n, mass of the chameleon M , the reduced
Planck mass MPl, energy density ρ, and coupling constant β. With a high back-
ground density of matter, the chameleon becomes heavier and more suppressed.
In the cosmos, however, the chameleon can mediate a long-range force. The
screening mechanism therefore manifests via the changing mass of the
chameleon field.
Due to the thin-shell effect, the force between the Sun and the planets is also
rather small. For large objects with constant φ within, only a small outer layer
contributes to the force mediated by the chameleon, because of its proportion-
ality to ~∇φ. The fraction of the thin shell to the actual size of the object is
small (e. g. Mota and Shaw (2007)). It is due to this effect, that astronomical
observations cannot rule out larger parameter spaces of the chameleon theory.

For the potential shown in equation (1.3), qBounce could already excluded
chameleons with two different setups: A single region damped Rabi-like system,
and a full three region Rabi setup (a description follows in section 3.3.1).
In the one-part setup, for 2 ≤ n ≤ 4, β > 5.8× 108 was measured at 95%
confidence level (Jenke et al. (2014)). A neutron mirror-absorber setup was used,
realising damped Rabi oscillations of gravitationally bound ultracold neutrons

4One astronomical unit (ua), is defined as the distance between Earth and Sun, around 150
million kilometres.
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1.3. Gravitation, Dark Energy and Dark Matter

Figure 1.2.: Effective symmetron potential in matter (red) and in vacuum (mass
density ρ = 0). The potential has two minima in vacuum, at finite val-
ues of the effective potential due to vacuum fluctuations. Here, M is
a coupling parameter to matter, λ > 0 is a self interaction parameter,
and µ is the symmetron mass. Image taken from Cronenberg et al.
(2018), 3, fig. 3.

(Jenke (2011)). For the three part setup, the limits were improved by around two
orders of magnitude and yielded β > 9.1× 106 for n = 5 (Cronenberg (2016)).

At the moment, the most stringent limits for the chameleon come from atom
interferometry (Jaffe et al. (2017); Banahene-Sabulsky (2018)). For the
role of the chameleon in Einstein-Cartan gravity with torsion, see Ivanov and
Wellenzohn (2016a,b).

Symmetron

Another hypothetical particle that can mediate long-range forces in space, but
still remains undetected in terrestrial or orbital gravity tests, is the symmetron.
Here, the screening mechanism is realised via the coupling to matter,
which vanishes for a sufficiently high ambient matter density (Hinterbichler
and Khoury (2010)). This leads to a φ → −φ symmetry, just like in the
Higgs potential, and gives rise to the particle’s name. The effective symmetron
potential is shown in figure 1.2. In matter for example (red, upper curve), the
symmetry potential has its minimum at zero field. In vacuum, however, the
effective symmetron potential is symmetry broken, and exhibits two minima.
This Mexican hat potential exhibits a non-vanishing vacuum expectation value,
as vacuum fluctuations lift the effective potential to a finite value. Thus, the
symmetron is a dark energy candidate, possibly responsible for the expansion of
the universe.

Recently, stringent constraints have been set on the existence of the symmetron
for a large parameter space by qBounce (Cronenberg et al. (2018)). In a
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1. Standard Model and Gravitation

full Rabi-like neutron mirror setup (compare section 3.3.1), transitions between
energy states of gravitationally bound neutrons have been examined, and their
energy difference measured. Symmetrons would change the gravitational potential
and therefore change the individual eigenenergies of the neutrons. Such an effect,
however, has not been observed, up to a resolution of ∆E = 2× 10−15 eV, resulting
in the limits presented.
Exact analytical solutions for the symmetron field in one- and two-mirror systems
have been presented in Brax and Pitschmann (2018).

Dilaton

The dilaton field occurs naturally in string theory. When trying to unify all
fundamental forces in physics, most unified theories require a fundamental spin-
zero field — the dilaton field. The dilaton can act as a gravitational scalar field
with finite-range forces between objects (Fujii (2003)). In space, it acts as a
massless field, being able to account for dark energy. As with the chameleon, the
screening mechanism is realised via coupling to matter. Besides being a candidate
for dark energy, the dilaton represents an interesting candidate to proving string
theories with gravity experiments (see also section 1.2).

Dark Matter
Starting with Zwicky (1933) where first strong evidence of dark matter was
reported5, evidence for dark matter is well founded today. Flattened galaxy
rotation curves (Corbelli and Salucci (2000)), analysis of the CMB (Adam
et al. (2016)), or colliding clusters of galaxies (Clowe et al. (2004)), all support
the existence of dark matter.

However, it is not clear how dark matter can be explained. That dark matter
is some form of baryonic matter (“MACHOs”, Massive Astrophysical Compact
Halo Objects), is strongly rejected by microlensing measurements by the EROS
Collaboration, setting an upper limit to the fraction of halo mass of 8 % (Tis-
serand et al. (2007)). MOND (Modified Newtonian Gravity) theories usually
cannot adequately explain the bullet cluster, the colliding clusters of galaxies
mentioned above. Other than the restriction to non-baryonic matter, there are
not many other restrictions to possible dark matter candidates, besides that
their interaction to ordinary matter must be very small. Jim Peebles presented a
candidate for cold dark matter in the form of massive, weakly interacting particles
(WIMPs, Peebles (1982)).

5Fritz Zwicky used the virial theorem to estimate the relation between dark and luminous
matter in the Coma cluster of galaxies to be very large—in favour of dark matter. Relating
the total kinetic energy T of gravitationally bound stars in a galaxy, with the galaxy’s
total potential energy U by 2T = −U . With estimates of T ∼ Mv2/2 and U ∼ GM2/R,
one obtains M ∼ v2R/G, for total galaxy mass M , mean star velocity v and gravitational
constant G.
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1.3. Gravitation, Dark Energy and Dark Matter

Within qBounce, ultracold neutrons are sensitive to all forms of dark matter
that alter gravity in the micrometer range (see end of section 1.2). Another class
of particles that can be tested within qBounce are particles, which exhibit a
spin-mass coupling. This is one possible feature of an axion particle.

Axion

This hypothetical particle is of special interest because it can solve two problems
at once: The strong CP -problem, and the origin of dark matter. Quantum
chromodynamics is, as far as experiments suggest, CP (charge plus parity)
conserving. As there is no theoretical reason for this in the Standard Model,
Peccei and Quinn introduced a pseudoparticle — later named the axion — into
the Lagrangian that is CP violating (Peccei and Quinn (1977)). The axion,
however, turns out to be also a dark matter candidate.

There is a wide range of axion and axion-like particles proposed (see Patrignani
and Group (2016), 686, for an overview of searches). A two-photon vertex
exists, which is the basis of many axion searches. However, for the very light
and electromagnetically neutral boson, there are two possibilities of coupling to
fermions: the scalar vertex and the pseudoscalar vertex (Moody and Wilczek
(1984)). In the neutron case, the axion would be responsible for the mediation of
a CP -violating interaction between the spin of the neutron and a nucleon. For
such an interaction between neutron and neutron mirror, limits on the existence
of axions have been derived from previous qBounce experiments (Jenke et al.
(2014)). Other limits, for different couplings, come from astrophysical observations
(e. g. Raffelt (2007)). In Mantry et al. (2014), mercury EDM measurements
have been used to set bounds for axion and axion-like particles and were compared
to other bounds.
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2.1. Properties of the Neutron
The same properties that kept the neutron from being discovered (Chadwick
(1932b)), often make the neutron a very interesting and versatile measurement
tool. The neutron itself can be used as an object in numerous research fields.
Because of its electrical neutrality ((−0.2± 0.8)× 10−21e, see Patrignani and
Group (2016)), the neutron cannot directly ionise matter. Thus, for example
absorption in an atomic nucleus is needed to produce ionising radiation or particles
within a detector volume, for instance a bubble chamber or a 3He counter tube.
The neutron’s electrical neutrality on the other hand allows neutrons to be used
as a measurement tool in non-destructive imaging or material analysis techniques,
penetrating matter without Coulomb repulsion and revealing information in
optically or mechanically inaccessible domains.
Already in 1932 Chadwick estimated the mass of the neutron to be similar to
the mass of the proton, based on kinematic considerations on elastic neutron
scattering (Chadwick (1932a)). This ratio close to one between proton and
neutron mass turns out to be advantageous for moderating neutrons via neutron-
proton collisions. In addition, the mass of the neutron gives thermal neutrons
(with velocities around 2200 m/s) a de Broglie wavelength within the range of
interatomic distances, well suited for solid state body examinations.
While being electromagnetically neutral, the neutron exhibits a magnetic moment.
For a long time its nature was unclear (see for example Breit and Rabi (1934))
and the possibility that a magnetic moment indicates a composite structure of
the neutron was only confirmed after the development of the quark model in the
1960s, trying to classify a zoo of hadronic particles that had meanwhile been
discovered. Compared to atoms, the electromagnetic polarisability of neutrons is
small and also due to its internal structure of two down and one up quark. The
free neutron is unstable, decaying into a proton, an electron, and an electron
antineutrino, with a mean lifetime of 880 s. More on the characteristics of the
neutron can be found in literature, for example in Abele (2008). Table 2.1 lists
numerical values for the properties of most interest within this thesis.

The already mentioned electrical neutrality of the neutron is measured to a
precision of 10−21 elementary charges, and the most precise direct measurement
was performed in the 1980s (Baumann et al. (1988)). A finite but very small
hypothetical electrical charge of the neutron could therefore raise questions about
charge quantization. Different extensions of the Standard Model predict different
outcomes of (neutron) charge measurements, be it charge quantization or also

13



2. Ultracold Neutrons

Table 2.1.: Numerical values for selected properties of the neutron. The magnetic
moment is expressed in units of nuclear magnetons, µN = (eh̄) /

(
2mp

)
,

and the electric charge in units of the elementary charge e. All values
taken from Patrignani and Group (2016).

The Neutron
Mass mn = (939.5654133± 0.0000058) MeV/c2

Spin s = 1/2
Mean lifetime τn = (880.2± 1.0) s
Magnetic moment µn = (−1.91304273± 0.00000045)µN
Electric polarisability αn = (11.8± 1.1)× 10−4 fm3

Magnetic polarisability βn = (3.7± 1.2)× 10−4 fm3

Electric charge qn = (−0.2± 0.8)× 10−21 e

a zero charge for the neutron, as predicted in Grand Unified Theories (Abele
(2008)). Similarly, measurements of the electric dipole moment (EDM) of the
neutron also aim at probing extension models of the Standard Model. Non-
Standard Model contributions would add more CP (charge and parity) violating
terms, which enlarges the expected value of the EDM. A non-zero neutron EDM
would violate T (time reversal) as well as P symmetry, and if CPT symmetry is to
be assumed, CP symmetry is also violated. Even though the first measurements
were performed in 1950 (results published in Smith et al. (1957)), no non-zero
value for the neutron EDM has been published until today. In the experiment of
1950 Ramsey’s resonance method (the basis of the experiment of this thesis) was
used and is still applied in many follow-up experiments. To explain for example
the baryon-antibaryon asymmetry that is observed in the universe, a minimum
neutron EDM was calculated to be around 10−28 e cm. While the current upper
limit is |dn| < 3.0×10−26 e cm (Pendlebury et al. (2015)) and many constraints
on baryogenesis and beyond Standard Model theories have already been set,
future EDM experiments with increased sensitivities will be of much interest
for particle physics and cosmology. Arguments in this paragraph taken from,
and further information on the topic can be found in Lamoreaux and Golub
(2009), Dubbers and Schmidt (2011) and Abele (2008).

2.2. Definition of Ultracold Neutrons
All experiments that deal with neutrons have to be located close to a neutron
source due to the finite lifetime of the free neutron. Typically, high flux neutron
sources are either nuclear fission reactors or spallation sources. The neutrons used
within the experiments of qBounce fall into the category of ultracold neutrons
(UCNs). Due to the need of a high and continuous flux of UCNs, the experiment
is taking place at the PF2, which is one of the UCN sources of the research reactor
of the Institut Laue-Langevin in Grenoble, France (see section 2.3).
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Table 2.2.: Real parts of Fermi pseudopotentials for selected elements. Scattering
lengths taken from NIST Center for Neutron Research, and element
data taken from the Wolfram Knowledgebase2. For positive Fermi
potentials, the critical velocity vc for total reflection under all angles
of incidence is given. The critical velocity is calculated with the real
part of the relation mnv

2
n/2 cos2 θc = VF (Golub et al. (1991)), with

critical angle θc = 0 and neutron mass mn.

Element Ti V Si Al Pb Cu C Fe 65Cu Ni Be 58Ni
VF [neV] -51 -7 54 54 81 171 196 209 230 245 250 347
vc [m/s] 3.2 3.2 3.9 5.7 6.1 6.3 6.6 6.8 6.9 8.2

Neutrons coming to experiments from a fission reactor will naturally have velocities
distributed as a Maxwell-Boltzmann distribution (thermal spectrum), peaking
at around 2200 m/s. Ultracold neutrons however, have velocities in the range
of several meters per second. An appropriate definition for UCNs is via their
capability of being totally reflected from surfaces at all angles of incidence (Golub
et al. (1991)). This definition is dependent on the material the neutrons are
reflecting on.
For every material a Fermi pseudopotential1 can be calculated:

V = 2πh̄2

m
Na , (2.1)

where m is the neutron mass, N is the number density in the material, and
a is its coherent scattering length. As can be seen in table 2.2 where Fermi
pseudopotentials for some materials are listed, the potential can also become
negative when the coherent scattering length is negative. The scattering length
is in general a complex quantity, where the real part contributes to the reflection,
whereas the imaginary part determines the reflection loss, which shall not be
covered here. For negative scattering lengths, the potential is attractive and
neutrons will not be reflected. For a glancing angle smaller than the critical angle,
the vertical component of the kinetic energy of neutrons can be smaller than the
potential barrier of a material surface, given by the Fermi pseudopotential. This
effect is used for example for manufacturing neutron beam guides, minimising
losses when transferring neutrons from the reactor core to experiments. For
UCNs (e. g. 5 m/s correspond to ≈ 130 neV), the condition for total reflection
is, as stated above, fulfilled for all angles of incidence for certain materials
(compare with table 2.2), opening new possibilities for neutron experiments.

1Or effective potential, named after Enrico Fermi who first had the idea that neutrons could
be totally reflected (Golub et al. (1991)).

2https://www.nist.gov/ncnr/neutron-scattering-lengths-list and
https://reference.wolfram.com/language/note/ElementDataSourceInformation.
html.
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2. Ultracold Neutrons

Predicted by Zel’dovich (1959), first ultracold neutrons were extracted almost
simultaneously by Luschikov et al. (1969) and Steyerl (1969).

Besides being able to store UCNs in bottles and determining the lifetime of
the neutron (see Wietfeldt and Greene (2011) for an overview of neutron
lifetime measurements), or using UCNs for neutron EDM measurements (see
section 2.1), UCNs can be bound in the gravity potential of the Earth. The
so-called Quantum Bouncer was proposed in Langhoff (1971) and Gibbs
(1975) as an educational text book example for students. It describes a quantum
particle or a point mass, falling due to gravity and bouncing off a flat surface.
The concept was also applied to atoms (see for example Wallis et al. (1992)) and
photons (Della Valle et al. (2009)). The first proposal to apply the Quantum
Bouncer to ultracold neutrons was published in Luschikov and Frank (1978),
already suggesting an experimental design to separate the first eigenstate of
UCNs that are trapped in a gravity potential on a plane. Solving the Schrödinger
equation for a neutron as a Quantum Bouncer in the gravity potential of the Earth
V (z) = mgz, the eigenstates of the neutron are governed by the mathematical
Airy function Ai(x). More on this system as well as a graphical representation
follows in section 3.1.

2.3. Ultracold Neutron Source at the Institut
Laue-Langevin

The Institut Laue-Langevin (ILL) is located in the French alps in the city of
Grenoble. One of the world’s most powerful research reactors (thermal power of
58.3 MW) is operating within this international research centre. In the 1980s, the
instrument known today as PF2 (Physique Fondamentale 2) originated with the
installation of a new source for cold and ultracold neutrons (see Steyerl et al.
(1986) and Golub et al. (1991), which were used for the following description).
Figure 2.1 gives a schematic view of the components in use.

As pointed out in section 2.1, the similarity of the proton’s and the neutron’s
mass is advantageous for moderating neutrons. Thermal neutrons are converted
to ultracold neutrons primarily via two principles: thermalisation in the cold
source with liquid deuterium, and Doppler shifting (through scattering) with a
neutron turbine (Steyerl (1975)). After first being thermalised by surrounding
D2O, the neutrons coming from the reactor core eventually enter the cold source.
There, further moderation of the neutrons occurs in liquid deuterium (T ≈ 25 K).
From the cold source, a curved nickel guide leads the neutrons to the neutron
turbine. Half of the beam will then be guided to the very-cold neutron (VCN)
beam port. Neutrons arriving at the turbine with v ≈ 50 m s−1 will be Doppler
shifted by several reflections on the turning wheels of the turbine (peripheral
velocity of v = 25 m s−1) that are coated with nickel. Ultracold neutrons will then
leave the turbine and are distributed to four beam ports where they may be used
for experiments. A characteristic feature of the PF2 facility is that three of the
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Figure 2.1.: PF2 instrument layout at the ILL. Image taken from Steyerl et al.
(1986), 348, fig. 1.

four beamports are usually assigned to the UCN beam in cyclic order. Originally
implemented for storage experiments (where UCNs are needed when a UCN
bottle is filled but increase background when counting remaining neutrons in the
bottle after a certain time), the neutrons are guided to each experimental place
for around 200 s, before a switcher directs them to the next. For qBounce, this
measurement scheme allows for measuring the background rate in the detector
repetitively during the complete measurement cycle.

The conversion of faster neutrons to ultracold neutrons close to the actual
experiments is advantageous because faster neutrons undergo fewer reflections
in the neutron guides, which leads to fewer losses. The bent neutron guide
additionally separates very-cold neutrons from faster neutrons and gamma rays,
and by extracting vertically from the cold source the neutrons lose kinetic energy
gravitationally (1.7× 10−6 eV for a rise of 17 m) while travelling upwards.

The vertical extraction from a cold source of UCNs and the use of a neutron
turbine at the ILL as just described, is only one possibility of UCN production.
Others are using for example phonon scattering in solid deuterium at pulsed
reactors (Kahlenberg et al. (2017)) or spallation sources (Lauss (2014); Ito
et al. (2018)), or superfluid helium at research reactors (Leung et al. (2016)) or
spallation sources (Ahmed et al. (2018)). Other ultracold neutron sources are
operating all around the world, and some are under construction. Several sources
are compared in Bison et al. (2017). Due to the demand of the qBounce
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experiments for a steady high flux of UCNs, the PF2 is the source of choice up
until today.
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3. qBounce and the Development
of Gravity Resonance
Spectroscopy

3.1. Neutrons in a Gravitational Field
In 2002, gravitationally bound states of ultracold neutrons were discovered
(Nesvizhevsky et al. (2002) and see also Nesvizhevsky et al. (2003, 2005)).
A quantum mechanical description of the experiment is given in Westphal et al.
(2007).
Any particle that is put into a sufficiently deep and wide potential well will form
quantum mechanical bound states. This fact alone is not surprising and visible
in many systems, like electrons bound in an atom or nuclei being bound states of
protons and neutrons. But a system that has its eigenstates defined by gravity is
peculiar, because gravity is so weak compared to the other fundamental forces1.
Due to the neutron’s electric neutrality, a system like the Quantum Bouncer
(compare section 2.2) can be prepared in a systematically clean way, so that the
eigenstates of a neutron in the gravity potential of the Earth above a flat surface
(a neutron mirror) can be measured.

Solving the problem of the Quantum Bouncer, the corresponding Schrödinger
equation with the linearised gravity potential reads− h̄2

2m
d2

dz2 +mgz

ψ(z) = Eψ(z) , (3.1)

with the conditions ψ(z ≤ 0) = ψ(z → ∞) = 0. Here, m is the neutron
mass, g the gravitational acceleration, and E the energy of the wave function
ψ(z). Substituting z̃ = z/z0 with z0 = (h̄2/(2m2g))1/3, and Ẽ = E/E0 with
E0 = mgz0, equation (3.1) becomes

−d2ψ(z̃)
dz̃2 + (z̃ − Ẽ)ψ(z̃) = 0 . (3.2)

The quantities z0 = 5.9 µm and E0 = 0.6 peV define the characteristic length and
energy scale of the system, respectively. Raising a neutron up by the length z0 in

1The approximate strengths of the fundamental forces compared to gravity (set to 1) are: 1024

(weak), 1036 (electromagnetic), and 1038 (strong force).
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the gravitational field of the Earth, corresponds to a gain in potential energy of
E0.

The differential equation equation (3.2) is special, in the sense that it can be
solved by Airy functions Ai.2 Therefore, the equation is sometimes referred to as
Airy differential equation, and the function as Airy rainbow function3. Obeying
the boundary conditions at z = 0, the wave functions read

ψn (z̃) = An Ai
(
z̃ − Ẽ

)
, (3.3)

where An are scaling constants. At z̃ = 0, the wave functions have to vanish,
which yields

Ai(−Ẽ) = 0 . (3.4)
The outcome is therefore a quantisation of allowed energy levels of the system.
They are defined by the zeros Ẽn of the Airy functions.

A graphical representation of this system is shown in figure 3.1a. The first
four eigenenergies are marked on the ordinate (neutron mirror), where the here
arbitrarily scaled illustrations of the corresponding wave functions ψn(z̃) vanish.
The abscissa shows the height above the mirror, and the potential V represents
the potential term of equation (3.1). Figure 3.1b shows that the energy states of
the neutron are shifted when the value of g changes. The experimental setup
as well as the result from Nesvizhevsky et al. (2002) can be seen in figure 3.2.
Neutrons enter the setup from the left, through a collimator that limits the
horizontal velocity component. The UCNs then bounce along a neutron mirror,
before being detected by an adjacent detector. Above the neutron mirror, an
absorber scatters neutrons that interact with it out of the system. The height of
the absorber above the neutron mirror was varied and the neutron flux through
the system measured, leading to the measurement points shown in figure 3.2b.
The classically expected curve (solid line) cannot describe the measurements
properly. A quantum mechanical description for the neutron transmission rate
confirms quantised states (figure 3.1).

