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1. Introduction

The goal of these lecture notes is to introduce in some aspects of entropy–entropy dis-
sipation techniques. These techniques are used in order to understand the structure of
nonlinear (higher-order) partial differential equations and the qualitative behavior of their
solutions. In particular, we will detail a method recently developed in collaboration with
Daniel Matthes (Pavia, Italy). Our approach is a more algebraic one; there exist also more
geometric view points, see, for instance, the works of Carrillo, Otto, Savaré and many
others.

We have in mind the following partial differential equations:

• Porous-medium equation:

ut = ∆(um), u(·, 0) = u0 ≥ 0 in Ω,

where Ω = R
d is the whole space or Ω = T

d is the d-dimensional torus T
d ∼ [0, L)d,

L > 0, and m > 1. The solution u(x, t) describes, for instance, the density of an
unsaturated groundwater flow in a porous medium. If 0 < m < 1, this equation is
called the fast-diffusion equation. References: Vazquez, Bénilan/Crandell 1981.

• Thin-film equation:

ut + div (uβ∇∆u) = 0, u(·, 0) = u0 ≥ 0 in Ω,

where β > 0. The solution describes, for instance, the thickness of a thin film. The
case β = 1 models the flow in a Hele-Shaw cell; β = 3 models the viscous flow on
a solid surface without slip driven by surface tension. References: Bertozzi, Pugh,
Grün, Garcke, dal Passo, Otto...

• Derrida-Lebowitz-Speer-Spohn (DLSS) equation:

ut + div
(

u∇
(∆

√
u√

u

))

= 0, u(·, 0) = u0 ≥ 0 in Ω.

The solution u is the limit of a random variable related to the deviation of the
interface of a two-dimensional spin system from a straight line, derived by Derrida,
Lebowitz, Speer, and Spohn in 1994. It also arises in quantum semiconductor
modeling. Here, u is the electron density. References: Carrillo, Jüngel, Pinnau,
Toscani, Unterreiter...
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In order to explain what we mean by an entropy–entropy dissipation technique, we
consider a simple example, the heat equation:

ut = ∆u, u(·, 0) = u0 ≥ 0 in T
d.

It is well known that for integrable u0, there exists a smooth nonnegative solution satisfying
∫

u(x, t)dx =
∫

u0(x)dx =: ū for all t > 0. Set v̄ = ū/vol(Td). We introduce the following
functionals which we call entropies:

E2(t) =

∫

Td

(u − ū)2dx, E1(t) =

∫

Td

u log
(u

v̄

)

dx.

Observe that E1 is nonnegative. Indeed, since x log(x/y) − x + y ≥ 0 for all x, y ≥ 0, we
obtain

0 ≤
∫

Td

(

u log
(u

v̄

)

− u + v̄
)

dx =

∫

Td

u log
(u

v̄

)

dx −
∫

Td

udx +

∫

Td

v̄dx = E1.

We claim that both functionals E1 and E2 are nonincreasing in time. First we consider
E2. We obtain, using integration by parts,

dE2

dt
= 2

∫

Td

(u − ū)utdx = 2

∫

Td

(u − ū)∆udx = −2

∫

Td

|∇u|2dx ≤ 0.

The expression on the right-hand side,
∫
|∇u|2dx, is called the entropy dissipation corre-

sponding to E2. This term allows to conclude more than the monotonicity of E2. For this,
we need the Poincaré inequality

∫

Ω

(u − ū)2dx ≤ CP

∫

Ω

|∇u|2dx for all u ∈ H1(Ω).

For convex domains Ω, the constant satisfies CP ≤ (diam(Ω)/π)2 (Payne/Weinberger
1960); for Ω = T, the optimal constant is CP = (L/2π)2. The Poincaré inequality re-
lates the entropy E2 to the entropy dissipation. Then we conclude that

dE2

dt
≤ −2C−1

P E2.

By Gronwall’s lemma (or just integrating the above differential inequality),

E2(t) ≤ E2(0)e−2t/CP .

Hence, the solution u converges in the L2 norm exponentially fast to the steady state ū
with rate 1/CP .

Next, we compute the derivative of E1:

dE1

dt
=

∫

Td

(

log
(u

v̄

)

+ 1
)

utdx = −
∫

Td

∇
(

log
(u

v̄

)

+ 1
)

· ∇udx = −4

∫

Td

|∇
√

u|2dx.