The evidence of gravitationally bound ultracold neutrons was of course fol-
lowed by other experiments. In general, a direct spatially resolving detection of
the absolute value of square of the wave function of the neutrons is desirable.
Furthermore, as the eigenenergies of the system are not equidistant, spectroscopic
methods can be applied to measure the energy difference between the states. Two
groups are engaged in experiments of these types. The Granit collaboration
(see e. g. Nesvizhevsky (2012)) and the qBounce collaboration.

2In case of a second boundary condition, e. g. an absorber mirror on top, the solution is a
linear combination of the functions Ai and Bi.

3The function was introduced in 1838 by Geroge Biddell Airy, describing the phenomena of
caustics (e. g. rainbows) mathematically.

4All data plots and data analyses within this thesis have been generated/performed with
Wolfram Mathematica 10 & 11, Student Edition. In parts, packages written by Hanno
Filter, Jörg Herzinger, Tobias Jenke, and Martin Thalhammer have been used.
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(a) (b)

Figure 3.1.: (a) The first five eigenstates of a neutron gravitationally (potential
V with g = 9.805 m/s2) confined above a flat surface (y-axis) are
displayed. (b) The energy states get shifted for a different potential
Ṽ with g = 9.9 m/s2. Without constraints in positive height direction
and without other forces present, the energy eigenstates are purely
depending on the value of g and physical constants.4

(a) (b)

Figure 3.2.: Experimental setup (a) and part of the results (b) from Nesv-
izhevsky et al. (2002), 298, fig. 2 & 299, fig. 4. Varying the
height of the absorber yields results predicted by quantum mechanics
(dashed line) and does not fit to classical predictions (solid line).
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Figure 3.3.: Schematic view of the Quantum Bouncing Ball experiment. A neutron
mirror-absorber system with a step in height down to a neutron mirror
is followed by a spatial resolution neutron detector.

Section 3.2 briefly discusses the dynamics of a wave packet in a linear gravity
potential, the so-called Quantum Bouncing Ball. In section 3.3, a short status
quo as well as the main experiment of this thesis will be covered, both dealing
with spectroscopic methods for UCNs in the gravity potential of the Earth —
Gravity Resonance Spectroscopy.

3.2. The Quantum Bouncing Ball
The Quantum Bouncing Ball (QBB) experiment studies the dynamics of a wave
packet — a neutron — in a linear gravity potential. Similar to the experiment
in Nesvizhevsky et al. (2002), neutrons are prepared in an initial state (ground
state) via a neutron mirror-absorber system, see figure 3.3. Afterwards, the
prepared wave packet drops down a step of certain height, around 20–30 µm. The
gain in kinetic energy leads to superposition of the initial state with higher states
(compare figure 3.1). By using a detector with a spatial resolution, these quantum
interferences can be visualised by measuring the absolute value of the square of
the wave function after certain distances behind the step.
Measurements with a high level of statistical significance of such a quantum carpet
succeeded in 2014 with the qBounce experiment at the ILL (Thalhammer
(2019)). Mirrors with different lengths were used in region II, after which detectors
with a spatial resolution (boron coated CR-39) were placed.

3.3. Gravity Resonance Spectroscopy
Gravity Resonance Spectroscopy (GRS) (Jenke et al. (2011)) combines the
powerful technique of spectroscopy with the unique system of gravitationally
bound states of neutrons. While spectroscopic methods have been established
for many years and are more important than ever (e. g. atomic clocks or Raman
spectroscopy), they usually use electromagnetic radiation for achieving resonance
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in the system of interest. A transition between two states is induced and their
difference in energy measured.
Taking a setup described in section 3.1 and figure 3.1 of bound states of UCNs
above a neutron mirror, spectroscopic methods can be applied, as the energy
differences between any two states are unique. Transitions between two states
can be induced by means of oscillatory magnetic field gradients (planned by the
Granit collaboration), or via mechanical oscillations of the neutron mirror(s) in
the interaction region(s) (qBounce). For a Rabi-type spectrometer setup within
qBounce, measurements have been performed and will be summarised in the
following section 3.3.1.
From a historical point of view, implementing a Rabi-type experiment will
naturally be followed by a Ramsey-type setup, as the gain in sensitivity and
versatility is usually worth a more complex experimental setup. Before Norman
F. Ramsey invented his method of separated oscillating fields (Ramsey (1949)),
his mentor and inventor of the molecular beam resonance method (Rabi et al.
(1939)) in fact tried to keep Ramsey from staying in this very field of research.
This was not until the beam resonance method was invented but according to
Rabi, there was not much to be gained as the most interesting measurements
(magnetic moments of proton and deuteron to ≈ 10 %) have been done5. The
field began to flourish after the first Rabi-type experiments delivered new and
unexpected results (e. g. the discovery of the quadrupole moment of the deuteron)
and only became even more essential with the development of Ramsey’s method.

In the following, both methods will be described within the context of qBounce.

3.3.1. Rabi-type Gravity Resonance Spectroscopy
A full Rabi-like setup consists of three regions — a preparation region, an
interaction region, and an analyser region. Within qBounce, a damped Rabi
setup was realised in Jenke (2011) for the first time. All three regions were
combined into one, which leads to an effective three-state system. Not only a
proof of concept could be made (Jenke et al. (2011)), but also constraints on
dark energy and dark matter models were set (Jenke et al. (2014), compare
section 1.3).
In Cronenberg (2016), the first full three-part Rabi-like setup was realised within
qBounce. A schematic overview can be seen in figure 3.4. Ultracold neutrons
enter the setup from the left. In the first region, the state preparation takes place.
Just like in previous experiments mentioned, a mirror-absorber system scatters
higher energy eigenstates out of the system. Ideally, only neutrons in their ground
state arrive at region II, in which the neutron mirror (without a scatterer on top)
oscillates mechanically. When hitting a resonance frequency, transitions from the

5Interview of Norman Ramsey by Katherine Sopka on 1976 November 23, Niels Bohr Library
& Archives, American Institute of Physics, College Park, MD USA, http://www.aip.org/
history-programs/niels-bohr-library/oral-histories/32459.
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Figure 3.4.: Schematic view of a Rabi-type GRS experiment. In between two
mirror-absorber systems to filter the ground state, an oscillating
neutron mirror is placed to mechanically induce transitions between
energy states of the neutrons. Count rates are measured with a
counter tube.

first to a higher state can be driven. This is exactly the case when

σR τ̃ = π, (3.5)

where σR is the Rabi-frequency that depends on the oscillation strength and
the overlap integral between initial and final state (see chapter 4), and τ̃ is the
interaction time, the time the neutron spends in region II. Naturally, this is called
a π-flip. Having a vector in a Bloch sphere for a two-state system in mind that
is pointing to one of the poles, this corresponds to a transition of the vector to
point to the other pole. Region III then again selects neutrons in the ground
state and only those are detected in a neutron counter tube. The mathematical
formulation of the problem can be found in many text books, in chapter 4, and
can be looked-up in Jenke (2011) and Cronenberg (2016).
Besides setting constraints on a chameleon dark energy model or probing the
weak equivalence principle (although for this more precise measurements by
other experiments exist), the full three-part Rabi setup led to constraints for the
hypothetical symmetron particle to be the origin of dark matter (Cronenberg
et al. (2018)). The neutron mirror lengths of regions I, II, and III, were 150, 200,
and 150 mm respectively.

The success of the implementations of Rabi’s method within qBounce is good
motivation to take the next step in GRS to increase sensitivity: the implementation
of Ramsey’s method of spearated oscillating fields.

3.3.2. Ramsey-type Gravity Resonance Spectroscopy
Extending a Rabi-type setup to a Ramsey-type setup, the three main experimental
regions will become five. This is due to the trick of Norman Ramsey who had
the idea of splitting the interaction region into two parts, with a non-interaction
region in between. This increases the precision of the experiment drastically
and also enables numerous extensions of the system. In fact, the measurement
principle of separated oscillating fields is nowadays used in atomic clocks and
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Figure 3.5.: Schematic view of a Ramsey-type GRS experiment. The interaction
region between two neutron-absorber systems is split into two halves,
with a region for free phase evolution of the coherent superposition
of two energy states in between. Ground state neutrons are detected
with a counter tube.

in the definition of the International System of Units (SI) of the second. One
second is defined as 9 192 631 770 periods of the radiation corresponding to the
transition between the two hyperfine levels of the ground state of the 133Cs atom.
Its special configuration with only one 6s electron (spin 1/2) and 54 electrons in
xenon-configuration (total spin zero), make for a hyperfine splitting caused by the
interaction of the electron spin with the nuclear spin (7/2). This is despite the
fact that the electron moves around 55 000 times further away from the centre
of the atom than the radius of the nucleus is. Using microwave radiation in a
Ramsey-type setup, the electron spin can change from being anti-parallel to the
nucleus (total spin 3) to parallel configuration (spin 4). This happens only at
resonance, yielding the corresponding resonance frequency. As this process is
very stable, it represents a good basis for the definition of the second.
A powerful tool like atomic clocks is not only used for the definition of the second.
State of the art experiments use atoms to test gravity, search for dark matter, and
dark energy (see e. g. Burrage et al. (2015); Jaffe et al. (2017); Banahene-
Sabulsky (2018)). However, the application of Ramsey’s method stretches even
further, with neutron electric dipole measurements, ion mass measurements,
the closely related spin-echo technique, or nuclear magnetic resonance (NMR)
experiments.

For a Ramsey setup within qBounce, as has been proposed in Abele et al.
(2010), a schematic overview can be seen in figure 3.5. Again, UCNs enter from
the left. Region I is the same preparation region as before, the rough upper mirror
scatters higher states out of the system. Ideally, only neutrons in the ground state,
the initial state |i〉, enter the first interaction region II, where a mechanically
oscillating mirror applies a π

2 -flip. This leads to a coherent superposition of the
initial state and the desired final state at the end of region II: 1/

√
2
(
|i〉+ |f〉

)
.

Analogous to equation (3.5), the condition for this reads

σR τ = π

2 , (3.6)
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Figure 3.6.: Typical Ramsey and Rabi fringes for a qBounce experiment. The
detuning is with respect to the resonance frequency for the given
transition. The total length of the oscillating regions for both experi-
ments are the same, but for the Ramsey-setup an additional middle
region of the same length is inserted.

where τ is the flight time through one perturbation region. On the Bloch sphere,
this corresponds to a transition from a vector pointing to a pole, to a vector
pointing to the equator. It is important to keep in mind that this transition is
induced purely mechanically, which is an absolute novelty for a Ramsey-type
setup.
The free precession of the phase of the superposition can evolve in region III. The
longer the flight time T through region III is, the higher the energy resolution of
the setup will be. Tiny deviations from the resonant frequency in region II will
lead to the Bloch vector not pointing to the equator, and therefore ultimately
lead to increasing phase differences, as the vector rotates around the vertical axis.
The dependence of the energy resolution on T will be shown in more detail in
the theoretical description in chapter 4.
Region IV is identical to region II and oscillates in phase, and in the case of perfect
resonance this second π

2 -flip will complete the transition of the neutron to the final
state |f〉, the opposite pole of |i〉 on the Bloch sphere. If, however, the oscillations
of region II and IV are off resonance, ωr − ω 6= 0, the transition probability will
decrease. As region V is identical to region I and only lets neutrons in state |i〉
pass, the count rate will be zero for a perfect transition and at most when no
transition takes place.

A typical measurement pattern for such a Ramsey-type experiment in com-
parison with a Rabi-setup is shown in figure 3.6. While the total length of
the interaction regions for both setups is the same, an additional region of free
propagation of the coherent superposition of initial and final state is inserted
in between the interaction regions of the Ramsey-setup. Its length is chosen to

26



3.3. Gravity Resonance Spectroscopy

be L = Tvn = 2τvn for this graph, with the vertical velocity component of the
neutrons vn. For L→ 0, the Ramsey curve will become the Rabi curve.
While the full width at half maximum (FWHM) is significantly smaller for the
Ramsey curve in this figure (which is desirable as steeper slopes increase the
precision), this is only the case when the total length of the setup increases. For
identical setup lengths, the FWHM are similar. Still, a major advantage of the
Ramsey method is that by inserting a non-oscillating (and therefore technically
more easy to handle) region, the sensitivity is increased.
Even with similar setup lengths, however, the Ramsey method is superior to the
Rabi method. As can be seen in figure 3.6, the Ramsey curve has more prominent
side maxima, which increase the precision with which a theory function can be
fitted to measurement data. These side maxima are not achievable with a Rabi
setup.
The lengths of the neutron mirrors of the first realisation of Ramsey-type GRS
presented here, are 150, 152, 340, 152, and 152 mm, for regions I to V, adding up
to 946 mm in total.

27





Part II

Gravity Resonance Spectroscopy:
Theoretical Considerations

29





4. Ramsey’s Method of Separated
Oscillating Fields

In the following section of this thesis theoretical concepts of a Ramsey-type
experiment within qBounce will be treated. The first section will introduce the
Ramsey method. This done by starting with a single oscillating mirror, which is
the Rabi method. The result will be generalised and Ramsey’s method will be
applied.
The subsequent sections will then focus on the qualitative behaviour of such a
system within qBounce, experimental parameters for the first realisation will
be introduced, and possible measurement methods discussed. In the last section,
Monte Carlo simulations for the purely classical analogue are compared to the
quantum mechanical predictions.

4.1. Rabi’s Method
This section presents Rabi’s method for solving the problem of a neutron in a
gravitational field above an oscillating mirror. It will be shown to be the basis
for arriving at Ramsey’s formula for separated oscillating fields, or, in this case,
mirrors.

The unperturbed solution of neutrons in a gravitational field above a flat
surface is just the solution of the Quantum Bouncer (section 3.1). The Schrödinger
equation is one-dimensional, as the solutions in the plane of the surface are
separable and given by plane waves:

Ĥ0ψ̃
(0)
(
z̃, t̃
)

= ih̄
∂

∂t̃
ψ̃(0)

(
z̃, t̃
)
, (4.1)

with

Ĥ0 =
− h̄2

2m
∂2

∂z̃2 +mgz̃

 . (4.2)

Here, symbols marked by a tilde indicate the frame of reference to be the inertial
frame and quantities with superscript (0) refer to the unperturbed system. When
introducing a perturbation (in this case an oscillating boundary condition, that
is, an oscillating neutron mirror), another term is added to the left-hand side of
equation (4.1) and the corresponding Schrödinger equation reads[

Ĥ0 + Ŵ
(
z̃, t̃
)]
ψ̃
(
z̃, t̃
)

= ih̄
∂

∂t̃
ψ̃
(
z̃, t̃
)
, (4.3)
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4. Ramsey’s Method of Separated Oscillating Fields

with
Ŵ
(
z̃, t̃
)

= V Θ (−z̃ + a sinωt) . (4.4)
The Fermi pseudopotential V of the neutron mirror represents the boundary
condition via the Heaviside function Θ, where the oscillation of the mirror with
amplitude a and angular frequency ω is taken into account with the sine term.
Solving equation (4.3) will give a description of how the wave function of a neutron
is influenced by the oscillation of the mirror and corresponds to the solution of
a Rabi-like system, in which a perturbation is switched on once, for a finite
time. For a Ramsey-like setup, where the perturbation acts two (or multiple)
times with sections of free evolution of the neutron in between, the outcome will
be an intermediate result.
The solution follows Landau and Lifshitz (1981) and Pitschmann (2018). To
get rid of the time dependency of Θ, a transformation to the non-inertial frame
via

t = t̃

z = z̃ − a sinωt̃ ,
(4.5)

and ψ̃
(
z̃, t̃
)

= ψ (z, t) is useful and yields1

∂

∂z̃
= ∂

∂z
∂

∂t̃
= −aω cosωt ∂

∂z
+ ∂

∂t
.

(4.6)

With this, equation (4.3) becomes
[
Ĥ0 + V̂ (z, t)

]
ψ (z, t) = ih̄

∂

∂t
ψ (z, t) (4.7)− h̄2

2m
∂2

∂z2 +mgz +mga sinωt+ h̄aω cosωt ∂
∂z

ψ (z, t) = ih̄
∂

∂t
ψ (z, t) ,

(4.8)

with
V̂ = mga sinωt+ h̄aω cosωt ∂

∂z
. (4.9)

A solution can be found in the form of

ψ (z, t) =
∑
k

ak(t)ψ(0)
k (z, t) , (4.10)

where the ψ(0)
k (z, t) are the (time dependent) wave functions of the unperturbed

system (corresponding to Ĥ0, see equation (4.1)) and the time dependent ak are

1Through ∂
∂xi = ∂yj

∂xi
∂

∂yj , for two sets of variables xi and yj .
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4.1. Rabi’s Method

expansion coefficients.
Equation (4.7) then becomes

ih̄
∑
k

d
dtψ

(0)
k (z, t) ak =

∑
k

akV̂ ψ
(0)
k (z, t) . (4.11)

Multiplying from the left with ψ(0)∗
m (z, t) and integrating yields

ih̄
dam
dt =

∑
k

Vmk(t)ak , (4.12)

due to orthogonality of the unperturbed wave functions. The matrix elements
of the perturbation Vmk for a transition between states m and k arise with
ωmk = (E(0)

m − E
(0)
k )/h̄:

Vmk(t) =
∫
ψ(0)∗
m (z, t) V̂ ψ(0)

k (z, t) dz

=
∫
ψ(0)∗
m (z) V̂ ψ(0)

k (z) eiωmkt dz

= Vmk e
iωmkt .

(4.13)

Equation (4.12) represents the Schrödinger equation with the ansatz from equa-
tion (4.10), hence describes the evolution of a certain quantum state in the
perturbed system of a neutron above an oscillating mirror.

The operator V̂ of the perturbation is periodic with respect to time and is
(using Euler’s formula and equation (4.9)) of the form

V̂ ≡ F̂ e−iωt + F̂ †eiωt

= mga
eiωt − e−iωt

2i + ih̄aω
eiωt + e−iωt

2
∂

∂z
.

(4.14)

The time independent part can be separated:

F̂ = i
mga

2 + ih̄
aω

2
∂

∂z
, (4.15)

and with equation (4.13) the matrix elements of the perturbation become

Vkn(t) = Fkne
i(ωkn−ω)t + F ∗nke

i(ωkn+ω)t . (4.16)

Together with equation (4.16), equation (4.12) can be used to describe this system
with

ih̄
dam
dt =

∑
k

ak
(
Fmke

i(ωmk−ω)t + F ∗kme
i(ωmk+ω)t

)
,

ih̄
dan
dt =

∑
k

ak
(
Fnke

i(ωnk−ω)t + F ∗kne
i(ωnk+ω)t

)
.

(4.17)
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Equation (4.17) seems rather difficult to solve analytically without loss of gener-
ality. Therefore, from here on, only a transition between two states m and
n is considered. Near a resonance,

E(0)
m − E(0)

n = h̄(ω + ε) , (4.18)

and ε� ω.2 With this, the sum in equation (4.17) has only two terms. In addition,
the second terms in the brackets on the right-hand side in equation (4.17) oscillate
rapidly in comparison to the first terms for sufficiently large observations periods,
(which is usually the case), average out and can therefore be neglected. Only one
term of the sum remains:

ih̄
dam
dt = anFmne

iεt ,

ih̄
dan
dt = amF

∗
mne

−iεt .

(4.19)

This system of equations can be solved by substituting aneiεt = bn, which leads
to

ih̄ȧm = Fmnbn ,

ih̄(bn − iεbn) = F ∗mnam .
(4.20)

Eliminating am gives

b̈n − iεḃn + |Fmn|
2 bn

h̄2 = 0 . (4.21)

A solution can be found through the ansatz bn(t) = eiλt:

λ2 + ελ−|Fmn|
2

h̄2 = 0 , (4.22)

where
λ = −ε2 ± Ω , (4.23)

and

Ω =
√
|Fmn|2

h̄2 + ε2

4 . (4.24)

Here, Ω = (ΩR + ∆ω2)1/2 can be identified with the generalised Rabi frequency,
depending on the Rabi frequency ΩR at resonance, and the detuning ∆ω2.

This gives a solution for an and through equation (4.19) also for am:

an(t) = Ae−i(
ε
2−Ω)t +Be−i(

ε
2 +Ω)t ,

am(t) = Ah̄

F ∗mn

(
ε

2 − Ω
)
ei(

ε
2 +Ω)t + Bh̄

F ∗mn

(
ε

2 + Ω
)
ei(

ε
2−Ω)t ,

(4.25)

2N.B.: For positive ω, E(0)
m > E

(0)
n .
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where A and B are constants, which have to be determined by initial conditions.
Remembering equation (4.10) gives

ψ(z, t) =
(
− h̄A

F ∗mn

(
ε

2 − Ω
)
eiΩt + h̄B

F ∗mn

(
ε

2 + Ω
)
e−iΩt

)
ei
ε
2 tψ(0)

m (z, t)

+
(
AeiΩt +Be−iΩt

)
e−i

ε
2 tψ(0)

n (z, t) . (4.26)

To obtain a final result, for t = 0 let only the state m to be occupied: ψ(z, 0) =
ψ(0)
m (z, 0). This then yields

A = −F
∗
mn

2h̄Ω , and B = F ∗mn
2h̄Ω . (4.27)

Finally, inserting yields the wave function ψ(z, t) for a Rabi-like perturba-
tion of an initially populated m-state:

ψ(z, t) =
(
− 1

2Ω

(
ε

2 − Ω
)
eiΩt + 1

2Ω

(
ε

2 + Ω
)
e−iΩt

)
ei
ε
2 tψ(0)

m (z, t)

+
(
−F

∗
mn

2h̄Ωe
iΩt + F ∗mn

2h̄Ωe
−iΩt

)
e−i

ε
2 tψ(0)

n (z, t) . (4.28)

Rewriting in terms of sine and cosine functions, the result takes on a more compact
form:

ψ(z, t) =
(

cos Ωt− iε

2Ω sin Ωt
)
ei
ε
2 tψ(0)

m (z, t)− iF
∗
mn

h̄Ω sin Ωt e−i ε2 tψ(0)
n (z, t) . (4.29)

The corresponding probabilities of finding the neutron in state m or n can readily
be obtained via

∣∣am(t)
∣∣2 and

∣∣an(t)
∣∣2, which for the state n yields

∣∣an(t)
∣∣2 = |Fmn|

2

h̄2Ω2 sin2 Ωt , (4.30)

and
(∣∣am(t)

∣∣2 = 1−
∣∣an(t)

∣∣2). For a Rabi-like setup, it is therefore desirable to
have Ωt = π for a full transition to the state n, whereas for a Ramsey-like setup
an equal superposition of m and n states demands for Ωt = π

2 . Experimentally,
the probability for a specific transition at angular frequency ω can be tuned via
the duration of the perturbation t and the amplitude of the oscillating mirror a,
which occur in Ω (equation (4.24)) because

|Fmn|2 = (h̄aω)2

4

(∫
ψ(0)∗
m

∂

∂z
ψ(0)
n dz

)
= (h̄aω)2

4 Q2
mn . (4.31)

For a so-called π
2 -flip it follows that at resonance the optimal oscillation amplitude

arises through

Ωt != π

2 = t
|Fmn|
h̄

π

2 = t
aω

2 Qnm ,
(4.32)
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which yields with t = l/v (length l of the neutron mirror and velocity v of the
neutron):

ax = vπ

lωQnm

and av = vπ

lQnm

. (4.33)

Here, ax denotes the spatial amplitude of the oscillation and av the corresponding
velocity. Tables for the transition frequencies between two states, as well as the
overlap integrals

∫
ψ(0)∗
m

∂
∂z
ψ(0)
n dz = Qmn, can be found in tables A.1 and A.2,

respectively.

4.2. Ramsey’s Method
The result just obtained corresponds to the wave function after the first perturb-
ation region II in a Ramsey-like setup. To proceed with a Ramsey-like setup,
equation (4.29) is nevertheless impractical, as repeated application for more than
one oscillating region presumes full population of only the initial state m, at the
beginning of all oscillating regions. Therefore, the constants A and B have to
be kept general, before the results may be applied to a Ramsey-setup within
qBounce.

Generalisation
The perturbation is supposed to start at an arbitrary time t = t1. To generalise
A and B in equation (4.26), the coefficients of the wave functions are set to
time-depending values Cm(t1) and Cn(t1), respectively. Taking the time evolution
out of the wave functions (i. e. ψ(0)

i (z, t) = e−i
Ei
h̄
tψ

(0)
i (z, t = 0) = e−iωitψ(0)

i (z)),
and using equation (4.18), equation (4.26) yields(

h̄A

F ∗mn

(
ε

2 − Ω
)
eiΩt1 + h̄B

F ∗mn

(
ε

2 + Ω
)
e−iΩt1

)
e−i(ωm+ωn+ω) t12 = Cm(t1) , (4.34a)(

AeiΩt1 +Be−iΩt1
)
e−i(ωm+ωn−ω) t12 = Cn(t1) . (4.34b)

Taking
Be−iΩt1 = Cn(t1)ei(ωm+ωn−ω) t12 − AeiΩt1 (4.35)

from equation (4.34b) and inserting into equation (4.34a), yields the constant A
and therefore also B:

A =
e−

1
2 it1(−wm−wn+ω+2Ω)

(
h̄

F ∗
mn
Cn(t1)(ε+ 2Ω)− 2Cm(t1)eit1ω

)
4 h̄
F ∗
mn

Ω
,

B =
e

1
2 it1(wm+wn−ω+2Ω)

(
− h̄
F ∗
mn
Cn(t1)(ε− 2Ω) + 2Cm(t1)eit1ω

)
4 h̄
F ∗
mn

Ω
.

(4.36)
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For a duration τ of a perturbation that starts at t = t1, equation (4.26) becomes

ψ(z, t1 + τ) =
(
− h̄A

F ∗mn

(
ε

2 − Ω
)
eiΩ(t1+τ) + h̄B

F ∗mn

(
ε

2 + Ω
)
e−iΩ(t1+τ)

)

×e−i(ωm+ωn+ω) t1+τ
2 ψ(0)

m (z) +
(
AeiΩ(t1+τ) +Be−iΩ(t1+τ)

)
×e−i(ωm+ωn−ω) t1+τ

2 ψ(0)
n (z) .

(4.37)

This can be read as

ψ(z, t1 + τ) = Cm(t1 + τ)ψ(0)
m (z) + Cn(t1 + τ)ψ(0)

n (z) . (4.38)

Often, only the coefficients C(t) are of interest, as the probability of finding
the neutron in state m at time t is given by

∣∣Cm(t)
∣∣2. Inserting A and B from

equation (4.36) into equation (4.37) results in

Cm(t1 + τ) = 1
8Ωe

− i
2 (ω+ωm+ωn)τe−iωt1e−iΩτ

[
h̄

F ∗mn
Cn(t1)

(
−1 + e2iΩτ

)
×
(
ε2 − 4Ω2

)
+ 2Cm(t1)eiωt1

(
ε+ 2Ω + e2iΩτ (−ε+ 2Ω)

)]
,

(4.39a)

Cn(t1 + τ) = F ∗mn
4Ωh̄e

i
2 τ(ω−ωm−ωn)e−iΩτ

[
−2Cm(t1)eiωt1

(
−1 + e2iΩτ

)
+ h̄

F ∗mn
Cn(t1)

(
−ε+ 2Ω + e2iΩτ (ε+ 2Ω)

)]
.

(4.39b)

Expanding, using ε2− 4Ω2 = −4F ∗mn/h̄, and rewriting in terms of sine and cosine
functions finally yields

Cm(t1 + τ) =
[
−iF

∗
mn

h̄Ω e−iωt1 sin Ωτ Cn(t1)

+
(
− iε

2Ω sin Ωτ + cos Ωτ
)
Cm(t1)

 e−i(ωm+ωn+ω) τ2 ,

(4.40a)

Cn(t1 + τ) =
[
−iF

∗
mn

h̄Ω eiωt1 sin Ωτ Cm(t1)

+
(
iε

2Ω sin Ωτ + cos Ωτ
)
Cn(t1)

 ei(+ω−ωm−ωn) τ2 .

(4.40b)
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This corresponds to equation (4) in Ramsey (1950), with which the following
identifications can be made to compare the results:

m =̂ q ,

n =̂ p ,

2Ω =̂ a ,

Fmn
h̄

= F ∗nm
h̄

=̂ b ,

Fmn
h̄Ω =̂ sin θ ,

ε

2Ω =̂ cos θ .

(4.41)

Equations (4.40a) and (4.40b) are the weights of the corresponding wave
functions after the first perturbation region, with arbitrary initial weights
Cm(t1) and Cn(t1).

Region III, a section of free evolution of the neutron follows, for which
the oscillation amplitude a = 0, and therefore also F ∗mn/h̄ = 0. With this,
equations (4.40a) and (4.40b) become3

Cm(t1 + τ) = Cm(t1) e−iωmτ , (4.42a)

Cn(t1 + τ) = Cn(t1) e−iωnτ , (4.42b)

which are merely the time evolutions of the wave functions. This is an important
cross-check.

With the same approach as in Ramsey (1950), subsequent applications of
equation (4.40) and equation (4.42) for the interaction regions II and IV and the
non-interaction region III, respectively, yield the corresponding weights for the
wave functions (and hence also the states’ occupation probabilities) for arbitrary
times t > t1.

Application of Results
Starting with a neutron prepared in state n at the beginning of region II in a
five mirror setup at time t = 0, the wave function of the neutron leaving the
perturbation region at time τ reads4

ψII(z, τ) = −iF
∗
mn

h̄Ω sin Ωτ e−i(ωm+ωn+ω) τ2 ψ(0)
m (z)

+
(
iε

2Ω sin Ωτ + cos Ωτ
)
ei(+ω−ωm−ωn) τ2 ψ(0)

n (z) . (4.43)

Region III is a free evolution of ψII(z, τ) of duration T . As qBounce is driving
transitions by mechanical means, it is legitimate to assume the value of the energy

3Using cos ε
2τ ± i sin ε

2τ = e±i(ωm−ωn−ω) τ2 .
4The derivation allows for any initial occupations, this one is chosen for comparison to the

results in the literature and for keeping equations shorter.

38



4.2. Ramsey’s Method

states n and m to be and stay unchanged from their initial values5. Thus, there
is no necessity of introducing a space mean value of ωn and ωm as is described
in Ramsey (1950). Using equation (4.42), the neutron wave function after region
III becomes

ψIII(z, τ + T ) = −iF
∗
mn

h̄Ω sin Ωτ e−i(ωm+ωn+ω) τ2 e−iωmT ψ(0)
m (z)

+
(
iε

2Ω sin Ωτ + cos Ωτ
)
ei(+ω−ωm−ωn) τ2 e−iωnT ψ(0)

n (z) .

(4.44)

Finally, another perturbation acts on the neutron, which is represented by
ψIII(z, τ + T ) upon entering the the second perturbation region IV. After this
region, the wave function is described by

ψIV (z, 2τ + T ) =
[
−iF

∗
mn

h̄Ω e−iω(τ+T ) sin Ωτ Cn,III(τ + T )

+
(
− iε

2Ω sin Ωτ + cos Ωτ
)
Cm,III(τ + T )

 e−i(ωm+ωn+ω) τ2ψ(0)
m (z)

+
[
−iF

∗
mn

h̄Ω eiω(τ+T ) sin Ωτ Cm,III(τ + T )

+
(
iε

2Ω sin Ωτ + cos Ωτ
)
Cn,III(τ + T )

 ei(+ω−ωm−ωn) τ2 ψ(0)
n (z) .

(4.45)

Here, Cm,III(τ + T ) and Cn,III(τ + T ) represent the weights in front of the
unperturbed wave functions from equation (4.44) (compare with equation (4.38)).
The probability of finding a neutron in state m after region IV is then given by
(Ramsey (1950))

Pm =
∣∣∣Cm,IV (2τ + T )

∣∣∣2
= 4 F

2
mn

h̄2Ω2 sin2 Ωτ
(

cos ε2T cos Ωτ − ε

2Ω sin ε2T sin Ωτ
)2

.
(4.46)

For arbitrary parameters, the behaviour of equation (4.46) is shown in figure 4.1,
where the probability of a neutron being in state n, Pn = 1− Pm, after region IV
is shown. Typical Ramsey fringes arise.

For this derivation, one aspect of the qBounce experiment was not taken into
account: The initial states ψk (equation (4.10)) potentially exhibit a phase factor
e−iφk . For a two state system, a phase difference φmn = φm−φn arises, yielding a

5Neglecting steps between mirrors and waviness of the mirrors’ surfaces.
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Figure 4.1.: Typical Ramsey fringes show the results derived. Here, the length of
the intermediate region of free evolution was chosen to be 10 times
the length of one perturbation region. A relative transmission of one
corresponds to a transmission of the setup with all neutron mirrors
at rest.

phase factor e−iφmn . As this phase difference is not measurable in the experiment,
this phase is integrated over in the final result of the wave function. For the
probabilities of finding the neutron in a certain state, this phase vanishes in any
case by taking square of the absolute value of the wave function.

Close to resonance, ω−ωmn � ω, and equation (4.46) becomes (Riehle (2004))

Pm ≈
1
2 sin2 Fmn

h̄

(
1 + cos 2π(ω − ωmn)T

)
, (4.47)

out of which the full width at half maximum of the resonance curve can be
calculated to be

∆ν = 1
2T . (4.48)

This shows that the energy resolution of the setup is depending on T , and therefore
the length L of region III.

Phase Difference Between the Oscillating Regions II and IV

Experimentally, the phase difference between the oscillating regions has to be
known. Often, a phase difference is unwanted and poses a systematic effect that
needs to be investigated. However, as will be shown in the next section, some
measurement schemes are based on the tuning of the relative phase difference in
regions II and IV. The corresponding transition probabilities and a resulting shift
of the resonance frequency shall therefore be provided in the following.
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For a phase difference η between the oscillating regions II and IV, the resonance
frequency νmn = ωmn

2π shifts. From (Riehle (2004))

Pm ≈
1
2 sin2 Fmn

h̄

(
1 + cos 2π(ω − ωmn)T + η

)
, (4.49)

and the phase sensitivity is obtained as

∆νη
νmn

= − η

2πνmnT
. (4.50)

Suppose a phase shift η occurs in the second perturbation region of a Ramsey
setup within qBounce. In the wave function after region IV (equation (4.45)),
the terms ω(τ + T ) are replaced by ω(τ + T ) + η (Ramsey (1986)). The wave
function therefore becomes

ηψIV (z, 2τ + T ) =
[
−iF

∗
mn

h̄Ω e−i(ω(τ+T )+η) sin Ωτ Cn,III(τ + T )

+
(
− iε

2Ω sin Ωτ + cos Ωτ
)
Cm,III(τ + T )

 e−i(ωm+ωn+ω) τ2ψ(0)
m (z)

+
[
−iF

∗
mn

h̄Ω ei(ω(τ+T )+η) sin Ωτ Cm,III(τ + T )

+
(
iε

2Ω sin Ωτ + cos Ωτ
)
Cn,III(τ + T )

 ei(+ω−ωm−ωn) τ2 ψ(0)
n (z) .

(4.51)

Again, the probability of finding a neutron in state m after region IV is then
given by (Ramsey (1986))

ηPm =
∣∣∣ηCm,IV (2τ + T )

∣∣∣2
= 4 F

2
mn

h̄2Ω2 sin2 Ωτ
(

cos 1
2 (εT − η) cos Ωτ − ε

2Ω sin 1
2 (εT − η) sin Ωτ

)2

,

(4.52)

which near a resonance reduces to

ηPm = sin2 2Fmn
h̄

τ cos2 1
2 (εT − η) . (4.53)

Therefore, varying η close to, or on resonance will yield a sinusoidal behaviour.
This will be shown in the next section and is an important result to interpret the
experimental realisation of Ramsey’s method within qBounce in section 9.6.
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5. Investigation of Ramsey’s
Method within qBounce

Within this chapter, the results derived in section 4.2 shall be analysed with
experimental parameters used in the first realisation of Ramsey’s method within
qBounce. The first section 5.1 starts with considering the chosen lengths of the
five mirrors for the first realisation of a Ramsey setup within qBounce. Results
after convolution with the velocity spectrum as well as after taking the measured
state population after regions I and V into account, are presented in section 5.2.
Sections 5.2.1 and 5.2.2 discuss measurement techniques with a Ramsey setup
within qBounce.

5.1. Mirror Dimensions of First Realisation
The number of Ramsey fringes (dips between two subsequent maxima in the
oscillatory behaviour of the transmission) shown in figure 4.1 of the previous
chapter is only achievable with large times T . This corresponds to a long free
evolution of the neutrons in region III (of length L) of a Ramsey setup. For
the first realisation within qBounce, T is about 2.2 times τ (neutron flight
time for length l of one perturbation region). Mirror lengths of l = 152 mm
and L = 340 mm were chosen. The corresponding fringes for these lengths of
neutron mirrors are shown in figure 5.1. A transmission of one corresponds to
the transmission with all neutron mirrors at rest.

Interesting cases to look at are the ones for varying T and τ times, or l = vnτ
and L = vnT . Figure 5.2 shows the effect of varying L. Starting from L = 0,
this equals a Rabi-type setup with the two oscillating mirrors acting as one large
mirror of double length. As L increases up until two times the length used in
the experiment, more and more side fringes arise and the middle peak becomes
sharper. These two effects are both desirable, as they both increase the sensitivity
of a theory function that is fitted to the data.

Varying l mainly has effects on the side fringes. For shorter l, more side fringes
arise, although it should be noted that this also increases the oscillation amplitude
needed to drive a π

2 -flip (compare with equation (4.32)).
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Figure 5.1.: Ramsey fringes for neutron velocities vn = 8 m/s, and lengths l =
152 mm and L = 340 mm for the perturbation regions II and IV, and
the middle region III, respectively. The detuning is the difference
between resonance frequency (in this case 392.566 Hz for |2〉 → |4〉)
and frequency of the perturbation regions. The oscillation amplitude
of the perturbation regions is 1.3 mm/s.

Figure 5.2.: Transition probability for a Ramsey setup with varying length of free
propagation L. For better visibility, the relative transmission T is
shown inverted. For L = 0, a Rabi curve results. Other parameters
are as stated in figure 5.1.
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5.2. Measured State Population and Convolution with Velocity Spectrum

5.2. Measured State Population and Convolution
with Velocity Spectrum

A particular strength of a Ramsey-type setup is that a broad velocity spectrum of
the incoming neutrons can be used. Although side fringes of the Ramsey pattern
will smear out, the middle peak (or dip, in terms of count rates), is very robust.
For qBounce this poses a major advantage, as a broader velocity spectrum yields
higher count rates.

This section includes realistic state populations after region I and V, and
takes the measured velocity spectrum of the incoming neutrons into account
for simulations. The population of states after the mirror-absorber systems is
velocity-dependent. Nevertheless, the effects of convolution with the velocity
spectrum as well as the influence of the state occupation will be shown separately
at times within this section.
This section also anticipates measurements of the incoming velocity distribution
of the neutrons (5–13 m/s) that are presented in section 9.2, and measurements of
the occupation of states after regions I and V (section 9.3). The state occupation
after regions I and V for states one, two and three, respectively, are 50 %, 40 %,
and 10 %. Exact values of the parameters are listed in table 9.2 and will be used
with the theoretical equations derived in chapter 4.

The graphs to follow will show that the occupation of eigenstates is currently a
limiting factor. The state selection is done with a mirror-absorber system (see
section 8.1.2 and measurements in section 9.3), which in 2017 did not perform as
well as in earlier measurements.1 This issue is presently being analysed and is
work in progress. Improvements on the state selection (increasing the occupation
of the ground state) will strongly increase the achieved contrast.

Because of the third energy state still being present after individually measuring
the wave functions behind preparation and analysis region, the transition of choice
for a first realisation (and for all investigations within this chapter) is the one from
the second to the fourth energy state: |2〉 → |4〉. The transition |1〉 → |4〉 would
yield higher contrast, but is difficult to realise at the moment due to mechanical
resonances of components at the transition frequency.

Figure 5.3 shows the expected Ramsey pattern for transition |2〉 → |4〉. If only
the measured velocity distribution is taken into account and perfect preparation
of the ground state is supposed, the contrast is over 80 %. Considering also the
measured state occupation from 2017, the contrast drops significantly. Because
only states |2〉 and |4〉 are taken into account for calculating the transition
probability P , the transmission T is normalised with respect to all present states
as follows, where bi and ci are the occupation numbers measured after region I

1In Cronenberg (2016), the occupation of the first, second, and third energy state, were
approximately 60 %, 34 %, and 6 %, respectively.
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5. Investigation of Ramsey’s Method within qBounce

Figure 5.3.: Theoretical Ramsey fringes for transition |2〉 → |4〉, convoluted with
the measured velocity spectrum only (yellow, dashed) and with also
the measured state occupation numbers taken into account (blue,
solid). While the velocity spectrum mainly only smears out side
fringes visible in figure 5.1, adding the state occupation results in
a noticeable drop in contrast. The oscillation amplitude is set to
1.35 mm/s.

and V for states i, respectively:

T =
∑
i 6=2,4

bici + P b4c2 + (1− P ) b2c2 + P b2c4 + (1− P ) b4c4

=
∑
i

bici + P (b4c2 − b2c2 + b2c4 − b4c4)

= 1 + P (b4c2 − b2c2 + b2c4 − b4c4) 1∑
i bici

.

(5.1)

Although improved state selection will yield better results in the future, reasonable
contrast can also be achieved with the mirror absorber systems in use at the
moment.

5.2.1. Ramsey-Flop and Amplitude Sweeps
Besides directly measuring Ramsey fringes as a function of detuning as depicted
in figure 5.3, there are other measurement schemes that can be made use of in
the experiment. This section analyses the tuning (viz. varying) of the oscillation
amplitude of the oscillating mirrors, whereas the next section covers the variation
of another experimentally accessible parameter: the phase between the oscillating
regions.

Equations (4.30) and (4.32) give the probability of finding a neutron in the
higher state after applying a Rabi pulse to it, and the condition for a π

2 -flip,
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Figure 5.4.: Simulated outcome of the variation of the oscillation amplitude
in a Ramsey-setup within qBounce. Idealised, for neutrons with
velocities of 8 m/s (green, dotted). Taking the velocity distribution of
the neutrons into account (yellow, dashed) and then also their state
occupation after regions I and V, yields the blue (solid) curve. Still,
a clear repopulation of the initial state can be identified at around
3 mm/s.

respectively. These equations show that besides the time span a neutron spends in
a perturbation region, the applied amplitude also plays a role. In the plots of the
previous sections, this amplitude was optimised for a π

2 -flip for the corresponding
velocity or velocity spectrum of the neutrons. However, by increasing the amp-
litude (just like increasing the length of the region), the occupation probability
for the higher state drops again, and the one for the initial state increases. This
behaviour is called a Rabi-flop, and can also be applied to a Ramsey-like setup.
In the Ramsey case, such behaviour shows that single neutrons that are in a
superposition of energy eigenstates after region II stay in a coherent superposition
over the length of region III.
Such a Ramsey-flop is depicted in green (dotted) in figure 5.4 (compare with
figure 5.1 for the corresponding frequency plot). As the oscillation amplitude
increases, the transmission probability for the neutrons oscillates between zero
and one in an idealised experiment. This is a very characteristic feature of this
quantum mechanical system, and cannot be expected to occur within a classical
system (compare section 6.3).
The behaviour changes slightly when a neutron velocity distribution is convoluted
with the probability function: The initial transmission rate is not reached any-
more, and the oscillatory behaviour is dampened out with increasing oscillation
amplitude (yellow, dashed). Taking also the occupation of the states measured in
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5. Investigation of Ramsey’s Method within qBounce

Figure 5.5.: Hypothetical velocity distribution to produce different patterns in
an amplitude sweep (figure 5.6). Two normal distributions are joined
with mean velocity at 6 and 10 m/s, respectively, with a standard
deviation of 0.5 m/s each.