Again, we need an expression relating the entropy E1 and the entropy dissipation. This is
done by the logarithmic Sobolev inequality

∫

Ω

u log
u

v̄
dx ≤ CL

∫

Ω

|∇
√

u|2dx for all
√

u ∈ H1(Ω), u ≥ 0.
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If Ω = T, the constant CL equals L2/2π2 (Rothaus 1980, Weissler 1980, or Dolbeault/Gen-
til/Jüngel 2006). Then we have

dE1

dt
≤ −4C−1

L E1 and E1(t) ≤ E1(0)e−4t/CL .

The solution converges in the “entropy norm” exponentially fast to its steady state with
rate 4/CL.

Sometimes, one is rather interested in the convergence of the solution in a Lebesgue
norm, for instance in the L1 norm. The above estimate allows to derive such a conclusion
by means of the Csiszár-Kullback inequality:

∫

Ω

(

u log
(u

v

)

− u + v
)

dx ≥ CK

( ∫

Ω

|u − v|dx
)2

for all u, v ∈ L1(Ω), u, v ≥ 0.

By Bartier/Dolbeault/Illner/Kowalczyk 2006, the constant CK ≤ 1/4 max{‖u‖L1 , ‖v‖L1}.
Therefore,

‖u − ū‖L1(Td) ≤
√

E1(0)

CK

e−2t/CL .

The above example shows that the entropy–entropy dissipation method consists of the
following ingredients:

• entropy functional,
• entropy–entropy dissipation inequality (depending on the PDE under considera-

tion),
• study of the long-time behavior: relation between the entropy and entropy dissipa-

tion.

In the following section we will specify which kind of entropies are of interest. An important
step is the derivation of the entropy–entropy dissipation inequality, which was easy in the
case of the heat equation, but which is rather involved for the (fourth-order) equations
mentioned above. An algorithmic construction method will be presented in section 3.
Section 4 is concerned with additional results. We conclude in section 5 with some open
problems.

2. Definitions and explanations

Let u(x, t) be a nonnegative solution to a PDE for x ∈ Ω, t > 0, and let E and P be
functionals, defined by u and its derivatives. We call (E,P ) an entropy–entropy production
pair if and only if

(1)
dE

dt
+ P ≤ 0 and E, P ≥ 0.

We are interested in the following entropies:
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• Zeroth-order entropies:

Eα =
1

α(α − 1)

∫

Ω

uαdx, α 6∈ {0, 1},

E1 =

∫

Ω

(u(log u − 1) + 1)dx, α = 1,

E0 =

∫

Ω

(u − log u)dx, α = 0.

• First-order entropies:

Ẽα =

∫

Ω

|∇(uα/2)|2dx, α 6= 0.

Clearly, higher-order entropies can be also defined but we will study only entropies of
zeroth or first order. The functional E1 represents (up to a sign) the physical entropy.
The functionals Eα give rise to estimates in the Lebesgue space Lα; Ẽ2 provides a gradient
estimate in L2, whereas Ẽ1 is called the Fisher information.

Examples for entropy productions are, in one space dimension,

P =

∫

Ω

(uα/2)2
xdx, P =

∫

Ω

(uα/2)2
xxdx etc.

In the following we explain which kind of informations can be drawn from inequalities
like (1).

1. Long-time behavior. Let u be a solution of a PDE and (E,P ) be an entropy–entropy
dissipation pair satisfying dE/dt+c1P ≤ 0, where c1 > 0 is a constant. If there is a relation
between the entropy and the entropy production of the form E ≤ c2P for some constant
c2 > 0 (like the Poincaré or logarithmic Sobolev inequality; see the previous section), we
derive

dE

dt
+

c1

c2

E ≤ 0.

Thus, by Gronwall’s lemma, E(t) ≤ E(0)e−c1t/c2 and we have an exponential decay with
rate c1/c2. In some situations (for instance, whole-space problems without confinement),
we can only expect to obtain inequalities like Eγ ≤ c2P for some γ > 1 (see Car-
rillo/Dolbeault/Gentil/Jüngel 2006 for some examples) such that

dE

dt
+

c1

c2

Eγ ≤ 0.

Hence, after integration, E(t) behaves like t−1/(γ−1) for t → ∞. This gives an algebraic
decay rate.

2. Existence of solutions. An existence proof of a nonlinear parabolic PDE of the type
ut = F (u,∇u, . . .) with some initial and boundary conditions may have the following
steps. First, approximate the PDE appropriately. An example is to replace the derivative
ut by (u(t) − u(t −△t))/△t and to solve the sequence of elliptic problems

u(t) − (△t)F (u(t),∇u(t), . . .) = (△t)u(t −△t),
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where z = u(t − △t) is given. Second, define a fixed-point operator by “linearizing” the
elliptic problem, S : B → B, w 7→ u, for instance,

u − ∆u +
(
(△t)F (w,∇w, . . .) − ∆w

)
= (△t)z.