2017 into account, the contrast drops further (blue (solid) line in figure 5.4). The
dampening of the transmission oscillation with increasing oscillation amplitude
of the mirrors is an effect due to the phase differences that neutrons of different
velocities will experience between the two oscillating regions, as the amplitude
can only be optimised for a single velocity. Still, the transmission goes up again
after the first minimum at the optimal amplitude to produce a π

2 -flip in each
perturbation region.

Measuring a Ramsey-flop in an experiment provides a proof of prin-
ciple of a Ramsey-setup. This can be readily confirmed by comparing the
results just derived with the results from section 6.3, where the classical ex-
pectation for a Ramsey-type qBounce setup was examined. Experimentally,
a Ramsey-flop is convenient because only one single parameter (the oscillation
amplitude) needs to be changed.

As the averaging of the transmission rate in a Ramsey-flop is an effect of
different neutron velocities involved, it is interesting to investigate the behaviour
for hypothetical velocity distributions. Anticipating results from section 9.2, a
possible distribution is one with two maxima, as shown in figure 5.5. A distribution
similar in shape may be produced experimentally by blocking the path between
the velocity selecting blades (compare section 8.1.1) for a certain window of
velocities with a sheet or wire made out of a neutron absorbing material. The
resulting pattern of an amplitude sweep with a velocity spectrum like this is shown
in figure 5.6. After a first minimum slightly above an oscillation frequency of
1 mm/s, a plateau forms, before a second minimum appears at 5 mm/s. It should
therefore be noted that more complicated patterns can arise in such amplitude
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Figure 5.6.: Behaviour of the relative transmission under amplitude sweep for
measured state occupations after regions I and V, but with the
hypothetical velocity spectrum shown in figure 5.5. A plateau forms
between the first, and a second minimum at 5 mm/s.

sweeps, and that a proper measurement of the incoming neutron velocity spectrum
is crucial.

5.2.2. Phase Sweep
Experimentally also convenient is to keep the oscillation amplitude of the interac-
tion regions at optimum for a given velocity spectrum, and vary their relative
phase. In contrast to the amplitude sweep, a full inversion to the initial zero trans-
mission rate is possible for a two-state system. Starting at optimal resonance with
zero phase difference, the count rate will rise up to one again, at a phase difference
of 180◦ (figure 5.7). The graph again takes the measured velocity distribution as
well as measured state occupations after preparation and analysing region into
account. When the oscillating regions are in phase opposition, no matter how far
a transition from initial to final state is driven within the first interaction region,
the second interaction region reverts this process exactly. Therefore, this process
is not dependent on the velocity distribution.

Again, measuring such behaviour is evidence for the setup being of
Ramsey-type. The classical expectation from section 6.3 shows very little
influence of the phase change applied, while the quantum mechanical Ramsey case
lets the transmission rate oscillate (see section 4.2). This is only explicable with
a phase relation between the superposed energy states after the first perturbation
region.
A phase sweep measurement of the Ramsey GRS setup presented within this
thesis is shown in section 9.6.
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5. Investigation of Ramsey’s Method within qBounce

Figure 5.7.: By varying the phase difference between the oscillation regions II and
IV at optimal oscillation amplitude, a clear sinusoidal behaviour of
the transmission rate can be observed. The zero rate is restored when
the oscillating regions have opposite phase. A velocity distribution
of 5–13 m/s (see figure 9.3) and a state occupation after regions I
and V of around 50 %, 40 %, and 10 % for the first, second and third
eigenstate are used (see table 9.2 for exact numbers).
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6. Simulations of Classical Particles
in a Ramsey-Setup

In order to distinguish the (quantum mechanical) results of the Ramsey-type
qBounce experiment from the classically expected behaviour, it is necessary to
investigate the behaviour of a classical Bouncing Ball (cBB) above oscillating
surfaces.
While the underlying physics of the cBB are (in the approximations applicable)
elementary and well understood, the behaviour of a ball bouncing along an
arrangement of oscillating and static surfaces is ad hoc non-trivial. Different
types of possible trajectories such as periodic behaviours, sticking solutions, or
chaotic behaviour are possible and highly dependent on the initial conditions.
Therefore, Monte Carlo simulations have been performed for parameter sets as
used in the experiment.
After introducing the system under consideration in section 6.1, the simulations
are exemplified in section 6.2 and the results are presented in section 6.3.

6.1. Dynamics of a Classical Bouncing Ball
A ball (neutron) is falling down on a flat surface (a neutron mirror) that can
either be at rest or oscillating. Accordingly, the subsequent trajectories after
impact evolve. In the following, several approximations are used:

• Neutrons are point-like particles,
• the impact upon the surface is instantaneous and elastic,
• the mass of the moving surface is much greater than the mass of the neutron,
• the oscillating surface is flat and levelled,
• gaps between aligned mirrors are neglected.

Adapting the notation used in Chastaing et al. (2015), u+
n and u−n represent the

velocity of the neutron before and after impact, respectively, of the nth collision
with the mirror at time t = tn (see figure 6.1). Therefore, the neutron’s height
above the mirror, h(t), before the first collision with the mirror is is given by

h(t) = hinitial + uinitial(t− tinitial)−
g

2(t− tinitial)2 , (6.1)

where hinitial and uinitial are height and vertical velocity of the neutron at initial
time tinitial, and g is the Earth’s gravitational acceleration. For a mirror at rest at
height zero, the time of first impact tn can be calculated by solving equation (6.1)
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6. Simulations of Classical Particles in a Ramsey-Setup

Figure 6.1.: Sketch clarifying the nomenclature of neutron velocities before impact
(u+

n ), and after impact (u−n ), respectively. The neutron is bouncing
from left to right.

for tn with h(t) = 0, while for a sinusoidal oscillating surface with amplitude A
the implicit equation

A(sin(ωtn + φ0) + 1) = h(t) , (6.2)

with h(t) from equation (6.1), contains the desired information. At t = tinitial,
the phase φ0 is inherently undetermined. The constant term in the bracket on
the left-hand side defines the offset A of the surface’s oscillation. The implicit
equation (6.2) can be solved numerically for the time tn at which the first impact
occurs. Given tn, u−n can be obtained:

u−n = uinitial − g(tn − tinitial) . (6.3)

For the entirely elastic case and for the mirror at rest, u+
n = −u−n is trivial. For

the oscillating mirror, we have

u+
n = 2Aω cos(ωtn + φ0)− u−n , (6.4)

as well as the height of the neutron at impact,

hn = A(sin(ωtn + φ0) + 1) . (6.5)

With known tn, hn and u+
n , the next flight trajectory of the neutron after impact

is determined. The time of the next bounce tn+1 can be calculated again by
solving an equation like equation (6.2) with the parameters just obtained:

A(sin(ωtn+1 + φ0) + 1) = hn + u+
n (tn+1 − tn)− g

2(tn+1 − tn)2 . (6.6)

Like this, arbitrary numbers of bounces can be calculated iteratively.

While this solution only accounts for the vertical movement of the neutron, the
horizontal velocity of the neutron bouncing over a setup of different mirrors can
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6.1. Dynamics of a Classical Bouncing Ball

Table 6.1.: Parameters used for the simulation of the classical trajectory in fig-
ure 6.2.

A ω φ0 hinitial uinitial uhorizontal
0.5 µm 392.566×2π 1/s 0 rad 10 µm 0 m/s 8 m/s

Figure 6.2.: Simulated classical trajectory for a neutron bouncing along a Ramsey-
type mirror setup. One set of initial parameters (table 6.1) was chosen
to visualise some of the possible effects.

be parameterised through the time the neutron bounces along each individual
mirror. For one set of parameters (listed in table 6.1), figure 6.2 shows a neutron
entering region I of a qBounce Ramsey-setup from the left and exiting on the
right-hand side after region V. The lower black line (straight and oscillating)
represents the mirror position at each time, whereas the upper blue line shows
the neutron’s trajectory. Upon entrance in the oscillating region II, first, upwards
acceleration of the neutron through collision with the mirror can be observed,
followed by subsequent dampening and again acceleration. Although not too
surprising, it is noteworthy that a neutron can exit the setup at a lower height
than its entrance height.
Further interesting effects like sticking solutions, where the neutron can very
tightly follow the oscillating mirror’s trajectory, or losses from neutrons hitting a
mirror from the side at intersections (accounted for in the simulations), can be
studied with the procedure presented.
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6.2. Simulations of a Classical Bouncing Ball within
qBounce

Less intuitive than the findings just presented is the behaviour of the introduced
system when all possible initial conditions and the consequential trajectories are
considered and averaged. As argued above, it is of particular interest to simulate
outcomes of certain measurement schemes in order to distinguish quantum mech-
anical results from classical expectations. Therefore, two of those measurements
shall be covered and the outcome of their classical simulations presented here:
A Ramsey-flop (measuring the transmission while subsequently increasing the
oscillation amplitude in region II and IV) and a phase sweep (measuring the
transmission while subsequently varying the phase between the oscillating regions
II and IV). The simulations are covered in this, and the corresponding results
will be displayed in the next section.

The free parameters, which influence the neutron’s trajectory shown in the pre-
vious section and which change during an experiment, are the neutron’s entrance
height hinitial into region I, its initial vertical velocity uinitial, its velocity in flight
direction uhorizontal, and the global phase of the oscillating mirrors upon entrance
of the neutron in region I, φ0.1
All of these parameters follow certain distributions. In a Monte Carlo-like ap-
proach, for every set of fixed parameters (like oscillation frequency and amplitude,
and the slitwidth between the absorbers and mirrors in region I and V for a
Ramsey-flop simulation at one oscillation amplitude) the simulations sample the
free parameters randomly according to their underlying distributions. For hinitial,
a uniform distribution from mirror to absorber height is reasonable, as also used
in Chizhova et al. (2014). Clearly, also φ0 is evenly distributed between 0 and
2π, and a measured velocity distribution like the one shown in section 9.2 is
used for uhorizontal. For uinitial, one has to be slightly more careful. The velocities
allowed depend on hinitial and the slitwidth S between mirror and absorber in
region I. As neutrons that touch the absorber will be scattered out of the system,
the neutrons’ vertical velocity is limited in the positive as well as the negative
direction. This boundary condition leads to

umax↓(hinitial) = −umax↑(hinitial) = −g
√

2(A+ S − hinitial)
g

, (6.7)

which is illustrated in figure 6.3a for S = 22 µm.2 For every incoming neutron at
specific height, its initial vertical velocity is sampled from within the grey area
shown. Figure 6.3b shows a histogram of the resulting distribution of velocities

1This phase corresponds to the entrance time of the neutron in region I, relative to the position
of the oscillating regions. This is not to be confused with the phase between the oscillating
regions II and IV.

2This only holds if the neutrons bounce at least once in region I, at a distance smaller or equal
to the length of the mirror, which is fulfilled for the horizontal velocities given.
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(a) (b)

Figure 6.3.: Allowed vertical initial velocities (grey) for given initial height (a)
and the resulting histogram used for sampling simulations (b).

used in the simulations.3
With the distributions of the free parameters given and for a set of fixed

parameters chosen, randomly generated initial parameters are used to calculate a
number of trajectories N . Every trajectory follows a neutron from region I to the
end of region IV, at which the simulation outputs the neutron’s height hout, and
its velocity uout. This means that for every simulation of N neutrons, a histogram
of the neutrons’ height after region IV can be calculated, which illustrates the
global behaviour of the system. In a last step, the question is how many of
the arriving neutrons at the analyser (mirror-absorber system with slitwidth S)
make it through to the detector. Besides rejecting neutrons, which do not fulfil
A < hout < S + A, again equation (6.7) is used to reject neutrons, which do not
fulfil |uout| ≤ |umax|, which results in a number for the surviving neutrons Nalive.
Neutrons hitting a mirror from the side at intersections are accounted for and do
not add to this number. Thus, for an experiment measuring transmission rates,
every simulation with N sets of initial parameters (N neutrons), drawn from
given initial distributions, yields a transmission T via

T = Nalive

N
. (6.8)

For all simulations, the approximate velocity distribution measured in 2016 and
presented in section 9.2, and g = 9.805 m/s is used.

The error bars shown the next section’s results are to be understood statistic-
ally, being 1/

√
N . That this is valid and that the transmission rates are normally

distributed is exemplified in figure 6.4.

3Technically, this changed for every single amplitude of the oscillating mirrors, as initial heights
range from A to S +A, because of the mirrors oscillating symmetrically around A.

55



6. Simulations of Classical Particles in a Ramsey-Setup

●

●

●

●
●
●

●●
●●●

●● ● ● ● ● ● ●

(a)

●
●
●

●
●
●

● ●

● ● ●

● ●
●
● ●

● ●

●

(b)

Figure 6.4.: Shown are standard deviations from a transmission rate from a simu-
lation (blue dots). Out of a set of 50.000 iterations, smaller subsets
were taken with varying size, yielding different standard deviations.
As the subset size increases, the data follows a ∝ 1/

√
Nsubset be-

haviour, as shown by the yellow solid line. The graphs are plotted
linearly (a) and in log-log scale (b), and show the same dataset.

6.3. Results of the Simulations
Simulations have been performed for the measurement scheme of an amplitude
sweep of the oscillating regions II and IV, as well as for a phase sweep between those
regions. The oscillation frequency is chosen to be 392.566 Hz (which corresponds
to the frequency for the quantum mechanical transition |2〉 → |4〉). For each
fixed oscillation amplitude, between 10,000 and 50,000 trajectories have been
simulated, and the transmission rate was calculated according to equation (6.8).
For the amplitude sweep, the phase difference between the oscillating regions
is kept at zero, and the corresponding graph is displayed in figure 6.5. The
transmission is normalised to the total number of simulated trajectories for each
data point. In the quantum mechanical case, an initial drop in transmission rate
stops at around 0.6 µm in this case, and is restored to a certain amount at higher
amplitudes (compare with figure 5.4). No such behaviour is found in the classical
simulation and the transmission keeps declining (suggested by both, linear and
quadratic fits).

A simulation of particles bouncing classically through a qBounce setup with
varying phase between the oscillating regions is shown in figure 6.6. The
oscillation displacement amplitude is Ax = 0.5 µm, which corresponds to an
amplitude of around Av = 1.23 mm/s in terms of oscillation velocity. Although
some variation in the transmission due to the phase difference can be identified,
the scale on the vertical axis shows that the effects are very small. No significant
indication of a change in transmission rate can be found, even for the extreme
cases of total phase inversion of the two oscillating regions at ±180◦. As in the
simulation of the amplitude sweep, the classical simulation for the phase sweep
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Figure 6.5.: Simulation of an amplitude sweep for a classical particle in a qBounce
Ramsey setup. The oscillation frequency of the interaction regions is
392.566 Hz, their relative phase zero degrees. The error bars represent
statistical errors only.

Figure 6.6.: Simulation of a phase sweep for a classical particle in a qBounce
Ramsey setup. The oscillation frequency is kept at 392.566 Hz, and
the relative phase between the oscillating regions varied. Statistical
error bars are shown. In contrast to the quantum mechanical predic-
tion, no significant inversion of the transmission rate at ±180◦ can
be identified.
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clearly distinguishes from the quantum mechanical behaviour (compare with
figure 5.7).
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7. Instrument Setup and
preparative Measurements

7.1. Environmental Conditions at PF2, ILL
A Ramsey-type experimental setup within qBounce as introduced in figure 3.5
and section 3.3.2 consists of a wide range of different components. Some of the
changes undertaken on site will be beneficial for other future experiments at PF2.
While on site changes will be discussed in this section, the subsequent sections
describe the instrument (section 7.2) as well as the experimental setup itself
(chapter 8). Figure 7.1 gives an overview of the PF2 and its experimental zones
and shows a drawing of the UCN platform on which the experiment takes place.
With the turbine of PF2 (figure 7.1a, I) and its experimental areas (figure 7.1a
II (UCN), III (MAM) and behind I (EDM) for UCN experiments, as well as IV
for VCN experiments) being located directly next to the reactor pool, particular
precautions are taken with respect to safety issues. Due to the Fukushima nuclear
accident, new safety regulations came into effect during the planning phase of the
experiment. Therefore, because of the increased size and weight of the new version
of qBounce, earthquake safety regulations had to be considered throughout the
design of the instrument. The same regulations also required reinforcements
of the support structure of the UCN platform where qBounce is placed on.
The structural dynamics of the entire platform with the instrument on top were
numerically simulated by an external contractor of the ILL and the installation
was found to safely withstand accelerations of 4 g.

Figure 7.2 shows a model1 of the qBounce instrument on the UCN platform
of PF2. The functions of the various components will be described in detail in
section 7.2.
The instrument mainly consists of a vacuum chamber of two meter length with a
cross section of one by one meter, levelled on three spindle drives, of which two
are visible in the sketch. These spindle drives and their supports are the only
connection of the vacuum chamber to the platform. Around the vacuum chamber,
a specially dimensioned crane is placed for opening and closing the chamber. The
crane as well as the vacuum chamber (through the spindle drives) are mounted
on a continuous, 30 mm thick aluminium plate (in contrast to previous individual
combinations of plates). The placement of the instrument on the platform was

1All 3D drawings and rendered images within this thesis were created with Autodesk Inventor
Professional 2016, Student Version.
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(a)

(b)

Figure 7.1.: (a) Photograph (copyright ILL) of the PF2 instrument with several
experimental areas visible. Neutrons enter the turbine (I) and either
bypass it (VCN, IV), or are guided to the other experiments (UCN

— II, VCN — behind II, MAM — III). (b) Drawing of the UCN
platform where qBounce is set up (approximate position of the
vacuum chamber as as blue rectangle) in top view.
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Figure 7.2.: The qBounce instrument on the UCN platform of PF2 as realised.
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Figure 7.3.: Additional L-shaped fixing of the vacuum chamber to the UCN
platform.

influenced by three major criteria:

• The centre of gravity should lie as centred above the welded scaffolding of
the platform as possible,
• the placement has to be compatible with the available lengths of glass

neutron guides,
• and the remaining space available around the vacuum chamber has to be

sufficient for placement of gear and feedthroughs, as well as to carry out
works and adjustments within the vacuum chamber.

The aluminium plate is mounted to the UCN platform with a clamping mechanism
that fulfils the requirements of earthquake safety. The qBounce vacuum chamber
is, after adjusting the levelling with the spindle drives, mounted to the aluminium
plate with a massive fixing, shown in figure 7.3.

The biological shield (see figure 7.4 and compare with the sketch in figure 7.2),
which was installed on the UCN platform of PF2, replaces the temporary shields
that were installed with the previous qBounce experiments in recent years. It
consists of two layers of dovetail pieces of lead, stacked within a support frame
of aluminium, which is bolted down onto the platform. Through a hole in the
middle, the neutron guide leads UCNs to the corresponding experiment. The
size of the shield had to be minimised due to tight weight constraints imposed by
earthquake safety rules.

7.2. Instrument setup within qBounce
The new instrument setup of qBounce was planned and constructed with two
major goals: upward compatibility and high level of automation. In terms of
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Figure 7.4.: The new biological shield during characterisation measurements of
the PF2 UCN beam. The double layer of dovetail lead pieces has a
clearance for the neutron beam guide in the middle.
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Figure 7.5.: A cut through the qBounce instrument with various components
visible. The magnetically shielding layers of MuMetal and its mount-
ing and covering components are shown in false colours within the
vacuum chamber. One of three piezo actuators levelling the granite
plate within the vacuum chamber is visible.

being compatible with future experiments, this essentially means the vacuum
chamber as well as the versatility of the instrument should be as large as possible.
As can be seen in figures 7.2 and 7.5, the instrument consists mainly of the
following components:

• A vacuum chamber with an automised vacuum system, coarse levelled on
three spindle drives,
• an integrated magnetic shield,
• a large surface plate made from granite and fine levelled on three piezo-

actuators,
• and a crane to open up the vacuum chamber.

The main components and their characterisations, respectively, will be described
in the following sections.

7.2.1. Vacuum Chamber
As the neutron’s absorption cross section is inversely proportional to its velocity,
the mean free path of ultracold neutrons in air is short (λ ≈ 20–60 cm). Therefore,
qBounce experiments take place within a vacuum chamber. The planning of the
vacuum chamber started before the beginning of this thesis, while final designs —
especially the layout of threaded bolts placed on the inside and outside of the
vacuum chamber — were discussed with the manufacturer2 as part of this thesis.

2Trinos / Pfeiffer Vacuum Austria GmbH, Diefenbachgasse 35, A-1150 Wien
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Table 7.1.: Feedthrough flange types and corresponding quantities of the vacuum
chamber.

Flange ISO-K 160 ISO-K 100 ISO-K 63 ISO-KF 40 ISO-K 200
Qty 4 10 14 2 1

While the ones on the outside mainly serve as mounting positions for equipment,
the ones on the inside are crucial for other instrument components.

The vacuum vessel has an elongated octagonal shape with inner dimensions
of about 2100× 900× 780 mm. The reason for this geometry is mainly due to
spatial limitations on the UCN platform of the PF2. The two parts, top and base,
are connected via a single flange with a rubber gasket. The chamber is made of
8 mm thick V2A stainless steel and has support fins all around the outside in
order to maintain minimal weight (995 kg without attached parts like feedthrough
pipes) with sufficient stability. Feedthroughs in different sizes (see table 7.1)
allow for electrical or device connections as well as installation of a pumping
system. One feedthrough is special as it serves as inlet for neutron beam guides:
a flexible bellow is mounted on an ISO-K 200 flange on the front end (towards
the neutron turbine of PF2) of the bottom half of the vacuum chamber. This
allows for adjustment in the range of several centimetres as of where the neutron
guide enters the chamber (see figure 7.6) and is necessary as the exact alignment
of the whole instrument to the axis of the neutron guides is hard to achieve3. The
bellow can be adjusted and then locked into position via three threaded rods,
mounted on the front face of the vacuum chamber. Before a neutron beam guide
was fed through the flexible bellow, a deformation test was done while evacuating
the vacuum chamber to check for a possible shortening of the system described.
This could lead to problems with the neutron guides. The shortening measured
on a blank flange mounted on the bellow was 0.47 mm and therefore below the
specification of the manufacturer of 0.5 mm.

All around the inner surface bolts are placed for the mounting of the magnetic
shielding (see section 7.2.4). Also, on the base of the chamber, three circles of eight
M8 bolts are arranged in a triangular shape where piezo elements are mounted
(one of them is visible in figure 7.5). On these, the granite surface plate is levelled
(see section 7.2.3). As the full weight of the granite plus the experimental setup
is loaded on the piezo elements, the resulting stress on the vacuum chamber was
analysed carefully by the manufacturer and the dimensioning of the support fins
adapted appropriately.

3In the positioning of the vacuum chamber with respect to the beam tube axis coming from
the turbine, there are many factors involved that are subject to uncertainties, e. g.: The
positioning of the spindle drives and their support structures that are mounted on the
aluminium plate on the platform, the positioning of the aluminium plate itself, or guidance
of neutron beam tubes from the neutron turbine to the experiment. Overall precision in the
millimetre range is therefore difficult to achieve, and the bellow ensures flexibility in case of
slight changes in any component.
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Figure 7.6.: The bellow mounted to the flange for the beam guide inlet allows for
adjustments of height (and left/right if necessary) as to where the
beam guide enters the vacuum chamber.

Automation of the Vacuum System

For a successful experiment, automation of a high percentage of recurrent pro-
cesses is vital. Evacuating the experiment volume is a prime example of this
class of processes and automation an important issue. Not only saving time
between different measurements where the vacuum chamber has to be vented
and evacuated again, but maybe even more importantly eliminating possible
damages to the system caused by human error, make an automated vacuum
system essential.
The vacuum automation box features single buttons for the automatic achievement
of the modes “Prevacuum”, “High Vacuum”, or “Vent” (figure 7.7). The corres-
ponding valves are automatically switched by a programmable logic controller4.
A schematic view of the vacuum system5 is displayed in figure 7.8. Prevacuum in
the vacuum chamber can alternatively be achieved via a second bypass that allows
for adjustable slow pumping. This is useful in case of mechanically sensitive
components within the vacuum chamber. See Gruber (2016) for further details.

A cut from a typical pressure curve with the setup described above for evacu-
ating the vacuum chamber during an experimental cycle at the ILL is shown in
figure figure 7.9. A pressure of 10−3 mbar is reached after 13.5 min of pumping.
This is a pressure at which UCN measurements can easily be performed in terms
of mean free path.6

4A Siemens LOGO! 24RCE with two expansion modules DM 24R.
5Pumps in use are an Edwards multi stage roots roughing pump iXL120 and a turbomolecular

pump HiPace 700 M by Pfeiffer Vacuum.
6Nevertheless, it is desirable to achieve higher vacuum not only to further reduce possible

neutron mirror contamination, but because the vacuum pressure affects certain limits on
hypothetical particles.
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7.2. Instrument setup within qBounce

Figure 7.7.: Vacuum box to operate the instruments vacuum system via single
buttons. The logic controller and the air pressure supply are visible
in the inside. By pressing the buttons on the left, the system auto-
matically and safely operates all pneumatic valves according to the
mode desired. The valve positions are indicated by LEDs in a circuit
diagram.

Vacuum 

Chamber

Manual Vent Manual Vent

Bypass 1

Bypass 2

TMP

Roots

Pump

Vent
Gauge

Gauge

Figure 7.8.: Schematic view of the automated vacuum system. The vacuum
chamber can be evacuated through bypass 1 (regular), or bypass 2
(slow pumping through adjustable needle valve). In “High Vacuum”-
mode, the system pumps through the turbopump (TMP) as soon as
possible, depending on the pressure measured by the gauges in the
system and at the chamber.
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Figure 7.9.: Detail from a typical pressure curve from 24th of February 2017. The
vacuum chamber was pumped automated via the “High Vacuum”-
button on the vacuum automation box. The small fluctuations at
around 10.5 min indicate the valves switching from pumping through
the bypass to pumping with the turbopump.

While it took several days to reach a pressure within the vacuum chamber in
the order of 10−5 mbar during the experimental time 3–14–358, initial charac-
terisations with an empty chamber exhibited 2.9× 10−6 mbar within the first 18
hours of pumping, not having reached the final pressure yet (Stangl (2016)).
This difference is due to the fact that not all components in use within the
vacuum chamber could be ensured to be vacuum compatible at that time, and
therefore outgassing. Knowing this, the components were replaced in subsequent
experimental times.

7.2.2. Levelling of the Instrument
As the bound states of ultracold neutrons above a mirror are dependent on the
Earth’s gravitational acceleration g, the experiment surface should be aligned
normal to the direction of gravity. The error (on g as well as the neutron
eigenenergies) made by misalignment of an angle α scales with a factor cosα.

Within the qBounce instrument, two steps ensure a levelled, stable measuring
surface plate, upon which experiments can be set up:

• rough levelling of the vacuum chamber via spindle drives
• fine levelling of the surface plate of granite within the vacuum chamber via

piezo-actuators.

The spindle drives7 can be seen in figure 7.5. The gear ratio is 24:1, which
results in an upstroke of 0.25 mm per full turn of the drive shaft. The vacuum

7Tr Z–25–R with a trapezoidal thread, ZIMM Maschinenelemente GmbH + Co KG, Millennium
Pk. 3, A-6890 Lustenau.
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Figure 7.10.: Placed piezo-actuators for the levelling of the surface plate. The
granite was inserted with dedicated spacer equipment mounted to
the vacuum chamber, to ensure exact placement onto the actuators.

chamber sits on self-aligning nuts, which can compensate misalignment up to
±3◦ of angle in any direction.

Within the vacuum chamber, the surface plate of granite is levelled on three
piezo-actuators. Figure 7.10 shows the bottom half of the vacuum chamber
without granite plate, with the actuators in place. Piezomechanik8 elements of
type PSt 150/20/80 VS25 offer a maximum stroke of 95 µm when operated from
-30 through 150 V. The levelling of the granite plate is controlled via a control
loop feedback mechanism consisting of the piezo-actuators and a tilt sensor9

mounted on the granite. This PID-control was characterised and tested in Mayr
(2016). Within the vacuum chamber, all three piezo elements are covered with a
protection cover — a system that is free to move only in vertical direction, as
piezo elements may not be stressed horizontally (see figure 7.5). This is merely a
safety feature for processes like lowering the granite plate down onto the piezos.
Data of an overnight measurement during the experimental time at the ILL
in 2017 can be seen in figure 7.11. The root mean square of two independent
normal distributions (here x and y axes of the tilt sensor) results in a Rayleigh
distribution. The good match of the data and the estimated distribution shows

8Piezomechanik GmbH, Berg am Laim Str. 64, D-81673 Munich
9Model 755 by Applied Geomechanics, purchased through Tech-Sys Instruments: Tech-sys

s.p.r.l, 64 Avenue de la Floride, B-1180 Bruxelles.
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Figure 7.11.: Histogram of typical data output of the tilt sensor and an estim-
ated Rayleigh distribution for the data. The root mean square
Θ of the granite surface plate’s tilt in x and y direction (Θ =√

1/2 (∆x2 + ∆y2)) peaks around 0.1 µrad.

that systematics are minor and therefore no further investigations were made.
Misalignment of the granite of 0.1 µrad shifts the energy ground state about
7× 10−27 eV and is therefore negligible.

7.2.3. Granite Surface Plate
The granite surface plate within the vacuum chamber effectively is the heart of the
qBounce instrument, as this is the basis and reference plane of all experiments
taking place. Therefore, following criteria have been considered in the design:

• Large usable surface,
• versatile mounting possibilities for equipment,
• good stability and levelling,
• and sufficient flatness.

To fit properly into the vacuum chamber, the basic rectangular block shape of
the granite is chamfered along the lower lengthwise edges. Its dimensions are
1900× 700× 220 mm with a weight of approximately 840 kg, and the surface’s
flatness is below 2 µm. Although the manufacturer10 guarantees this flatness for
given supporting points (in our case the position of the three piezo-actuators),
FEM simulations have been carried out to minimise bending of and stress within
the granite (see figure 7.12a for a simulation with the final design) by choosing
the supporting points accordingly.
To save space, blind holes in the granite let the piezo elements enter the granite
10Johann Fischer Aschaffenburg Präzisionswerk GmbH & Co. KG, Ruhlandstrasse 72–78,

D-63741 Aschaffenburg
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(a) (b)

Figure 7.12.: (a) A simplified FEM simulation of the granite surface plate without
threaded inserts with the final shape design, supported on three
piezo elements underneath. Even without further lap procedures,
an initially perfectly flat surface bends only 1.8 µm under gravity at
two of the corners. (b) A model of the final surface plate with all
threaded inserts on and around the granite.

thus far so the granite can be positioned as low as possible within the vacuum
chamber (see figure 7.5). Within the blind holes, brass plates with three threaded
holes are placed. Another brass plate is then fixed to the first one, serving as
replaceable contact plate to the piezo system. In case the rounded contact part
of the piezo system leaves pressure marks in the contact brass plate over time
(possibly at unwanted positions), the plate can be replaced.
All over the granite’s surface, 773 threaded M6 inserts are placed, mostly for
mounting purposes of experiment components (figure 7.12b). At the rear end,
two round geometries for placing tilt sensors are provided where vacuum pipes
connected to inverse feedthroughs can be mounted, for tilt sensors that have to
be operated at atmospheric pressure. All around the surface plate, additional
threaded inserts of various diameter are placed for attaching hoisting gear or
serving other purposes in the future.
Two identical granite surface plates are used, where the second one not only
serving as a spare part, but is used in parallel to the one within the vacuum
chamber for testing and preparing all kinds of setups relevant for the experiment.

7.2.4. Magnetic Shield
Due to the non-zero magnetic moment of the neutron, external magnetic fields
have to be shielded in order to avoid systematic errors in the measured transition
frequencies of the UCNs. Different to previous qBounce setups, the magnetic
shielding is now fully integrated into the instrument. A two layer MuMetal shield
of three millimetre each and 10 millimetre space in between is imbedded between
the inside of the vacuum chamber and the granite surface plate, mounted on the
vacuum chamber’s threaded bolts (see figure 7.5). Two major advantages arise
from this setup. Firstly, magnetic shielding is required in qBounce experiments
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in any case, and placing the shield within the vacuum chamber allows for manu-
facturing the chamber out of slightly magnetic but cheaper V2A stainless steel,
instead of the less magnetic V4A version. Secondly, the shield does not have
to be assembled and dissembled every time the vacuum chamber is closed and
opened, as per design the two MuMetal layers from top and bottom halves of
the vacuum chamber join and overlap in the process of closing the chamber (see
figure 7.5).
The design, based on our initial suggestions and subject to many boundary
conditions, was developed under active communication between us and the man-
ufacturing company Magnetic Shields11. At the position of the feedthroughs
in the vacuum chamber, as well as at the opening for the neutron beam guide,
the magnetic shield was equipped either with branch tubes (tubes of MuMetal
connected with the main layers that are going into the actual feedthrough) or
movable cover plates, to cover the holes in the main layers of the shield. By
restricting the holes for the feedthroughs to the minimum sizes of for instance
connectors of cables, some of the holes did not have to be covered at all, as the
penetration of magnetic fields are then very short ranged. For the feedthrough of
the neutron beam guide entering through the bellow, a height adjustable branch
tube was designed.
In figure 7.10, the lower half of the shield can be seen.

Shielding Factor

Taking the magnetic moment of the neutron from table 2.1 and inserting the
nuclear magneton µN,12 yields the energy shift of a neutron in a magnetic field:

∆ ~E = −~µn ∆ ~B , (7.1)∣∣∣∆ ~E
∣∣∣ ≈ 60.3 neV

T . (7.2)

For an exemplary vertical component of the Earth’s magnetic field of 45 µT,
this translates to a shift of around 2.7 peV in comparison to a non existing field.
Remembering the bound states of UCNs above a mirror (figure 3.1), it becomes
clear that residual field gradients (only energy differences matter in GRS) within
an experiment should be dampened below the pico-electronvolt range — the
energy of the first eigenstates. A shielding factor of around 100 brings natural
magnetic fields (and therefore maximum possible field gradients) down to the
percent level in terms of UCN energies above a mirror, and gradients along the
critical experimental area can then be expected to be even lower. Therefore, a
shielding factor of 90–110 was aimed for in the planning of the shield.

Figure 7.13 shows measurements in the course of the final inspection of the
magnetic shielding, fitted into the qBounce vacuum chamber. Due to technical
restrictions at the time, the measurements could not be performed atop the UCN
11Magnetic Shields Ltd, Headcorn Road, Staplehurst, Tonbridge, Kent, TN12 0DS, UK
12µN = eh̄/

(
2mp

)
= 5.050783699(31)× 10−27 J/T, 2014 CODATA recommended values

74



7.2. Instrument setup within qBounce

●●●
●

●
●●●●

●●●●●●●●●●●●●

●

●

●●●● ■■■

■

■■■■■
■■■■■■■■■■■■■

■

■

■■■■

●

■

Figure 7.13.: The magnetic shielding factor of the qBounce vacuum chamber
shield is shown, deduced from measurements. The shaded area
represents the area initially defined as critical experimental area,
whereas the regions between dashed horizontal lines correspond
to the positions of the five Ramsey regions in the experimental
time 3–14–358 . The UCN flight direction goes from left to right.
Statistical error bars are not visible due to the plot markers.

platform at PF2 of the ILL, where the experiment ultimately takes place. The
measurements were done several meters away from the platform, but still in the
reactor hall on level D.

The shielding factor S is plotted for the total magnetic field in z-direction ~Bz
as well as for the total field ~Btotal = ( ~B2

x + ~B2
y + ~B2

z )1/2, as perfect alignment of
the axes of the magnetometer13 is difficult. Nevertheless, it can be seen that the
vertical field component contributes predominantly to the total shielding factor.
The magnetic field was first measured without the vacuum chamber and then
measured again with the vacuum chamber and it’s imbedded magnetic shield
present. Care was taken to achieve high reproducibility of the measurement
positions (increments of 10 cm and roughly at height of the neutron mirrors’
surface) by setting up a test frame along which the magnetometer was moved.
It is obvious that the shielding factor changes drastically outside the shaded
area, where boundary effects due to the geometry of the shield or the branch
tubes manifest. With a simple interpolation between the data points (under
the assumption of sufficiently smooth behaviour of the shield between the data
points measured), the averaged shielding factor within the shaded area yields
S( ~Btotal) ≈ 98.6, whereas the shielding factor along the setup of neutron mirrors
results in S( ~Btotal) ≈ 96.9.

13Bartington Mag-03MSL100, used for all measurements within this section
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Figure 7.14.: Air readings (without vacuum chamber and magnetic shield present)
of the magnetic field measured next to the UCN platform at level
D (solid lines, “air”), and at the vacuum chambers final position on
the UCN platform (dashed lines, “air UCN”). Every measurement
point is an average over 5 s with millisecond intervals, and statistical
error bars are not visible.

Residual Field Homogeneity

Figure 7.14 shows air readings of the magnetic field at the PF2. No vacuum
chamber and thus no magnetic shield was present during these measurements,
but the measurement positions were adjusted to be roughly along the neutron
flight path in the experiment. Comparison of the measurements next to (solid
lines) and on the UCN platform (dashed lines), shows more oscillations in the
field on the platform. This presumably comes from the steel scaffold construction
of the platform (see figure 7.1b). Movements of cranes (on the same floor as well
as one storey below) or vehicles would produce temporary magnetic effects. Their
influence cannot be ruled out, but are unlikely to produce the magnetic fields
measured. No neighbouring experiments with high magnetic fields were present
at the time and can be ruled out. Overall though, the field strengths of both
measurements are in the same range, with larger gradients on the platform.

For the position next to the platform, measurements with vacuum chamber
and magnetic shield present, yielded maximum field gradients of around 47, 36,
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Figure 7.15.: Measured residual magnetic fields within the vacuum chamber,
placed next to the UCN platform at PF2. The shaded area again
represents the area initially defined as experimental area. Inside this
area, boundary effects of the front ends and therefore residual fields
are small. The regions between dashed horizontal lines correspond
to the positions of the five Ramsey regions in the experimental
time 3–14–358 . The UCN flight direction goes from left to right.
Statistical error bars are not visible due to the plot markers.

78 and 74 nT/0.946 m, respectively, for x, y, z, and total residual field gradients
between the positions of the beginning of region I and end of region V (very left
and very right dashed vertical lines in figure 7.14). The residual fields are shown
in figure 7.15. For the UCN platform, without other sources of magnetic fields,
the gradients will be slightly higher, according to the higher initial field gradients
in the air readings.

In summary, the implemented double layer magnetic shield is embedded into the
new vacuum chamber and fulfils the aimed specifications with a stable shielding
factor of around 100 all over the critical experimental area.

7.2.5. Glass Neutron Guides
For the first time, qBounce uses neutron beam guides made from glass, produced
by Movatec14. The guides are coated with a 500 nm thick non-magnetic nickel
and molybdenum (85/15) composition on the inside to ensure high reflectivity

14Movatec GmbH, Erfurter Straße 23, D-85386 Eching
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for ultracold neutrons. The usage of glass has the advantage of resulting in very
smooth surfaces, highly suitable for being coated. The drawback, however, is
that glass is naturally more fragile than the stainless steel guides usually used
so far. The 5 mm wall thickness of the guides with 90 mm outer diameter make
them quite sturdy nevertheless.
Figure 7.16 shows the beamline set up at the UCN platform of the PF2. UCNs
emerge from the turbine and are guided through the biological shielding. There,
also a thin aluminium foil is installed, so that the beam guides coming from the
turbine and the beamline set up by qBounce can be evacuated individually.
A pneumatic rotating UCN shutter (2) follows. Up to this point, conventional
electropolished steel guides (with an outer diameter of 81 mm) have been in use.
An adapter flange with outlets for pumping the beam guides (3) connects the
steel pipe after the shutter to the first glass guide of 450 mm length. Another
flange (4) connects the second glass guide of length 750 mm and has connectors
for pumping or measuring air pressure as well as a connector pointing downwards.
This allows for a neutron detector to be placed underneath to serve as a beam
monitor. The second glass neutron guide is then immediately fed through a flange
mounted on the vacuum chamber’s flexible bellow (5). This flange as well as all
beam guide connections before, seal around the outside of the neutron guides.
Within the vacuum chamber, the neutron guide’s end is closed with a thin
(100 µm) aluminium foil, which has a low neutron absorption. As can be seen
in table 2.2, however, the Fermi pseudopotential of aluminium leads to a cutoff
of the transmitted neutrons below ≈ 3.2 m/s. In order to avoid damages to this
thin foil, the air pressure on the side of the vacuum chamber should always be
higher or equal to the pressure in the neutron guide. Like this, the neutron guide
can stay evacuated even if the vacuum chamber is vented.

The foil is part of a newly designed aluminium end cap and is placed upon an
O-ring seal, pressed down with a thin counter piece of aluminium. This allows
for very close positioning of any experimental equipment to the outlet foil. By
keeping the end cap thin in general (< 40 mm), it is in principle possible to
position the last neutron beam guide in such a way, that the end cap ends 10 mm
before the granite surface plate begins. However, for reasons of precaution, a
height adjustable holder for the glass neutron guide was placed within the vacuum
chamber, so that the own weight of the glass tube together with the additional
weight of the end cap will not lead to unwanted stress within the glass. Moreover,
the new end cap is also coated with NiMo on the inside to reduce unwanted
background of neutrons penetrating through the aluminium. A picture of the end
cap as well as the holder can be seen in figure 7.17.
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Figure 7.16.: Beamline setup guiding neutrons from the PF2 turbine (top, behind
the visible biological lead shielding, 1) to the qBounce vacuum
chamber (bellow flange visible at the bottom of the image, 5).
Neutrons go through a rotating shutter (2), and glass neutron
guides connected via flanges (3 and 4) until they enter the vacuum
chamber. Parts of the vacuum system like turbomolecular pump on
the bottom left and bypass/pumping pipes on the right, are visible.

79



7. Instrument Setup and preparative Measurements

Figure 7.17.: Beam guide end cap and height adjustable beam guide holder within
the vacuum chamber. The height adjustment of the MuMetal branch
tube for the beam guide is visible in the back.
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8. Experimental Ramsey-setup
within qBounce

This section focuses on the experimental components of the Ramsey-type qBounce
setup. Section 8.1 describes all components along the neutron flight path essential
for Ramsey-type GRS. Section 8.2 covers auxiliary components, that are used to
monitor the Ramsey-setup.

The control of most experimental components is carried out via LabVIEW1.
For the new setup, several changes have been implemented. The control is now
based on a LabVIEW project structure and data acquisition is implemented using
the syslog protocol (Herzinger (2014)). Also, an automation via scripts allows
for carrying out and monitoring experiments and a global visualisation displays
important parameters of all devices in use. All control hardware was mounted
into two 19-inch racks, together with two identical servers responsible for the
software control of the experiment. This way, besides the wanted redundancy in
case of failure, the servers can be used in parallel for controlling the experiment
and for tests or software development.

8.1. Ramsey GRS Core Components
Figure 8.1 shows a rendered image of the qBounce Ramsey-setup. Ultracold
neutrons enter the setup from the left through a velocity selector system, bounce
along a five-part neutron mirror setup, and are detected right after. In the
following, the components of the setup shall be described in detail.

8.1.1. Velocity Selector System
A system of velocity selecting blades is used to restrict incoming ultracold neutron
velocities in the experiment in flight direction (see figure 8.1). Thus, it directly
defines the flight times of the neutrons through the regions of a GRS-setup.
Figure 8.2 illustrates the concept. Vertical blades form a slit aperture and restrict
the allowed flight parabolas for neutrons to enter the mirror-absorber system.