If the existence of a fixed point will be proved by the Leray-Schauder fixed-point theorem,
we need appropriate uniform estimates for all fixed points. We recall the fixed-point
theorem.

Leray-Schauder’s fixed-point theorem: Let B be a Banach space, S : B ×
[0, 1] → B compact (i.e. S(B1(0)) is a compact set, where B1(0) = {x ∈
B : ‖x‖B < 1}) such that S(x, 0) = 0 for all x ∈ B and

∃c > 0 : ∀x ∈ B, σ ∈ [0, 1], x = S(x, σ) : ‖x‖B ≤ c.

Then x 7→ S(x, 1) has a fixed point.

Third, let us suppose that for a given fixed point of S, i.e. a solution of the PDE under
consideration (maybe including σ), we are able to prove an entropy–entropy dissipation
inequality

(2) E(t) +

∫ t

0

P (s)ds ≤ E(0).

Usually, the production term P contains derivatives (see above). The inequality should

satisfy two requirements: (i) the estimate on
∫ t

0
Pds should imply a bound for ‖u‖X in a

Banach space X and (ii) X is compactly embedded in B. Then the Leray-Schauder fixed-
point theorem applies. In general, the crucial step of the existence proof is the estimate
(2).

3. Regularity of solutions. For instance, in the case of the DLSS equation with initial data√
u0 ∈ H1(Ω), it is possible to prove for a solution u that (see Dolbeault/Gentil/Jüngel

2006)
∫

Ω

(
√

u)2
x(t)dx + c

∫ t

0

∫

Ω

(
(
√

u)2
xx + (

√
u)2

xxx

)
dx ≤

∫

Ω

(
√

u0)
2
xdx.

Thus, since u ∈ L∞(0, T ; L1(Ω)),
√

u ∈ L∞(0, T ; H1(Ω)) ∩ L2(0, T ; H3(Ω)). This provides
(slightly) more regularity than the definition of a weak solution to the DLSS equation.

4. Positivity of solutions. The proof of positivity is usually shown by means of the maximum
principle. However, for higher-order equations, this principle generally does not apply, and
other techniques have to be employed. The entropy–entropy dissipation inequalities can be
helpful for some PDEs. The proof of positivity depends much on the studied PDE so that
we present only an example, the 1D thin-film equation. Let the initial datum u0 ∈ H1(0, 1)
be positive, 7

2
≤ β ≤ 5, and let u be a solution to

ut + (uβuxxx)x = 0 in (0, 1), t > 0, ux = uβuxxx = 0 for x ∈ {0, 1}, u(·, 0) = u0 > 0.
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Beretta/Bertsch/dal Passo 1995 have shown that u ∈ C1/8([0, T ]; C1/2([0, 1])) and that for
all 3

2
≤ α + β ≤ 3,

(3)

∫ 1

0

uα(x, t)dx is finite for all t > 0.

(We will prove the second statement in section 3.) We claim that from this (entropy)
estimate, the positivity of u follows. The following proof is taken from Beretta et al. 1995.

Suppose, by contradiction, that there is x0 such that u(x0, t) = 0. By the regularity on
u, 0 ≤ u(x, t) ≤ C|x− x0|1/2 uniformly in t. Let us take α = −2 in (3). This is admissible
since then 3

2
≤ −2 + β ≤ 3 is equivalent to 7

2
≤ β ≤ 5. We obtain

∞ >

∫ 1

0

u(x, t)αdx ≥ Cα

∫ 1

0

|x − x0|α/2dx = C−2

∫ 1

0

|x − x0|−1dx = ∞,

contradiction. Thus, u(x, t) > 0 for all x (and t).

5. New functional inequalities. Using the entropy–entropy dissipation method, we can also
prove inequalities involving derivatives of functions like

∫

T

uα(log u)4
xdx ≤ Cα

∫

T

uα(log u)2
xxdx, Cα =

9

α2
.

We refer to section 4 for details.

3. Entropy construction method

3.1. Idea of the method. We introduce the technique by first studying a rather simple
example, the 1D thin-film equation

(4) ut + (uβuxxx)x = 0 in T, u(·, 0) = u0.

Our goal is to derive estimates of the type

dEα

dt
+ P ≤ 0,

where Eα is a zeroth-order entropy, Eα =
∫

uαdx/α(α − 1). For this, we assume that u is
a positive smooth solution to (4), we take the time derivative of Eα and integrate by parts
once:

dEα

dt
=

1

α − 1

∫

T

uα−1utdx =

∫

T

uα+β−2uxuxxxdx =: −Q.