Neglecting the slit height l between mirror and absorber and presuming a
purely classical flight path, one finds an expression for the allowed vx:

X

√
g

2hl
≤ vx ≤ X

√
g

2hu
. (8.1)

1National Instruments Ges.m.b.H., Heinrichsgasse 4, A-1010 Wien
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Absorber

Mirror

l
hu

X

hl

x
z

Figure 8.2.: Schematic illustration (not to scale) of the velocity selecting blades
system. The blades are shown in black on the left-hand side, at
distance X from the mirror-absorber system. Neglecting the slitheight
l between mirror and absorber, the neutrons’ trajectories for maximal
and minimal velocity vx are shown. The heights of lower (hl) and
upper (hu) blades refer to the mirror surface.

Thus, the positions of the blades hl and hu, control the lowest and highest allowed
neutron velocity, respectively.

Until the experimental realisation of the Quantum Bouncing Ball in 2014 (see
section 3.2), the velocity selector system was embedded into a part of the former
vacuum chamber, but not mounted directly on the measurement plate due to
shortage of space. This leads to problems, the main ones being that the system
is poorly accessible and that the height reference to the measurement granite
is difficult. Therefore, the existing system for velocity selection was adapted
for the new Ramsey setup, improvements were made and the new system was
characterised (Rath (2016)).
A rendered image of the collimating blades system is shown in figure 8.3. The
main section of the system are two horizontal blades in the middle, made from
boron steel, which operate as a slit aperture. Boron has a high neutron absorption
cross section and steel can be lapped to achieve high flatness and well defined
upper and lower edges, respectively2. The blades are connected to fine threaded
rods through aluminium blocks. Due to this direct connection to the blades,
these blocks serve as measurement blocks. The height of the blades is adjusted
with the fine threaded rods. In a readily adjusted setup on the measurement
granite, usually there is no space to measure the positions of the blades directly.
Therefore, the blades’ position can be measured with a depth gauge from top,
directly to measurement blocks (and a brass extension from the block for the

2In this case the slit-facing surfaces have a mean roughness index of 0.1 µm, and a flatness of
0.01 mm. This means that the surface must lie between two hypothetical parallel planes
with a distance of 0.01 mm.
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8. Experimental Ramsey-setup within qBounce

Figure 8.3.: Rendered image of the rebuilt velocity selecting blades system. Fine
threaded rods are connected to the blades of the slit aperture via
measurement blocks, and tune their height. The measurement blocks
can be accessed from above with a depth gauge. On the backside,
boron mats or other neutron absorbing materials can be mounted
via an aluminium sheet. This is to prevent UCNs to penetrate the
system, which is mainly built of aluminium, outside the aperture.

lower blade, respectively). The fine threaded rods are also operated from above,
tune the height of the blades, and therefore also the incoming neutron velocity
spectrum. The neutrons exiting the beam guide towards the experiment are not
restricted in the y-direction (perpendicular to the flight direction of the neutrons).

Measurements of the incoming neutron velocity distribution within qBounce
follow in section 9.2.

8.1.2. Neutron Mirror Setup
The neutron mirror setups for qBounce are shown in figure 8.4. Two different
setups are used: A propagation region, where ultracold neutrons freely bounce
along a flat mirror surface, and a mirror-absorber region, with which the lowest
energy states of neutrons can be selected. Based on previous designs (Jenke
et al. (2011); Cronenberg (2016); Thalhammer (2019)), some minor novelties
were incorporated in the design of the new Ramsey regions. The two setups are
identical besides the absorber placement and shall be described in the following,
from bottom to top.

Coarse Levelling Basis

The coarse levelling ultimately allows the neutron mirrors to be aligned without
steps via the employment of nanopositioning tables, which have a restricted range.
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(a)

(b)

Figure 8.4.: Rendered images of neutron mirror setups used within qBounce.
Usually, the top of the mirror is coated with aluminium, and therefore
not transparent. (a) Propagation region, (b) mirror-absorber setup
with a cut through the coarse levelling plates on the left.
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8. Experimental Ramsey-setup within qBounce

The two aluminium plates are separated through elastomer springs3, which are
compressed via three fine threaded screws. Thereby, height adjustments in the
millimetre range down to a precision of less than 10 micrometres, as well as tip
and tilt regulation better than 100 µrad (depending on the dimensions of the
mirror placed on the region) are feasible.

Nanopositioning Stage and Mirror Mounting

Atop the coarse levelling basis, a nanopositioning stage is mounted. The Physik
Instrumente4 stages have height ranges from 50–200 µm and ±500 µrad for tip
and tilt. The stages are not only used for aligning all neutron mirrors with barely
any steps in between, but their controller units have analogue inputs where signals
from a frequency generator can be fed in. These input signals can be employed for
generating oscillations of the neutron mirror. Control algorithms from previous
realisations have been rewritten and automations programmed that can deal with
static or oscillating nanopositioning stages (Neuhuber (2017)).

In between the actual neutron mirrors and the nanopositioning tables, adapter
plates with clamps to hold the mirrors in place are implemented. While the clamp
mechanism was upgraded slightly to reduce the chance of damages to the mirror,
the adapter plates were now also kept shorter in flight direction of the neutrons
than the length of the mirrors. Hence, contact between two subsequent regions
can be ruled out as long as the mirrors themselves are not touching. This makes
the alignment of the five regions easier.

Neutron Mirrors

The neutron mirrors are manufactured by POG5, consist of optical crown glass
and have an optically reflecting aluminium coating6 on top. The coating allows
for supervision of the mirrors via lasers and capacitive sensors.

The manufacturer specifies the contour accuracy of the mirror surface as
3/0.5(0.2) in every �60 mm, the surface quality as 5/3×0.16 in every �60 mm
and the parallelism as 5′′ (≈ 0.0014◦).
According to DIN 3140 (now DIN ISO 10110) for optical components, the spe-
cification number 3 describes surface form tolerances and translates in this case
to the following:

A(B/C) = 0.5(0.2) = λ

4

(
λ

10

)
, (8.2)

3Elastomer compression spring 70 Shore A by Meusburger Georg GmbH & Co KG, Kesselstr.
42, A-6960 Wolfurt.

4Models P-518, P-528 and P-558.TCD, Physik Instrumente (PI) GmbH & Co. KG, Auf der
Roemerstrasse 1, D-76228 Karlsruhe.

5POG Präzisionsoptik Gera GmbH, Gewerbepark Keplerstraße 35, D-07549 Gera
6Al wire used: 99.98%, thickness not verified by the manufacturer, protective coating of

(180± 15) nm SiO2 from 99.99% granulate.
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Table 8.1.: Maximum contour errors A/B to be expected for different neutron
mirror lengths/widths due to the manufacturing process.

Mirror length [mm] 152 200 340
Error (A/B) [nm] 401/160 528/211 897/359

with reference wavelength λ, the maximum spherical sag error from the test plate
A (in number of Newton fringes), the maximum irregularity B (deviation from a
spherical shape, in number of fringes), and rotational symmetry irregularities C.
With λ = 633 nm as used by the manufacturer, this yields A = 158.25 nm and
B = 63.3 nm for every 60 mm. For the neutron mirrors used within qBounce,
table 8.1 summarises the resulting errors to be expected for the contour accuracy.
The surface quality specification 5, given as 3×0.16 in every �60 mm indicates a
maximum of three surface imperfections of size 0.16 mm within any diameter of
60 mm.
While previous experiments within qBounce have been considerably smaller
in size and deviations of the neutron mirrors’ surfaces from ideal planes were
therefore smaller, these specifications posed a problem to the alignment routine
of the neutron mirrors in the initial operation of the Ramsey experiment (see
section 8.2.2).

Absorber System, Region I & V

The absorbers above the neutron mirrors in regions I and V are held in place via
four fine threaded screws that press the absorber down onto precision spacers
made of brass. The gauges are (depending on the amount of pressure executed
via the fine threaded screws) defining the slit width between mirror and absorber.
The absorber mirrors for preparation and analysis in resonance experiments are
produced with the same specifications as all other mirrors, but are not coated.
In addition, one of their surfaces is roughened. This is done by the glassblowing
workshop of the University of Heidelberg7 by the use of corundum abrasive. Details
and an analysis of previously manufactured absorbers can be found in Wautischer
(2015) and the absorbers produced in the course of this thesis are analysed
in Schmidt (2017). The absorbers were roughened with corundum abrasive F600
(mean grain size of (9.3± 1.0) µm as per FEPA standards), featuring similar
roughness parameters than the absorber used in Cronenberg (2016).

Systematic neutron measurements of the mirror-absorber systems with regions
I and V are presented in section 9.3.

7Universität Heidelberg, Grabengasse 1, D-69117 Heidelberg

87



8. Experimental Ramsey-setup within qBounce

8.1.3. Neutron Detection
Two different neutron detectors play a roll in qBounce experiments. The main
detector for Gravity Resonance Spectroscopy is a neutron counter tube as
shown in brass colour behind the last mirror of the Ramsey setup in figure 8.1.
The proportional neutron counter has an anode wire within a cylindrical volume
filled with ArCO2 (90:10), where CO2 acts as quenching gas. The decay products
from neutron capture reactions8 enter the detector volume through the 10B
coated entrance foil of AlMg3. In comparison to the decay products, the kinetic
energy of the UCNs is negligible, and the decay products will emerge in opposite
directions. Therefore, at all times, at most only one decay product (helium nucleus
or lithium ion with opposite momentum) can reach the detector per incoming
neutron. There, ionisation of the Ar gas9 and the avalanche phenomenon produce
a charge measurable with the high voltage electrode. The measured charge is still
proportional to the initial ionisation and so the detection is sensitive to the energy
of the ionising particle. The detector in use, developed by Martin Thalhammer, is
an advanced version of the one developed in Thalhammer (2013) and presented
in Jenke et al. (2013), and its background rate measured at the Atominstitut in
Vienna is (0.41± 0.04) mHz (Heistracher (2015)). Of course, this background
value is to change when the detector is put into operation at the ILL, already
because neutron and radiation background will be higher. A characterisation of
the detector in its final position in the experiment follows in section 9.5.
The detector system was integrated into the LabVIEW visualisation in Huber
(2017).

In order to determine the population of the eigenstates of UCNs above the
mirror after region I and region V, CR-39 neutron detectors with a spatial
resolution are used. The detectors are made of CR-39 plastic10 and just as the
counter tube use 10B as neutron converter. With a thin layer of copper in between,
a layer of around 0.2 µm of boron is coated onto the plastic. CR-39 is a well
known track detector for particles of a wide range of energy.
The decay particles from the neutron capture reaction in the boron layer are well
suited for damaging the structure of the polymer, and after an etching process the
particles’ tracks can be visualised with an optical microscope with a resolution of
1–2 µm. The spatial resolution detectors are for example summarised in Jenke
et al. (2013) or Filter (2018).

To determine the incoming neutron flux into the experiment (and monitor
possible changes due to reactor power or UCN production), a 3He monitor
detector provided by the ILL is used. The detector is mounted at connection
flanges of neutron beam guides, where some clearance allows neutrons to exit the

8 (n+ 10B)→ {(α+ 7Li* → α+ 7Li3+ + γ)94%, (α+ 7Li3+)6%}
9CO2 is used as quenching gas, to absorb high energy photons produced in the collisions and

therefore suppress further/unwanted ionisation elsewhere in the detector volume.
10Plastic strips are very light, therefore two tiny dots of glue on either side are sufficient to

mount the detector on a holder and can be dissolved with acetone after the measurement.
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neutron guide and fall into the detector (compare with section 7.2.5).

8.2. Auxiliary Components
This section treats the most important systematic issues for the experiment
presented, as the auxiliary components have to major tasks:

• monitoring of the neutron mirror oscillations, and
• monitoring of tilt and steps along the neutron mirrors.

As a novelty for qBounce experiments, the simultaneous mechanical oscillation
of two neutron mirrors is investigated. The monitoring of the movement of the
oscillating neutron mirrors is crucial for the precision with which the transition
frequencies can be determined. Steps in either direction between two neutron
mirrors lead to losses through reflection or to unintentionally induced transitions.

Two different systems are used: Neutron mirror oscillations are monitored
with laser interferometers, which allow precise measurements of the oscillation
frequency and amplitude, as well as the phase between the two oscillating regions.
Tilts of, or steps between subsequent neutron mirrors, are measured via capacitive
sensors. The optical elements guiding the laser beams onto the mirror surfaces,
as well as the capacitive sensors, are mounted on a linear stage above the neutron
mirror setup. Therefore they can be moved along the neutron mirrors. The linear
stage is attached to the sensor gantry shown in figure 8.1 (4). Both monitoring
processes, for mirror oscillations and for relative positioning of the mirrors, shall
be described in the following two sections.

8.2.1. Monitoring of Neutron Mirror Oscillations
For a Ramsey setup within qBounce, the parameters frequency, amplitude, and
phase of the oscillations of the neutron mirrors have to be known. Following
steps and measurements have been performed to ensure the control over these
parameters up to the precision needed at the moment.

The main interferometer used to monitor oscillations of the neutron mirrors
is placed at the very right on the granite in figure 8.1 (6). The construction it
is built into is called SIOS stage11 and features another linear table shown in
black — perpendicular to the other linear table attached to the sensor gantry.
Through optical elements mounted on the linear stages12, two laser beams of the
interferometer can scan the neutron mirrors along the x and y axes. The third
laser beam is deflected down onto the neutron mirrors as well, but the optics
(not shown in figure 8.1) are not movable and therefore only a single position on

11The name is due to the SIOS laser interferometer mounted on it. SIOS Meßtechnik GmbH,
Am Vogelherd 46, D-98693 Ilmenau.

12HPS-170 with 300 and 150 mm range, respectively. Now PI miCos GmbH, Freiburger Straße
30, D-79427 Eschbach.
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8. Experimental Ramsey-setup within qBounce

the mirror setup can be measured. This beam serves as a reference beam for the
moving ones.

Simultaneous Oscillations of Two Neutron Mirrors

The mechanical oscillation of two neutron mirrors potentially exhibits two system-
atic effects of a Ramsey-type setup within qBounce, namely the stability of their
phase and of their amplitude, respectively. The effects can arise in different forms.
While an error due to a possible detuning (in phase, amplitude, or both) between
two separate regions is evident, also the oscillations within a single neutron mirror
have to be analysed properly.

Oscillations of a single neutron mirror have been realised before (Jenke et al.
(2011); Cronenberg (2016)). In first tests with two simultaneously oscillating
neutron mirrors fixed on one granite plate (Heiß (2017)), significant problems in
their observation were encountered. Phase and amplitude measurements yielded
inconclusive results. Although the granite plate weighs around 840 kg, parasitic
oscillations were disturbing either the neutron mirror setups themselves, and/or
the SIOS stage construction and the optical elements involved to guide the laser
beams from the interferometer to the neutron mirrors. With a temporarily imple-
mented external (extensively mechanically decoupled) second laser interferometer,
the oscillations could be adjusted to be in phase, with the same oscillation fre-
quency and amplitude. With an external laser interferometer present, phase and
amplitude of the oscillations can be calibrated, and the interferometer mounted
on the granite can be used for realtive measurements in x and y directions across
the neutron mirrors.

For the reasons just described, such a quasi external interferometer was im-
plemented within the vacuum chamber. An aluminium frame only mounted on
threaded bolts of the front ends of the vacuum chamber was designed, where a
laser interferometer and corresponding optical elements can be mounted. Fig-
ure 8.5 shows a rendered image of the setup within the lower half of the vacuum
chamber, with the frame for the external laser interferometer visible. Oscillations
are dampened out extensively before they could arrive at the external interfero-
meter from the granite plate: The frame is only mounted on two points each on
both front ends of the vacuum chamber. While the pentaprism guiding one of
the laser beams towards region II is not shown in the image, the one for region
IV is visible right next to the large sensor gantry (3).

For a successful first realisation of Ramsey spectroscopy within qBounce,
frequency, phase and amplitude of the neutron mirrors have to be under control.
In the final setup, located at the final experimental position at the PF2 of the
ILL, the measurements presented in the following sections have been carried out.
After introducing the components used as well as their respective positions in
the setup, the frequency stability and the oscillation amplitudes in the system as
well as the relative phase between the oscillating mirrors is analysed.
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8. Experimental Ramsey-setup within qBounce

Figure 8.6.: Schematic representation of the areas reachable by the two laser
beams scanF and scanB of the internal laser interferometer (5a in
figure 8.5) within the Ramsey-setup (shaded areas). The black circle
is the third laser beam (r2ref ) of the internal interferometer (5b in
figure 8.5), which has a fixed position. The two red disks (r2fix and
r4fix) represent the fixed positions of the laser beams coming from
the external interferometer (2 in figure 8.5). The length and width
of the setup is shown millimetre.

Scannable Regions of the Laser Beams

Figure 8.6 shows the five neutron mirrors of the Ramsey-setup. Neutrons enter
from the left, as indicated. The two shaded areas depict the regions scannable
by two beams of the internal laser interferometer (henceforth scanF for the left
(towards the front) and scanB for the right one (towards the back side)), which is
placed on the SIOS stage on the granite to the right-hand side in figure 8.5. The
travelling path of the lasers that is defined by the two linear stages involved, is
restricted due to technical reasons and obstacles in the optical path. The black
circle in figure 8.6 indicates the fixed reference positions of the third beam of
the internal interferometer (r2ref ). The two red disks represent the two fixed
positions of the laser beams from the external laser interferometer (r2fix and
r4fix). Finally, the dashed lines represent the area from which neutrons are
detected in the end (width between the spacers in the mirror-absorber setups).

Frequency Measurements

The frequency applied to the nanopositioning tables in following measurements via
an arbitrary frequency generator (AFG)13 was 462.925 Hz, which is the resonance
frequency for a gravitationally bound ultracold neutron to induce a transition
from |1〉 to |3〉.
Measurements of regions II and IV, by scanF and scanB, respectively, yield a
frequency of ν = 462.912(10) Hz throughout the accessible area. The lasers r2fix,
r2ref, and r4ref give the same result. The error arises from the fourier transform
of the rawdata with 20 000 datapoints and a sampling rate of 2517 Hz, yielding
an error of ±0.126 Hz. This precision can readily be increased by changing the

13Tektronix AFG 3102
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Figure 8.7.: Amplitudes measured by laser beam scanB of regions III to V. The
image corresponds to the right shaded area in figure 8.6. Black dots
represent positions of data taking. Below y = 0 mm, artefacts are
visible where the laser beam approaches the end of the mirror.

settings for data taking. Thus, the frequency stability of the oscillations is
sufficiently under control for a first realisation of the experiment.
As shown in figure 8.6, the lasers can also scan regions III and V. Measurements on
these non-oscillating regions also yield results of the applied frequency. Therefore,
it is important to check for the corresponding oscillation amplitudes of the
neutron mirrors, to make sure that oscillations are sufficiently small in all but
the perturbation regions of the Ramsey setup.

Amplitude Measurements

For the same measurements just discussed with respect to the frequency stability,
figures 8.7 and 8.8 show the corresponding measured amplitudes from scanH
and scanB, respectively. Firstly, the measurements show that any oscillations
on regions other than II and IV are below 0.1 mm/ s and therefore negligible
(compare figure 5.4). The structures on the right-hand side in figure 8.7 seem to
come from the absorber mounting of the mirror, but since the absorber mirror
itself is not oscillating this was not further investigated. The absolute amplitude
of the oscillating regions is crosschecked with the external laser interferometer to
avoid influences of parasitic oscillations, and the scanning laser beams are used to
examine the mirrors’ global behaviour. Along the mirror of region IV, the laser
beam scanB shows a gradient in the oscillation amplitude of 0.1 mm/ s (figure 8.7),
which is not the case for scanF (gradient around 0.03 mm/ s, figure 8.8).
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Figure 8.8.: Amplitudes measured by laser beam scanF of regions II to III. The
image corresponds to the left shaded area in figure 8.6. Black dots
represent positions of data taking. Above y = 165 mm, again artefacts
are visible where the laser beam scans beyond the mirror surface.

An absolute amplitude of 0.1 mm/ s for non-oscillating regions is negligible (com-
pare section 5.2.1). A gradient in the oscillation amplitude of 0.1 mm/ s is also
negligible in most cases. In an amplitude sweep measurement (compare sec-
tion 5.2.1), the effect becomes largest when measuring in the steepest slope of
the transmission. Then, with current experimental parameters, an effect smaller
than 5 % results. The reason for the gradient can either be due to inaccurate
adjustment of the neutron mirror setup, or a false effect due to the laser beam
guidance. The latter possibility is supported by the fact that even for the laser
beam r2ref, which itself is not moving, measured amplitudes vary within the
range of 0.1 mm/ s during the measurements. Part of its optics are mounted on
the SIOS stage (5b in figure 8.5) together with one of the linear tables (6b in
figure 8.5). Another optical element of r2ref is mounted on the sensor gantry
(where the other linear table (6a) operates). The linear tables therefore seem to
influence the results of the laser measurements.
This is to be further investigated but even in the worst case the error due to this
effect is similar to or smaller than statistical limitations at the moment. Thus,
also the oscillation amplitudes of the neutron mirrors are in control up to the
precision needed at the moment.
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Figure 8.9.: Phase difference ∆ϕ measured on region IV between the moving laser
beam scanB and the fixed beam r4fix. Compare with figure 8.6 for
their respective positions. Again, black dots represent positions of
data taking.

Relative Phase Measurements Regions II and IV

After the investigation of the frequency and amplitude stability of the system,
another essential parameter is the phase between the two oscillating regions
(compare figure 5.7) as well as the phase difference on a single mirror.
For these measurements, the external laser interferometer is a verified reference.
The optical elements of the laser interferometer mounted on structures on the
measurement granite, can add phase shifts that are not originating from the
neutron mirrors themselves, but are due to parasitic oscillations. The external
interferometer however is stable. Figure 8.9 shows the phase difference between
scanB and r4fix while scanB was scanning region IV. Due to the mechanical
restrictions mentioned already, not the full range of the mirror could be scanned,
but an overall maximum phase difference of a few degrees can be estimated due to
previous measurements and is negligible for now. Again, region II was performing
better in this measurement (see figure 8.10), which also might be due to false
effects of parasitic oscillations. This is supported by the phase difference measured
between the beams of the external interferometer r2fix and r4fix, showing a phase
difference below 0.2◦ between two points on region II and IV. Comparing with
figure 5.7, this is a negligible value.
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Figure 8.10.: Phase difference ∆ϕ measured on region II between the moving laser
beam scanF and the fixed beam r2fix. Compare with figure 8.6 for
their respective positions. As the holder of the prism reflecting beam
scanF onto region II is blocking the path of r2fix below x = 250 mm,
only a smaller area can be used to determine the phase difference
between those two beams.
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Figure 8.11.: Measured phase of internal and external laser interferometers depend-
ing on the applied phase via the AFG. The frequency applied was
392.566 Hz, which corresponds to the transition frequency |2〉 → |4〉.