In order to show that Q ≥ 0, we integrate by parts once more:

Q = (α + β − 2)

∫

T

uα+β−3 u2
xuxx

︸ ︷︷ ︸

= 1

3
(u3

x)x

dx +

∫

T

uα+β−2u2
xxdx

= −1

3
(α + β − 2)(α + β − 3)

∫

T

uα+β−4u4
xdx +

∫

T

uα+β−2u2
xxdx.(5)

Now, Q ≥ 0 if (α + β − 2)(α + β − 3) ≤ 0 or if 2 ≤ α + β ≤ 3.
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Although the above computation shows the claim, there are two disadvantages of this
approach:

• One may wonder if the second term (5) can compensate the first term in case the
factor (α + β − 2)(α + β − 3) is negative. This is indeed the case. We will show
below that Q ≥ 0 if (and only if) 3

2
≤ α + β ≤ 3. Thus, the parameter range

3
2
≤ α + β < 2 is not covered by the above computation.

• The integration by parts have been done in a non-systematic and ad-hoc way. Better
results can be obtained by a different integration by parts (see below). Moreover,
in several space dimensions, there are many possible integration by parts, and it is
not clear how to apply them.

In view of these drawbacks, we suggest an approach which is based on a systematic use
of integration by parts. For this, we describe integration by parts in a different way. The
computation

(6) Q = −
∫

T

uα+β−2uxuxxxdx = (α + β − 2)

∫

T

uα+β−3u2
xuxxdx +

∫

T

uα+β−2u2
xxdx

can be written in the form

I2 =

∫

T

uα+β
(

(α + β − 2)
(ux

u

)2uxx

u
+

(uxx

u

)2

+
ux

u

uxxx

u

)

dx =

∫

T

(

uα+β ux

u

uxx

u

)

x
dx = 0.

Then (6) corresponds to

Q = Q + c · I2 with c = 1.

How many integration-by-parts rules do exist? There are three rules. The other two
read as

I1 =

∫

T

uα+β
(

(α + β − 3)
(ux

u

)4

+ 3
(ux

u

)2uxx

u

)

dx =

∫

T

(

uα+β
(ux

u

)3)

x
dx = 0,

I3 =

∫

T

uα+β
(

(α + β − 1)
ux

u

uxxx

x
+

uxxxx

u

)

dx =

∫

T

(

uα+β uxxx

u

)

x
dx = 0.

The number of rules is determined by all integers p1, p2, and p3 such that 1·p1+2·p2+3·p3 =
3. Thus,

(p1, p2, p3) = (3, 0, 0), (1, 1, 0), (0, 0, 1),

and there are exactly three rules. Then we can reformulate the problem of proving Q ≥ 0
as

∃c1, c2, c3 ∈ R : Q = Q + c1I1 + c2I2 + c3I3 ≥ 0.

Clearly, since Ik = 0 for k = 1, 2, 3, the above equality is trivial.
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Now comes our main idea. We identify the integrands (up to the factor uα+β) as poly-
nomials via the identification ξ1 , ux

u
, ξ2 , uxx

u
etc. Therefore, with ξ = (ξ1, ξ2, ξ3),

Q corresponds to S(ξ) = −ξ1ξ3,

I1 corresponds to T1(ξ) = (α + β − 3)ξ4
1 + 3ξ2

1ξ2,

I2 corresponds to T2(ξ) = (α + β − 2)ξ2
1ξ2 + ξ2

2 + ξ1ξ3,

I3 corresponds to T3(ξ) = (α + β − 1)ξ1ξ3 + ξ4.

The polynomials Tk are termed shift polynomials. If we can solve the polynomial problem

(7) ∃c1, c2, c3 ∈ R : ∀ξ ∈ R
3 : (S + c1T1 + c2T2 + c3T3)(ξ) ≥ 0,

then we have a pointwise estimate for the integrands, and Q ≥ 0 follows.

Remark 1. We show a much stronger estimate than just Q =
∫

uα+βf(u, ux, uxx, . . .)dx ≥
0 since we try to prove that f(u, ux, uxx, . . .) ≥ 0 for all x ∈ T. One may wonder if by this
approach entropy estimates may get lost. It is possible to show (see Jüngel/Matthes 2006)
that this is not the case for the 1D thin-film and DLSS equation. It is not known if this is
true for the multi-dimensional situation or more general equations.

If the problem (7) is solved, we have only shown that the entropy is nonincreasing in
time. In order to prove the stronger result dE/dt + cP ≥ 0, where c > 0 is a constant and
P a (nonnegative) entropy production, we can proceed in a similar way as above. Since
Q = −dE/dt, we have to prove that there exists a constant c > 0 such that −Q + cP ≥ 0
or, with the above integration-by-parts rules,

(8) ∃c1, c2, c3 ∈ R, c > 0 : −Q + cP + c1I1 + c2I2 + c3I3 ≥ 0.

This problem is of the same type like (6) and therefore, it can be “translated” to a polyno-
mial problem similar to (7). Possible entropy productions, for this fourth-order equation,
are, for instance,

P =

∫

T

(u(α+β)/4)4
xdx, P =

∫

T

(u(α+β)/2)2
xxdx, P =

∫

T

uα+β−2u2
xxdx.

We summarize our algorithm:

(1) Calculate the functional Q and “translate” it into a polynomial S. (This step
depends on the equation at hand.)

(2) Determine the shift polynomials Tk which represent the integration-by-parts rules.
(This step only depends on the order of the equation but not on the structure of
the equation except for the parameter β.)

(3) Decide for which parameters α the problem (7) can be solved. This shows that Eα

is nonincreasing in time.
(4) Decide for which parameters α the problem (8) can be solved. As a result, the

entropy–entropy production inequality dEα/dt + cP ≤ 0 holds.

It remains to solve the problem (7). This is a decision problem which is well-know in
real algebraic geometry. It was shown by Tarski in 1951 that such problems can be always
treated in the following sense:
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A quantified statement about polynomials can be reduced to a quantifier-
free statement about polynomials in an algorithmic way.

Solution algorithms for the above quantifier elimination problem have been implemented,
for instance, in Mathematica. There are also tools specialized on quantifier elimination,
like QEPCAD (Quantifier Elimination using Partial Cylindrical Algebraic Decomposition),
see Collins/Hong 1991. The advantage of these algorithms is that the solution is complete
and exact. The disadvantage is that the complexity of the algorithms is doubly exponential
in the number of variables ξi and ci. An alternative approach is given by the sum-of-squares
(SOS) method. This method tries to write the polynomial as a sum of squares. Therefore,
the answer may be not complete since there are polynomials which are nonnegative but
which cannot be written as a sum of squares. Fortunately, for some decision problems
arising from 1D fourth-order equations, we can solve the problems directly without going
into real algebraic geometry. This will be explained below.

We notice that our method is formal in the sense that positive smooth solutions have
to be assumed in order to justify the calculations. The proofs can be made rigorous if
an appropriate approximation of the original equation is available which (i) allows for
positive smooth solutions and (ii) does not destroy the entropic structure. Clearly, such
an approximation depends much on the specific equation.

3.2. The general scheme. In the following we only present the general scheme for spatial
one-dimensional equations. A systematic treatment of multi-dimensional problems is in
progress (but see section 4). We are concerned with equations of the type

ut =
(

uβ+1q
(ux

u
,
u2

xx

u
, . . . ,

ux...x

x

))

x
in T, t > 0,

where the derivatives ux...x are up to order k − 1 (with even k) and q(ξ1, . . . , ξk−1) is a real
polynomial,

q(ξ1, . . . , ξk−1) =
∑

p1,...,pk−1

cp1,...,pk−1
ξp1

1 · · · ξpk−1

k

such that at most those coefficients cp1,...,pk−1
∈ R with 1 · p1 + · · · + (k − 1) · pk−1 = k − 1

are nonzero. We denote the set of those polynomials as Σk−1. In this notation, q ∈ Σk−1.
An example is the thin-film equation with k = 4 and q(ξ) = ξ3. In order to distinguish
between the polynomial q and its differential operator, we set

Dq(u) = q
(ux

u
,
u2

xx

u
, . . . ,

ux...x

x

)

.

Let u be a positive smooth solution to

ut = (uβ+1Dq(u))x, u(·, 0) = u0,

where q ∈ Σk−1, with periodic boundary conditions. We need some definitions. For this,
let s(u) be one of the following functions:

s(u) =
uα

α(α − 1)
, s(u) = u(log u − 1) + 1, s(u) = u − log u,
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where α ∈ R, α 6∈ {0, 1}. Notice that s′′(u) = uα−1.

• The function E(t) =
∫

s(u(x, t))dx is called an entropy if E(t) is nonincreasing.
• The function P (t) =

∫
uα+βDp(u)dx with p ∈ Σk is called an entropy production

for the entropy E if there exists c > 0 such that for all t > 0,

dE

dt
+ cP ≤ 0.

• The entropy E is called generic if P is an entropy production for all p ∈ Σk.