Generation of In Phase Oscillations of Regions II and IV

Within the measurements presented above, the optical elements guiding the laser
beams from the internal interferometer placed on the granite, were adjusted
accordingly to yield results close to the external interferometer. In order to have
the two neutron mirrors in regions II and IV oscillate in phase, the initial signals
from the frequency generator (AFG) have to be phase shifted. This is to make
up for interference effects of parasitic oscillations within the setup. The external
interferometer in the vacuum chamber that is used as a reference for this and all
measurements, was verified with yet another laser interferometer that was not
even touching the vacuum chamber.14

The phase difference at the AFG that is needed for in phase oscillation of
the neutron mirrors changes with the oscillation frequency. The behaviour is
reproducible and the external laser interferometer installed in the vacuum chamber
proofs to be reliable and important.

To illustrate this, measurements have been performed where the phase between
the output channels of the AFG for the two nanopositioning tables was swept
through from −180◦ to 180◦ with 92 data points. Figure 8.11 shows the results for
two laser beams of the internal as well as the external interferometer used, each
of them measuring a phase difference between region II and IV. The externally
measured phases show a linear dependency between applied and measured phase,
as expected. The offset at AFG phase zero shows the interference behaviour
14A guard railing that is placed all around the UCN platform of the PF2 was used to mount a

connecting bar across the platform, slightly above the vacuum chamber. Above the mirror
setup, the laser interferometer and corresponding optical elements were fixed to that bar.
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mentioned above, meaning that a phase offset has to be fed to the nanopositioning
tables to achieve in phase oscillating neutron mirrors15. For the largest phase
difference of ±180◦ (plus offset), the measured phase differences are minimal.
Thus, measurements like this can in principle serve as lookup tables for the
phases of the internal interferometer, although the use of an external one is more
convenient.

In summary, the previous sections showed that systematic effects can occur
when measuring the spatial behaviour of two neutron mirrors that oscillate
simultaneously. This can either be addressed by mechanical adjustments (which
are impractical as the vacuum chamber would have to be opened between switching
frequencies) or via look up tables. However, as long as an independent external
laser interferometer can be used for calibration, this is not mandatory as relative
measurements between two laser interferometers yield satisfying results.

8.2.2. Height Alignment of Neutron Mirrors
Besides the laser interferometers that are used to monitor the neutron mirror
oscillations, another method to control the positions of the neutron mirrors is
via the use of capacitive sensors. Within qBounce, relative measurements with
capacitive sensors that are moved along the neutron mirrors, are performed to
control the height alignment of the mirrors. This principle has been implemented
by Hanno Filter in Cronenberg (2016) and was also used in Thalhammer
(2019). The concept has been extended and adapted for the larger setup of five
neutron mirrors.
In this section, first an estimation of the needed precision of the steps between
neutron mirrors shall be given. Second, problems that have been encountered
in the measurements of the steps are discussed. Therefore, the linearity of
the capacitive sensors has been measured and will be presented here. Third,
measurements of steps of a five part Ramsey-setup will be described.

Estimation of Needed Precision

Ideally, no upward or downward steps are present between subsequent neutron
mirrors. If steps occur, however, there mainly are two issues. First, in the case
of a step upwards, the neutron wave function will be reflected with a certain
probability. This means that there is a loss in transmission. The neutrons that are
still transmitted, will partly change their energy states — tending to lower states.
Second, in the case of a step downwards, reflection will be low (but not zero, in
a quantum mechanical description, see Reiter et al. (2009)). The transmitted
neutrons can again undergo transitions to other states, but in this case transitions
to higher states are more likely.

15This has been checked of course for different frequencies, where this offset changes. Therefore,
it is ruled out to a great extent that the offset arises from other sources like electronic
processing in the piezo controller or the like.
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(a) (b)

Figure 8.12.: Square of the wave functions of eigenstates ψn of a neutron above a
mirror (a), and their respective overlap (grey) with upward steps of
one, two, and five micrometer, respectively, in detail (b).

Table 8.2.: Overlaps of wave functions ψn with upwards steps of different heights
s in percent.

s = 1 µm s = 2 µm s = 5 µm
ψ1 0.16 1.25 15.42
ψ2 0.16 1.20 11.91
ψ3 0.16 1.16 9.65

It is noteworthy, that these processes also occur in the case of neutrons entering
an oscillating region. Due to their periodical displacement around their rest
position (with ideally steps of zero to the other neutron mirrors), steps in either
direction occur. This case is more complex, however, and needs a more careful
treatment than the one presented here.

Suppose a neutron above a mirror. The wave functions for the first three
eigenstates are shown in figure 8.12a. For steps upwards, the overlap between the
wave functions and steps of one, two, and five micrometers, respectively, is depicted
in figure 8.12b, which is a zoom into figure 8.12a. The vertical axis represents the
probability to find a neutron at a certain height. Thus, the overlap between step
and wave function of the neutron can be calculated, and is an estimate of the
reflected percentage. The same approach has been used in Wautischer (2015);
Schmidt (2017). Of course, this needs a quantum mechanical calculation for
precise results, which shall not be covered here.

In this approximation, the overlaps of the wave functions and steps of different
heights are summarised in table 8.2. Upward steps of less than 2 µm yield
reasonably small overlaps in the percent range.
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(a) (b) (c)

Figure 8.13.: Transition probabilities in percent for neutrons from state i (hori-
zontal axis) to state j (vertical axis), at downward steps of one (a),
two (b), and five (c) micrometer, respectively.

For the transition of the neutron in state i to another state j at a step, the
probability is given by the overlap of the two wave functions:

Pij = 〈ψi|ψj〉 =
∫
ψ∗i (z)ψj(z + s)dz . (8.3)

Here, s denotes the corresponding step, which is a downward step for positive
values. For the same step heights as above, one, two, and five micrometer, the
transition probabilities for the first five eigenstates of the neutron are shown in
figure 8.13. For s = 0, only the diagonal elements would be green and would read
100%, with no transitions taking place. This is only true for a step between two
mirrors without an absorber mirror atop. The case of an upper mirror above the
first neutron mirror is covered in Cronenberg (2016). For estimation purposes,
the case presented suffices for both scenarios. For downward steps in figure 8.13,
a 5 µm step between the mirrors yields high transition probabilities. For example,
there is a 33.7 % probability for a neutron in the ground state to be excited to
the second state, falling down a step of 5 µm (figure 8.13c). The probabilities
decrease for a step of 2 µm (figure 8.13b), and give acceptable results for 1 µm
steps (figure 8.13a).
Transition probabilities for upward steps (not shown here), yield similar results,
at least for small steps. There, the off diagonal entries of the tables in figure 8.13
have similar values but are mirrored along the diagonal — transitions to lower
energy states are favoured.

In summary, steps of one micrometer or less can be tolerated within the first
Ramsey-type experiments within qBounce. Losses and unwanted transitions are
at acceptable values for such small steps.
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Figure 8.14.: Internal sensor outputs of a nanopositioning stage driven from 11–
88.5 µm. The difference from the set z-value to its internal sensor
output (a) as well as the output of the rotational (x — dots, orange
& y — squares, green) axes (b) are shown.

Capacitive Sensor Linearity

The capacitive sensors are used to align the neutron mirrors relative to each other.
The sensors measure the capacitance (and therefore the a distance) by generating a
homogeneous electric field between sensor and probe, in this case neutron mirrors.
Although absolute measurements of the distance would be feasible, within the
setup presented only relative measurements are performed. In order to use
capacitive sensors reliably for the reconstruction of steps between neutron mirrors,
their linearity is crucial. Although the sensors ship with calibration protocols,
which show non-linearity below critical values for the experiment (< 0.03 %), a
check within the setup in qBounce is necessary: The neutron mirrors exhibit a
non-conductive protective layer of SiO2 above the conductive Al layer that the
sensor is referencing to, and this influences the sensors’ behaviour. This issue,
the sensors’ linearity in a typical neutron mirror setup within qBounce (see
section 8.1.2), is addressed in the following test.

A nanopositioning stage16 that is operating well within the stages’ specifications,
is used to move a neutron mirror in vertical direction. It exhibits a maximal
non-linearity of 0.0345 % according to its calibration protocol, and therefore
yields a reference for testing the capacitive sensors’ values. The capacitive sensors
are placed above the neutron mirror at a fixed height, and measure relative
height changes to the mirror. Driving the nanopositioning table that has a range
of 0–100 µm from 11–88.5 µm, its internal sensors output the values shown in
figure 8.14 for height z and rotational axes rot-x and rot-y.
Although the variation of ∆z rises for increasing set values (figure 8.14a), the
stage is very stable and deviations negligible. The rotational axes that are fixed
to zero, are stable as well (figure 8.14b) even though the rot-x axis (dots, orange)
exhibits higher fluctuations than the rot-y axis (squares, green). This is due to
16PI “518a”, Ser. No. 112063142.
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Figure 8.15.: Deviation between the feedback-controlled set values of the cal-
ibrated nanopositioning stages and the output of the capacitive
sensors on top. Sensor values are here zeroed to the middle of their
measurement range. The shaded area illustrates the range that is
sufficient for scanning a full Ramsey-setup. Sensor #77 and most
of all #82 show behaviour out of specifications.

the neutron mirror having dimensions of 152× 200 mm, where the longer axis
corresponds to the nanopositioning stage’s rot-x axis.

Figure 8.15 shows the deviations from a set of capacitive sensors to the target
value of the nanopositioning stage. The offset from the set z value of the
nanopositioning stage to its real value was subtracted according to the table’s
calibration protocol provided by the manufacturer. Analogue measurements have
been performed with the remaining sensors. Because of their individual mounting
height positions, the zero-crossing is slightly different for each capacitive sensor.

The shaded area represents the range that is typically sufficient to scan over
a complete five part Ramsey-setup of around 950 mm length (including height
variations due to movement of the linear stage to which the sensors are mounted).
Non-linearity in this area of 50 µm is less than 0.15 µm. The errors become even
smaller locally (e. g. at a position of steps between two mirrors) and are therefore
negligible. The two sensors performing the worst in this measurement are sensors
#77 and #82, where #82 also showed scratches on the sensitive area due to
transportation or handling. The sensors will be replaced.

Measurements of Steps between Neutron Mirrors

With a set of seven capacitive sensors, all five neutron mirror regions can in theory
be aligned to each other (relative to a sixth reference mirror), with satisfactory
precision for the experiment presented. Figure 8.16 shows a sketch of the mirror
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Figure 8.16.: Schematic setup of seven capacitive sensors above five consecutive
neutron mirrors (where neutrons enter form the left) and one refer-
ence mirror. The reference sensors small a, b, and pitch p, map the
vertical movement of the linear stage above, which can be corrected
for in the data of the four main sensors A, B, A2, and B2.

setup with labelled capacitive sensors, and the sensors mounted in the setup can
be seen in figure 8.1. All sensors can move along the mirrors at a height of a
few hundred micrometers, while their relative positions as well as their positions
vertical to the neutron flight direction never change, as they are fixed to a linear
stage above. The sensors measure their relative distance to the neutron mirrors
and therefore steps between the mirrors can be calculated. The three sensors
on the reference mirror, a, b, and p, are used for determining unwanted vertical
variations of the operating linear stage, as the sensors always stay on a single,
large mirror and span a surface. These unwanted movements in height as well as
roll (in neutron flight direction) and pitch (normal to neutron flight direction)
angle, can be corrected for in the data of the sensors above the main setup (A, B,
A2, and B2). The dashed lines in figure 8.16 represent the region where UCNs
bounce along. The sensors operate outside of that region.

Under the assumption that the mounting of the capacitive sensors is rigid
and does not deform during operation of the linear stage, as well as small-angle
approximation for the roll and pitch movements of the linear stage’s slide, a
trivial relative height correction to the output of the four main sensors can be
made as the sensors move along the mirrors. Here, the mirrors are assumed to
be flat. In the experiment, the sensor system moves in steps from left to right,
taking data at each sensor position at each step.

Let Zxi denote a distance to mirror output of a sensor x at position i, and xy
be the distance (always along the linear stages axis or perpendicular to it) between
two sensors x and y. After subtracting Za1 from all sensors at all positions i
from a complete map of measurements, all further results will be relative to the
value Za1. Then, with Zxi = Zx the corrections for the measurements taken at
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the points defined in figure 8.16 read

Acorr = ZA− AA2
2bp

(Zp− Zb) + aA

ab
(Za− Zb) ,

Bcorr = ZB − AA2
2bp

(Zp− Zb) + aB

ab
(Za− Zb) ,

(8.4)

and

A2corr = ZA2 + AA2
2bp

(Zp− Zb) + aA

ab
(Za− Zb) ,

B2corr = ZB2 + AA2
2bp

(Zp− Zb) + aB

ab
(Za− Zb) .

(8.5)

The first part after the sensor height itself in every sum of the corrections
corresponds to the roll correction, while the second one corresponds to the pitch
correction. In a previous realisation in Thalhammer (2019), only the pitch
correction was relevant, as the sensor system only consisted of four sensors in
a row — two reference sensors and two main sensors. For a short mirror setup
as the one of the realisation of the Quantum Bouncing Ball, this correction was
sufficient and delivered satisfactory results.

Upon initial operation of the new sensor gantry with long neutron mirrors,
patterns arose in data that should actually show flat mirrors. Tests have been
performed to understand the behaviour observed, with the most important ones
being:
• Change of the correction algorithm to account for errors in the distances

measured between the sensors, which enter equations (8.4) and (8.5).
• Changes of the grounding of the neutron mirrors and linearity measurements

depending on the distance of the capacitive sensor to the position of the
grounding.
• Controlled displacement of the neutron mirrors between successive meas-

urements.
• Measurements with additional weights on the holders of the capacitive

sensors, to increase possible effects of clearance in the linear stages bearings.
• Measurements with the capacitive sensors cables moved or placed differently,

as they are highly sensitive.
A number of the carried out tests has been analysed in Feichtinger (2018). The
tests show that a predominant part of the observed deviation from flat mirror
surfaces seems to arise from waviness in the mirrors themselves. With the use
of large mirrors in this setup, the effects appear to the full extent for the first
time. External inspection of flatness deviations has been initiated and the issue
is currently under investigation.

For the mirror alignment during the experimental time in 2017 and also during
the experimental times in 201817, a pragmatic approach was chosen: By using
17See chapter 9 for an overview of experimental times.
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Figure 8.17.: Raw data of capacitive height measurements of ID 6.021 obtained by
sensors A(A2) and B(B2), subtracted by the average of 20 reference
maps. The dashed lines now represent the joints between mirrors.
The variation of the data points is in the order of the standard
deviation of the averaged reference map of < 0.4 µm.

linear height gauges18, one can manually deduce the relative step height between
two aligned neutron mirrors. This is possible to an accuracy of better than a
micrometer. A setup once aligned with little steps between the mirrors (in this
case ≤ 0.5 µm) can be scanned with the capacitive sensors multiple times, with
high reproducibility. Mirrors can from then on be readjusted with respect to an
averaged reference map of the capacitive sensors.
Figure 8.17 shows data from a capacitive sensor map of measurement ID 6.021
from the experimental time in 2017, with respect to an averaged reference map.
All data was recorded in vacuum. The averaged reference was obtained over
around 19 hours with 20 maps (IDs 6.001–6.020). Data taking of ID 6.021 started
around one hour after the end of the reference maps and frequency response tests
of the nanopositioning tables have been carried out in between. Dashed lines
indicate the positions of the joints between two neutron mirrors, and therefore
the critical positions in terms of the neutron mirror alignment. The data points
shown are raw data from of sensors A/B and A2/B2 (compare figure 8.16), with
the reference map subtracted. The space in between (large parts of the mirror of
region III) is not accessible by capacitive sensors. Regions I and V can only be
scanned on the last 21 mm and the first 25 mm, respectively19. The difference in
height between two subsequent mirrors in regions I to IV is smaller than 0.5 µm.

18Mitutoyo Laser Hologage.
19This is referring to the middle position of the capacitive sensor, the sensor surface has a

diameter of 20 mm.
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8. Experimental Ramsey-setup within qBounce
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Figure 8.18.: Raw data of ID 6.021 of capacitive height measurements in vacuum
obtained by sensors A(A2) and B(B2), subtracted by the average of
26 reference maps in air. The dashed lines now represent the joints
between mirrors..

The result looks different when comparing a capacitive sensor map (ID 7.067) to
a reference map (ID 999.2–.28) with a larger time span between the measurements.
The reference maps were measured in air after aligning the neutron mirrors with
the use of linear gauges, nine days before the data of ID 7.067 in vacuum
was recorded. The difference between reference map and ID 7.067 is shown in
figure 8.18. A global offset to the reference map of ≈ 2–2.5 µm is due to drifts of
the coarse levelling of the mirror setup with elastomer springs (see section 8.1.2).
This offset irrelevant, as only the height difference of subsequent neutron mirrors
is of importance. Again, steps smaller than 1 µm are achieved at all but one step.
The graph shows a gap of around 5 µm between regions IV and V for sensor A2.
This has been addressed by adjusting the pitch angle (and consequently also the
height) of region V appropriately. The change however lead to a drop in the
measured neutron zero rate. This is possible because region V consists of a neutron
mirror with an absorber above, and therefore the neutron mirror adjustment
in both directions can influence the transmission. The position settings of the
neutron mirror setup of region V were hence kept to the settings yielding the null
rate measured right after the initial adjustments of the mirrors via linear gauges.

In summary, the mirror alignment is feasible with steps ≤ 1 µm, which is
sufficient as shown in section 8.2.2.
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9. Measurements with Neutrons
The experiment has the proposal number 3–14–358 at the ILL. Data presented
within this thesis1 were taken during reactor cycles n◦180 and n◦1812, despite
from section 9.6, where data was taken during cycles n◦182 and n◦1833.

9.1. Velocity Spectrum at PF2 UCN
In the course of preparation of the qBounce instrument setup at the PF2, the
velocity spectra (in neutron flight direction along the beam guides) of three
of the four available beam ports (UCN, EDM and TEST) were measured (see
section 2.3). The MAM beam port was in use and therefore not available. The
measurements have been performed together with Stefan Döge (TU Munich),
with PF2 equipment: a custom designed Movatec UCN chopper with titanium
blades, and a Cascade neutron detector4 with time resolution. The full analysis
of the data, as well as the velocity spectra for all beamlines, can be found in Döge
(2018). For the UCN beam port where qBounce is located, the corresponding
spectrum is illustrated here.

Figure 9.1 shows the setup used for the measurements of the spectra. Chopper
(3) and detector (5), are triggered externally, and the flight time of the neutron for
the length of the glass neutron guide (4) is measured. An offset is present between
the trigger signal and the actual opening of the chopper. For the calculation of
this offset, the neutron guides (2) and (4), of lengths 45 and 60 cm, respectively,
are interchanged. The corresponding velocity spectrum is depicted in figure 9.2.
The data is binned and averaged for multiple runs of 120 s measurement time.
The spectrum peaks at 8.0 m/s, which is in agreement with the analysis of the
measurements in Golubich (2017).

9.2. Velocity Selector Measurements
Measuring the velocity of neutrons in flight direction (henceforth vx) can be done
with standard time-of-flight methods (like the one used in section 9.1), and any
suitable chopper-detector system will be sufficient. Within qBounce, such a
measurement is impractical due to heavily reduced count rates and technical

1doi:10.5291/ILL-DATA.3-14-358
202.11.2016 - 22.12.2016 & 19.01.2017 - 08.03.2017
328.02.2018 - 25.04.2018 & 22.05.2018 - 12.07.2018
4Cascade U, CDT GmbH, Hans-Bunte-Strasse 8-10, D-69123 Heidelberg.
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9. Measurements with Neutrons

Figure 9.1.: Time-of-flight setup used at the UCN beamport of the PF2. Neutrons
are coming from the turbine, located behind the biological shield of
lead (1). In between two glass neutron guides (2 and 4, compare
section 7.2.5) is the UCN chopper. The detector (5) is mounted on
the neutron guide.
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9.2. Velocity Selector Measurements

Figure 9.2.: Measured velocity spectrum of the UCN beamport at the PF2. The
data was equidistantly binned. The spectrum peaks at 8.0 m/s. A
fit function of the form f(v) = exp (−a(v − v0)b)(v − v0)c is shown,
and best fit parameters are displayed in table table 9.1.

Table 9.1.: Best fit parameters for the function f(v) = exp (−a(v − v0)b)(v − v0)c
of the measured UCN spectrum, shown in figure 9.2.

Parameter Best fit value Parameter Best fit value
v0 0.772086 a 11.7793
b 0.474257 c 14.2208

difficulties (e. g. space, vacuum). In 2016, the incoming velocity spectrum in the
experimental setup was measured with the re-engineered velocity selector system
presented in section 8.1.1. An incremental approach was chosen for tuning the
heights of the blades. For each measurement, both blades were adjusted, yielding
settings for transmission of velocity ranges of 1 m/s (3–4 m/s, 4–5 m/s, and so
forth).
Figure 9.3 shows the resulting data, with the grey area illustrating the spectrum
for the final blade positions. The slitheight was l = 100 µm, and data is corrected
with respect to beam monitor rates. Against expectations, there is a noticeable
dip in the velocity spectrum at 8–9 m/s. This datapoint was remeasured and
obvious systematic causes like the height of the blades or misalignments in the
setup were ruled out. Furthermore, this structure was seen in the results of
analogue measurements in 2018 with l = 30 µm.
While an expected maximum around or below 8 m/s shows in the data (compare
section 9.1 and Jenke (2011); Cronenberg (2016)), some process generates
another maximum at higher velocities. Mixing of different velocity components
for the geometrical specifics of the current setup, and suppression of slower
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9. Measurements with Neutrons

Figure 9.3.: Incrementally measured distribution for the neutrons’ velocity in
flight direction vx with a slitheight l = 100 µm. The error box around
each measurement shows statistical errors (vertically) and the selected
vx range per measurement (horizontally). The spectrum for the blade
positions in their final place for further measurements is shown in
grey. Taking measurement errors of the height of the blades into
account, this results in (5.0± 0.2) − (13+0.43

−0.39) m/s for the idealised
classical model.

neutrons in the mirror absorber system should be investigated. In addition, a
yet missing quantum mechanical description through a path integral is desirable.
However, a proper time-of-flight measurement should be aimed for in the future,
to better understand the incoming velocity spectrum of the UCNs.