Step 1: characteristic polynomials. Taking the derivative of a function E and integrating
by parts gives

dE

dt
=

∫

T

s′(u)utdx = −
∫

T

s′′(u)ux(u
β+1Dq(u))dx = −

∫

T

uα+β ux

u
Dq(u)dx.

For the entropy–entropy dissipation method, we need to modify the polynomial corre-
sponding to (ux/u)Dq(u). Therefore, we call s0 ∈ Σk a characteristic polynomial if

dE

dt
= −

∫

T

uα+βDs0
(u)dx.

Clearly, there is at least one characteristic polynomial, namely s0(ξ) = ξ1q(ξ1, . . . , ξk−1),
which is called a canonical (characteristic) polynomial.

Step 2: shift polynomials. The integration-by-parts rules can be formalized as follows. We
introduce for γ ∈ R the operator δγ : Σk−1 → Σk by

(uγDp(u))x = uγDδγp(u), p ∈ Σk−1.

An explicit calculation shows that the image of the monomial p(ξ) = ξp1

1 · · · ξpk−1

k−1 is

(9) δγp(ξ) = (γ − p1 − · · · − pk−1)ξ1p(ξ) + p1
ξ2

ξ1

p(ξ) + · · · + pk−1
ξk

ξk−1

p(ξ).

Example 2. The three monomials r1(ξ) = ξ3
1 , r2(ξ) = ξ1ξ2, r3(ξ) = ξ3 form a basis of Σ3.

Then formula (9) gives

T1(ξ) := δα+βr1(ξ) = (α + β − 3)ξ4
1 + 3ξ2

1ξ2,

T2(ξ) := δα+βr2(ξ) = (α + β − 2)ξ2
1ξ2 + ξ2

2 + ξ1ξ3,

T3(ξ) := δα+βr3(ξ) = (α + β − 1)ξ1ξ3 + ξ4.

These polynomials are a basis of the linear space δα+βΣ3. They express our integration-
by-parts rules.

In view of the above example, we choose a basis of monomials ri ∈ Σk−1, i = 1, . . . , d.
Then the functions Ti = δα+βri are also linearly independent. We will call them shift
polynomials. We have to solve the following problem:

∃c1, . . . , cd ∈ R : ∀ξ ∈ R
k : s(ξ) = (s0 + c1T1 + · · · + cdTd)(ξ) ≥ 0.
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If this is true then E is an entropy. This decision problem can be simplified by eliminating
some integration-by-parts rules which are not useful. In terms of polynomial manipulations,
this leads to the notion of a normal form.

Step 3: decision problems. We call a characteristic polynomial p ∈ Σk to be in normal form
if for each j, the highest exponent with which ξj occurs in p is even. Otherwise, ξa

j → −∞
if ξj → −∞ and the polynomial cannot be nonnegative.

Example 3. We are looking for the normal forms for s0 + c1T1 + · · ·+ cdTd in the case of
the thin-film equation. Recall that s0(ξ) = −ξ1ξ3. Since T3 contains ξ4 = ξ1

4 and 1 is odd,
c3 = 0. The constant c2 must be chosen to eliminate ξ3 = ξ1

3 . Hence, c2 = 1. There is no
restriction on c1. Thus, the normal forms are given by

s := s0 + c1 · T1 + 1 · T2 + 0 · T3 = (α + β − 3)c1ξ
4
1 + (α + β − 2 + 3c1)ξ

2
1ξ2 + ξ2

2 .

Step 4: entropy production. Finally, we turn to an algebraic formulation of the entropy
production P =

∫
uα+βDp(u)dx. To prove dE/dt + cP ≤ 0 for some c > 0, it is sufficient

to show that
s(ξ) − c · p(ξ) ≥ 0.

Again, a decision problem has to be solved. Recall that an entropy E is generic if this
inequality is true for all p ∈ Σk, with constants c depending on p. The idea behind this
notion is that, for small c > 0, s − cp is a polynomial with an c-small perturbation in the
coefficients.

3.3. Solution of some decision problems. The notion of normal forms allows to reduce
the number of variables ci in the decision problem. In this subsection, we give some lemmas
by which decision problems for polynomials up to sixth order can be solved.

Lemma 4. Let the real polynomial p(ξ1, ξ2) = a1ξ
4
1 + a2ξ

2
1ξ2 + a3ξ

2
2 be given. Then the

quantified expression
∀ξ1, ξ2 ∈ R : p(ξ1, ξ2) ≥ 0

is equivalent to the quantifier-free statement that

either a3 > 0 and 4a1a3 − a2
2 ≥ 0

or a3 = a2 = 0 and a1 ≥ 0.

Lemma 5. Let the real polynomial

p(ξ1, ξ2, ξ3) = a1ξ
6
1 + a2ξ

4
1ξ2 + a3ξ

3
1ξ3 + a4ξ

2
1ξ

2
2 + a5ξ1ξ2ξ3 + ξ2

3

be given. Then the quantified formula

∀ξ1, ξ2, ξ3 ∈ R : p(ξ1, ξ2, ξ3) ≥ 0

is equivalent to the quantifier free formula

either 4a4 − a2
5 > 0 and 4a1a4 − a1a

2
5 − a2

2 − a2
3a4 + a2a3a5 ≥ 0

or 4a4 − a2
5 = 2a2 − a3a5 = 0 and 4a1 − a2

3 ≥ 0.
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The (elementary) proofs of these lemmas can be found in Jüngel/Matthes 2006. We can
employ Lemma 4 to solve the decision problem for the 1D thin-film equation,

∃c1 ∈ R : ∀ξ ∈ R
2 : (s0 + c1T1 + T2)(ξ) = (α + β − 3)c1ξ

4
1 + (α + β − 2 + 3c1)ξ

2
1ξ2 + ξ2

2 ≥ 0.

Since the coefficient for ξ2
2 is positive, the nonnegativity is guaranteed if and only if

0 ≤ 4a1a3 − a2
2 = 4c1(α + β − 3) − (α + β − 2 + 3c1)

2

= −9
(

c1 +
1

9
(α + β)

)2

− 8

9
(α + β)2 + 4(α + β) − 4.

Choosing the maximizing value c1 = −(α + β)/9, this inequality is satisfied if and only if

0 ≤ −8(α + β)2 + 36(α + β) − 36.

The roots of the polynomial x 7→ −8x2 + 36x − 36 are x1 = 3/2 and x2 = 3. Therefore,
the inequality is valid if and only if 3

2
≤ α + β ≤ 3.

Entropy productions are derived by showing (s0 + c1T1 − cp)(ξ) ≥ 0 for some (small)
c > 0. If, for instance, the entropy production is given by P =

∫
uα+β−2u2

xxdx, we have
p(ξ) = ξ2

2 , and we need to solve

∃c1 ∈ R, c > 0 : ∀ξ ∈ R
2 : (α + β − 3)c1ξ

4
1 + (α + β − 2 + 3c1)ξ

2
1ξ2 + (1 − c)ξ2

2 ≥ 0.

It can be easily seen that this problem is solvable if 3
2

< α + β < 3.
In the nongeneric cases α + β = 3/2 and α + β = 3, there may be still specific entropy

productions. For instance, let α + β = 3/2. We choose c1 = −1/6 in the polynomial
s0 + c1T1 + T2 which gives

(s0 + c1T1 + T2)(ξ) =
1

4
ξ4
1 + ξ2

1ξ2 + ξ2
2 =

(

ξ2 −
1

2
ξ2
1

)2

.

The corresponding functional reads as

(10)
dEα

dt
= −

∫

T

u3/2
(uxx

u
− ux

2u

)2

dx = −
∫

T

u1/2(u1/2)2
xxdx.

Similarly, the case α + β = 3 can be treated: Choosing c1 = −1/3 leads to

(11)
dEα

dt
= −

∫

T

uu2
xxdx.

We have shown:

Theorem 6. The functionals Eα(t) are nonincreasing in time (along solutions of the 1D
thin-film equation) if 3

2
≤ α + β ≤ 3. Moreover, if 3

2
< α + β < 3, there exists c > 0 such

that
dEα

dt
+ c

∫

T

(
uα+β−2u2

xx + (u(α+β)/2)2
xx + (u(α+β)/4)4

x

)
dx ≤ 0.

Furthermore, if α + β = 3/2 or α + β = 3, the inequalities (10), (11), respectively, hold.

More precisely, we have shown the last inequality only for the first entropy production
term but the proof for the remaining terms is similar.
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3.4. Second example: DLSS equation. We consider the DLSS equation

ut + (u(log u)xx)xx = 0 in T, t > 0, u(·, 0) = u0.

Since

−(u(log u)xx)x = u
(

−
(ux

u

)3

+ 2
ux

u

uxx

u
− uxxx

u

)

,

we have ut = (uDp(u))x with p(ξ) = −ξ3
1 +2ξ1ξ2−ξ3. Hence, the (canonical) characteristic

polynomial is s0(ξ) = ξ1p(ξ) = −ξ4
1 + 2ξ2

1ξ2 − ξ1ξ3. The shift polynomials are the same as
for the thin-film equation choosing β = 0:

T1(ξ) = (α − 3)ξ4
1 + 3ξ2

1ξ2,

T2(ξ) = (α − 2)ξ2
1ξ2 + ξ2

2 + ξ1ξ3,

T3(ξ) = (α − 1)ξ1ξ3 + ξ4.