9.3. State Preparation and Analysis
The occupation numbers of the neutrons’ energy eigenstates after region I and V,
respectively, were determined. This was done by spatially measuring the absolute
value of the square of the wave function. The consistency of the method was
checked within this thesis, by also measuring the state occupation after region I
and V in series, and comparing the results to the individual measurements.

Measurements
For the measurements, 10B-coated CR-39 detectors5 (see section 8.1.3) were
used. Figure 9.4 shows the experimental setup for the measurement of a single
mirror-absorber region with a detector placed behind, as well as the aluminium
holder with a mounted detector. After measurements, the boron coating was
removed promptly from the detector, to ensure low background. The detectors

5Partially, detectors developed in Filter (2018) were used.
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9.3. State Preparation and Analysis

(a) (b)

Figure 9.4.: (a) Mirror-absorber region with placed CR-39 right after. Neutrons
enter from the left. (b) Aluminium CR-39 holder with adjusted
detector.

were then etched and microscoped. Neutron traces on the CR-39 were detected
using image and pattern recognition methods, in a half automated, half manual
procedure (see e. g. Jenke et al. (2013)).

The result can be can be fitted6 with the square of the absolute of the wave
function, which is the incoherent sum of the individually populated states ϕn(z, t1)
at measurement time t1:∣∣ψ (z, t1)

∣∣2 = N
∑
n

∣∣Cn(t1)
∣∣ (∣∣ϕn(z − z0)

∣∣2 ∗ f(z, σ)
)

+N0 . (9.1)

Here, N is an arbitrary parameter for the norm, Cn(t1) are the occupation
parameters of interest, z0 is the unknown height offset of the neutron trace on
the CR-39, f(z, σ) is a gaussian function of the spatial resolution σ, and N0 is
the background (see Jenke (2011)).

For the velocity spectrum of 5–13 m/s, as used in the experiment, three meas-
urements were carried out:

• after region I,
• after region V,
• and after region I and region V in series.

For the preparation region I, with a measured mirror-absorber distance of
l = 25 µm, 2265 neutrons have been detected on CR-39 ID T37. A fit of the
occupied energy eigenstates to the measured data points is shown in figure 9.5a.

6Mathematica packages from Tobias Jenke were used.
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9. Measurements with Neutrons

Table 9.2.: Best fit results and one sigma errors for the occupation numbers of
the energy states one, two, and three, for the mirror-absorber systems
of region I, V, and I plus V in series. The square of the absolute value
of the wave functions was each measured with CR-39 detectors. The
positive error for |C4|2 was taken symmetrically for both directions,
due to unphysical results for negative occupation numbers.

Neutrons |C1|2 [%] |C2|2 [%] |C3|2 [%] |C4|2 [%]
Region I, ID T37 2265 52.1+2.2

−2.2 36.6+3.4
−3.6 10.7+2.3

−3.3 0.7+4.7
−4.7

Region V, ID L06 12232 45.9+0.9
−1.0 43.1+1.6

−1.7 11.1+1.1
−0.9 0.0+0.5

−0.5

Regions I+V, ID 129 7147 59.2+1.2
−1.0 37.9+1.8

−2.3 3.0+1.4
−1.2 —

Calculated I+V 58.5 38.6 2.9

Above the height of 26 µm, the bins are not equidistant anymore. This is to keep
statistical methods applicable with a sufficient number of neutrons per bin, and
is accounted for in the fit.
The corresponding measurements for region V (12232 neutrons, l = 26 µm, CR-
39 ID L06) and regions I plus V (7147 neutrons, CR-39 ID 129) are shown in
figure 9.5b and figure 9.5c, respectively. The reduced χ2 of the fits are χ2

red,I = 1.15,
χ2

red,V = 1.61, and χ2
red,I+V = 0.99.

Comparison of the Measurements
For regions I and V, the first four eigenstates were included in the fit to determine
their corresponding occupation numbers, whereas for the measurement of regions
I+V in series, the fourth state can be neglected as it is sufficiently suppressed.
The results are displayed in table 9.2. From the occupation numbers for region I
and region V, the expected state occupations transmitted in the measurement of
both regions in series can be calculated:

|Ci|2I ×|Ci|
2
V

Cnorm
= |Ci|2I+V , (9.2)

with i = {1, 2, 3}, and Cnorm = |C1|2I×|C1|2V +|C2|2I×|C2|2V +|C3|2I×|C3|2V . These
calculated estimations are shown in the last line of table 9.2, and compare to the
measured occupation numbers one row above. The results are in good agreement,
and the measurements show remarkable consistency of the method used.

9.4. Zero Rate Stability
A recurring problem in qBounce since Cronenberg (2016) has been the expo-
nential decrease of the zero rate. As was confirmed later, the reason was grease
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Figure 9.5.: Binned histograms of a CR-39 measurements of regions I (a), V (b),
and I plus V (c). The rectangles’ height around the data points
represents the statistical error, the width is the bin width. The solid
line connects the points of best fit at height of the binned data points.
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9. Measurements with Neutrons

Table 9.3.: Fit parameters for an exponential decay of the initial zero rate r0,
final rate r and mean lifetime τ . The standard errors correspond to
one sigma.

Estimate Standard Error Confidence Interval
r0 [mHz] 30.68 1.33 [29.28, 32.08]
r [mHz] 14.65 1.04 [13.56, 15.75]
τ [d] 2.75 0.70 [2.02, 3.48]

Table 9.4.: Counter tube characterisation parameters on site at PF2, ILL, within
a region of interest of channels [145, 950].

Background Error Livetime # neutrons # measurements
0.45 mHz 0.03 mHz 492 393 s 222 38

in the linear tables of the sensor gantry and the SIOS stage. In the process of
finding these errors, the following changes and tests were made without success:

• Thorough cleaning of the inside of the vacuum chamber and every component
installed within (e. g. MuMetal, granite, frames), to avoid oil contamination
from machining residues,
• usage of oil-free vacuum pumps,
• protection against oil backflow from the roughing pump’s exhaust air con-

nection to the PF2 system by installing a zeolite trap.

Also, measurements with a residual gas analyser (RGA) have been performed.
They showed signs of oil contamination, with signatures of machine oil. The
linear stages that were suspected to pose a problem could only be replaced later
on, and an exponential count rate drop was measured again.

The resulting zero rate stability can be seen in figure 9.6. Table 9.3 shows the
corresponding fit parameters for the fit function (r − r0)e−t/τ + r0, with initial
rate r0, final count rate r and mean lifetime τ . Although the drop in count rate
features similar parameters than the one observed in Cronenberg (2016), the
mean lifetime seems much shorter in the measurement presented. This could be
explained by the larger mirror surface that is subject to depositions.

9.5. Characterisation of the Counter Tube and
Background Reduction

The counter tube (see section 8.1.3) was characterised during the measurement
times at the ILL in 2016 and 2017 within 38 measurements. Table 9.4 summarises
the data. Figure 9.7 shows the global detector spectrum for all main measure-
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9.5. Characterisation of the Counter Tube and Background Reduction

Figure 9.6.: Decay of the initial zero rate following an exponential drop (fit shown
as solid line) due to depositions on the neutron mirrors. The data
points are plotted at the position of the middle of their recording time
and are corrected for beam monitor and background. The problem
was solved in 2018.
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Figure 9.7.: Global detector spectrum of 38 measurements. Count rates outside of
the region of interest are shown in corresponding grey hollow marks.
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9. Measurements with Neutrons

Figure 9.8.: Two layers of boron carbide mats house the collimating blades system.
Only a range around the entrance slit at region I (shown in the image),
is cut open so that neutrons can enter the absorber gap.

ments taken in 2017. The background of (0.45± 0.03) mHz is considered to be
very low and the counter tube can readily be used for this and future experimental
runs within qBounce.

To reduce potential background of neutrons within the vacuum chamber, a
shield around the end cap of the neutron beam guide (section 7.2.5) and the
velocity selector system (section 8.1.1) was implemented. The boron carbide (B4C)
shield is blocking any neutrons that do not enter the mirror setup as intended
(see figure 9.8). Unfortunately, no direct before-after comparison measurements
were performed, but measurements with open and blocked slit of the shield,
respectively, have been carried out. With the slit closed7, the count rate reduced
to (0.34± 0.01) Hz from initially (218.40± 0.21) Hz with open slit in the shield.
The measurements differ by a factor of over 642 and the percentage of neutrons
hitting the detector without going through the slit in the shielding is very low
(< 0.2 %) and therefore negligible.
Due to their vacuum properties, the boron mats should be replaced with vacuum
compatible, neutron absorbing material (e. g. boron aluminium alloys) in the
future.

9.6. Ramsey Proof of Principle Measurement
This measurement, performed by the qBounce team around Joachim Bosina,
is to be seen separate from the other measurements presented so far, as new
velocity selector measurements, CR-39 measurements for regions I and V, as
well as characterisations of the counter tube have been performed prior to the

7The slit was blocked with a sheet of aluminium and a double layer of Tesa tape wrapped
around.
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9.6. Ramsey Proof of Principle Measurement

measurement (see beginning of this chapter). Nevertheless, the same principles
and procedures were applied.

An unambiguous test for Gravity Resonance Spectroscopy in Ramsey con-
figuration built within the present thesis is a measurement of the transmission
while sweeping the phase between the two oscillating regions. As explained in
sections 4.2 and 5.2.2, the quantum mechanical prediction for two-state system in
such a measurement is that the zero rate is to be recovered for phase differences of
±180◦, and the corresponding phase sweep graph is showing sinusoidal behaviour.
In 2018, such a measurement has been performed with the setup presented in
this thesis. For the transition |2〉 → |4〉 (resonance frequency 392.566 Hz), the
input phase was varied at optimal oscillation amplitude for the transition of
1.47 mm/s. The velocity spectrum was set to 5–13 m/s with the velocity selector
system. Although data analysis is still ongoing, preliminary results are shown in
figure 9.10.
The data8 is corrected for detector background of (0.59± 0.05) mHz within the
region of interest of [100,1023]. The measured count rates are normalised to two
different averaged zero rates. The zero rate changed when the team was forced
to do a new startup of the experiment control, including the mirror alignment.
For both zero rates, raw data and the corresponding weighted means are shown
in figure 9.9. The phase difference shown in the graph is the phase difference
between the oscillating mirrors in regions II and IV. For a value of zero, a phase
difference of −30.8◦ was set at the frequency generator (compare figure 8.11).
The monitor detector exhibited anomalies, which requires further analysis. The
beam monitor was therefore not taken into account, which usually is a correction
in the order of 2 %. Together with the measured data points and their statistical
error bars, two least squares fits are shown: a sinusoidal and a linear fit. The
linear fit gives χ2

red = 1.04 and a probability value of p = 0.41, whereas the sine
fit yields χ2

red = 2.86 and p = 1.6× 10−4. The sinusoidal behaviour clearly fits
better than the classical expectation of a straight line. The fit functions and best
fit values are listed in table 9.5.

The results can neither be explained classically (compare with section 6.3),
nor by two Rabi experiments in series. The classical expectation does not
exhibit significant sinusoidal behaviour, but a rather constant transmission rate
independent of the phase. Two Rabi transitions in series would also not be
influenced by relative phase differences of the oscillating regions. If they are, this
means that the wave function exiting region II is still a coherent superposition of
energy states when arriving at region IV, which is exactly the Ramsey experiment
described.

The phase sweep measurement presented is proof of the worldwide first realisa-

8The IDs used for the zero rates are [3.058, 3.062, 3.08, 3.1, 3.159, 4.026, 4.069, 4.126, 4.193]
and [4.361, 4.364, 4.401, 5.001, 5.034, 5.069], respectively.
Data used for the phase measurements have IDs [4.018, 4.118, 4.17, 4.178, 4.186, 4.199,
4.205, 4.211, 4.366, 4.372, 4.377, 4.396, 4.407, 4.413, 4.419, 4.426, 5.006].
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9. Measurements with Neutrons

(a) (b)

Figure 9.9.: Measured raw data of zero rates and their weighted means. The two
different resulting zero rates, shown in (a) and (b), have been used
to normalise the data. The zero rates are ra = (17.75± 0.33) mHz,
and rb = (20.30± 0.47) mHz, respectively.

Figure 9.10.: Recorded normalised transition as function of the phase difference
between the two oscillating regions. Two least squares fits to a sine
function (with χ2

red = 1.04), and a straight line (χ2
red = 2.86) have

been added.
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9.6. Ramsey Proof of Principle Measurement

Table 9.5.: Fit functions, best fit parameters, degrees of freedom, and resulting
χ2

red values for the fits shown in figure 9.10.

Function Best fit parameters DOF
Sine fit: n = 0.837593
n− a cos (γ + φ) π

180 a = 0.0837325 14 χ2
red = 1.04

γ = 9.46439
Linear fit:
d+ kφ d = 0.832501 15 χ2

red = 2.86
k = −6.662× 10−5

tion of Gravity Resonance Spectroscopy in Ramsey configuration. In addition, to
the author’s knowledge no other experiment before has used Ramsey’s method
without the use of electromagnetic radiation in the perturbation regions.
A first demonstration of quantum states of neutrons in the Earth’s gravitational
field was presented in Nesvizhevsky et al. (2002). Successful measurements of
the Quantum Bouncing Ball, damped Rabi GRS, and a full three part Rabi GRS
setup followed, and limits on fifth forces, dark matter, and dark energy were set
(Jenke (2011); Jenke et al. (2014); Cronenberg (2016); Cronenberg et al.
(2018); Thalhammer (2019)). After being suggested in Abele et al. (2010),
this proof of principle for Ramsey-type GRS marks the beginning of experiments
with increased precision to follow. Besides further tests of the Standard Model
and continued search for dark energy and dark matter candidates to come, the
first application is already underway in form of measurements of the electric
charge of the neutron (Durstberger-Rennhofer et al. (2011)). This might
lead to new limits on the electrical charge of the neutron in future Ramsey-type
experiments within qBounce.
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10. Summary
Gravity Resonance Spectroscopy started as an elegant and versatile technique
to demonstrate the quantum mechanical behaviour of neutrons above a mirror.
Today, it is used to test gravity-like fifth forces, candidates for dark energy and
dark matter, and the limits of Newtonian gravity. A theoretical motivation for
the experiment presented in this thesis was given in the beginning.

After previous Rabi-type GRS realisations, Ramsey spectroscopy of gravita-
tionally bound ultracold neutrons has been realised for the first time. Due to
the significant increase in size of the experimental setup, a new instrument was
planned and designed.

The instrument consists of a large vacuum chamber (inner dimensions of
2100× 900× 780 mm) featuring an automated vacuum system, an embedded
magnetic shield (shielding factor ≈ 100) with a well levelled granite surface
plate (tilt ≈ 0.1 µrad) inside. The instrument was set up at the UCN beam of
the PF2 at the Institut Laue-Langevin in Grenoble, FR. The large setup that
weighs around three tons, is earthquake safe and commissioned by the ILL. The
instrument can readily be used for any UCN experiment that fits into the vacuum
chamber. The corresponding velocity spectrum of the PF2 UCN beam (peaking
at 8.0 m/s) was measured in the course of setting up the instrument.

For the realisation of Ramsey-type GRS within qBounce, a novel five-part
neutron mirror setup was planned and implemented within the instrument. Aux-
iliary components to monitor the behaviour of the experiment, like oscillation
parameters and neutron mirror alignment, were described in the thesis. The most
important experimental components were characterised, and the experiment put
into initial operation. The necessary requirements for the first experimental runs
are fulfilled by all components. Problems with the adjustment of neutron mirror
heights via capacitive sensors were encountered, and a proper work around with
sufficient precision via linear height gauges presented. A new experiment control
via LabView was adapted and applied to all devices needed. This provides a
convenient way to control the experiment and automate measurement schemes.

Several measurements with neutrons have been performed to characterise the
experimental setup. The velocity spectrum within the experiment was measured
in detail. The neutron counter tube was characterised, and a recurring exponential
decay in the zero count rate was observed. This problem was solved later and
future experiments will operate with a stable zero rate. The consistency of the
measurements of occupation numbers after preparation and analyser regions
was systematically tested and found to be good. The performance of the state
preparation regions I and V, however, has been better before and systematic tests
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10. Summary

will follow.
The theoretical description of the Ramsey-setup was presented, and a Monte-

Carlo simulation for the classical expectation of measurement schemes was per-
formed. The results were used to confirm the proof of principle measurement
with the novel Ramsey setup within qBounce: A measurement of the relative
transmission while sweeping the phase between the oscillating regions. The
sinusoidal behaviour observed is evidence that Ramsey spectroscopy has been
performed.
This marks the first experimental realisation of Ramsey-type spectroscopy without
the use of electromagnetic radiation.
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11. Outlook and Future
Applications

The technique of Ramsey-type Gravity Resonance Spectroscopy is a powerful
one and there are many applications the presented setup can be used for. Most
obvious, the increased sensitivity in comparison to previous methods allows for
more precise measurements of the differences of the eigenenergies of the Quantum
Bouncer in the near future. This will not only lead to further checks of quantum
mechanical predictions, but with it also to constraints for various hypothetical
dark energy, dark matter, or gravity-like fifth force models, as has been the case
with previous experiments (see section 3.3.1). For the Ramsey setup presented,
the projected short term sensitivity is in the range of ∆E = 10−17 eV, and the
long term goal is to reach ∆E = 5× 10−21 eV.
While not being an exhaustive list, some other possibilities for measurements and
applications shall be shortly summarised in the following.

A way to drive transitions to higher states than currently possible with mechan-
ical oscillations at fixed frequency are chirped-frequency oscillations. By varying
the sinusoidal oscillation frequency (chirp) in a way that the UCNs go from one
energy level to the next, the occupation of high states or a certain superposition
of widely separated states can be achieved (Manfredi et al. (2017)). Techniques
like this might be used to observe the limit between quantum and classical mech-
anics, as the neutron energies at higher energy levels naturally become larger and
eventually reach the classical regime. Transitions between two widely separated
energy states also increase the parameter space for the search of hypothetical
forces.
In the current experimental setup, the maximally achievable flight time T of
the neutrons through the propagation region is spatially limited. Because of the
crucial dependence of the energy resolution on T , it is therefore natural to make
efforts to store the neutrons in this region as proposed in Abele et al. (2010),
shifting the spatial limitation to a temporal limitation due to the finite lifetime
of the free neutron.

Other experiments that are being prepared for or are underway at the moment,
are for example measurements of the neutron’s electric charge (see Durstberger-
Rennhofer et al. (2011)) or spin-dependent measurements. Storing neutrons
in the propagation region III of a Ramsey GRS setup has the potential to
improve the current best limit on the neutron charge of 10−21e. Spin-dependent
measurements can (as they have before) potentially set new limits on spin-mass-
couplings of hypothetical particles like the Axion — a promising dark matter
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11. Outlook and Future Applications

candidate (Moody and Wilczek (1984); Jenke et al. (2014)).
In principle, one can also think of experiments where proper time effects of the
energy levels involved in a transition between two largely separated eigenstates
could lead to measurable phase effects. This can readily be realised with a spatial
resolution detector behind the coherent evolution of the superposition of two
energy eigenstates behind region III. Doing so, this might also be used to study
decoherence effects of energy superpositions by varying the length of region III
and the neutron velocity spectrum used.
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A. Additional Figures and
Photographs

Here, additional figures and photographs shall be placed. While some are referred
to in the main part of the thesis, others are meant as a supplement to complete
the presentation of the carried out work.

Table A.1.: Transition frequencies for the first 5 eigenstates of a neutron above a
neutron mirror.

1 2 3 4 5
1 0 254.535 462.925 647.101 815.462
2 0 208.39 392.566 560.927
3 0 184.176 352.537
4 0 168.361
5 0

Table A.2.: Overlap integrals Qmn for the first 5 eigenstates of a neutron above a
neutron mirror, in units of 1/m.

1 2 3 4 5
1 0 97373.4 -53539.9 38301.5 -30393.7
2 -97373.4 0 118935.4 -63135.7 44185.7
3 53539.9 -118935.4 0 134571.9 -70304.5
4 -38301.5 63135.7 -134571.9 0 147213.0
5 30393.7 -44185.7 70304.5 -147213.0 0
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A. Additional Figures and Photographs

Figure A.1.: A continuous, 30 mm thick aluminium ground plate was placed on
the UCN platform of PF2 (see section 7.1). The vacuum chamber is
levelled via the three spindle drives visible.
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Figure A.2.: Top view on the entering of the neutron guide (from the right)
through the flexible bellow, ending close to the velocity selector
system mounted on the measurement granite. The double layer
MuMetal and the adjustable beam guide holder, as well as the end
cap on the glass beam guide can be seen.

Figure A.3.: Five-part neutron mirror setup in Ramsey configuration within
qBounce. The large sensor gantry is missing in the photograph,
offering a good view on the aligned mirror setup.
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A. Additional Figures and Photographs

Figure A.4.: Usually, the sensor gantry covers most of the neutron mirrors.
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Figure A.5.: Exemplary screenshot of the LabVIEW visualisation of qBounce.
Here, the detector tab is selected where the detector spectrum is
updated continuously. A slight time delay is due to saving processing
power, as there is no direct communication between detector and
LabVIEW and the updates are generated by reading out detector text
files. The detector was integrated into the visualisation in Huber
(2017).
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