Similarly, the most general normal form is given by

s0 + c · T1 + 1 · T2 + 0 · T3 = (c(α − 3) − 1)ξ4
1 + (3c + α)ξ2

1ξ2 + ξ2
2 .

This polynomial is nonnegative for all ξ ∈ R
3 if, by Lemma 4,

0 ≤ 4a1a3 − a2
2 = 4(c(α − 3) − 1) − (3c + α)2 = −9c2 − 2(α + 6)c − (4 + α2)

= −9
(

c +
1

9
(α + 6)

)2

− 8

9
α
(

α − 3

2

)

.

Choosing the maximizing value c = −(α + 6)/9, we obtain

0 ≤ −8

9
α
(

α − 3

2

)

,

This inequality is satisfied if and only if 0 ≤ α ≤ 3/2. As before, the generic entropies are
those for which 4a1a3 − a2

2 > 0, corresponding to 0 < α < 3/2.
Next, we turn to the nongeneric entropies α = 0 and α = 3/2. For α = 0, we have

s0(ξ) + cT1(ξ) + T2(ξ) = −(3c + 1)ξ1
4 + 3cξ2

1ξ2 + ξ2
2 .

Taking c = −2/3 gives (s0 + cT1 + T2)(ξ) = ξ4
1 − 2ξ2

1ξ2 + ξ2
2 = (ξ2

1 − ξ2)
2 which translates

to the entropy production
∫

T

((ux

u

)2

− uxx

u

)2

dx =

∫

T

(log u)2
xxdx.

Similarly, if α = 3/2, we take c = −5/6, leading to the entropy production

4

∫

T

u1/2(u1/2)2
xxdx.

We summarize these results in the following theorem.

Theorem 7. The functionals Eα(t) are nonincreasing in time (along solutions of the 1D
DLSS equation) if 0 ≤ α ≤ 3/2. Moreover, if 0 < α < 3/2, there exists c > 0 such that

dEα

dt
+ c

∫

T

(
uα−2u2

xx + (uα/2)2
xx + (uα/4)4

x

)
dx ≤ 0.
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Furthermore,

dEα

dt
+

∫

T

(log u)2
xxdx ≤ 0 if α = 0,

dEα

dt
+ 4

∫

T

u1/2(u1/2)2
xxdx ≤ 0 if α =

3

2
.

4. Additional results

4.1. Higher-order entropies. Clearly, the approach of the previous section also applies
to higher-order entropies, like the first-order entropies

E =

∫

Ω

(uα/2)2
xdx, α > 0.

Consider again the 1D thin-film equation. Then, taking the derivative,

dE

dt
= 2

∫

Ω

(uα/2)x(u
α/2)txdx = −2

∫

Ω

(uα/2)xx
α

2
uα/2−1utdx

= −α

∫

Ω

(uα/2)xxu
α/2−1(uβuxxx)xdx.

Thus, we have to find all integration-by-parts rules involving a total of six derivatives. It
can be seen that there are seven integration-by-parts rules giving seven shift polynomials.
Some of the shift polynomials do not need to be taken into account (i.e., the normal form
does not contain them), like

T (ξ) = (α + β − 1)ξ1ξ5 + ξ6,

since ξ6 appears in odd order. Writing down the normal form leads to the following decision
problem:

∃c1, c2 ∈ R : ∀ξ ∈ R
3 : (α + β − 5)c1ξ

6
1 + (5c1 + (α + β − 4)c2)ξ

4
1ξ2 + 3c2ξ

2
1ξ

2
2

+ (1
2
(α2 − 5α + 6)ξ3

1ξ3 + (2α − 4)ξ1ξ2ξ3 + ξ2
3 ≥ 0.

The quantifier elimination can be performed using Lemma 5 for polynomials in Σ6 in
three variables up to order six. The result is displayed in Figure 1. (This result has been
first found by Laugesen 2005.) Notice that there is always a trivial first-order entropy
corresponding to α = 2, reading E =

∫
u2

xdx. In fact, the corresponding entropy–entropy
inequality can be easily obtained by differentiation:

d

dt

∫

T

u2
xdx = 2

∫

T

uxutxdx = −2

∫

T

uxxutdx = 2

∫

T

uxx(u
βuxxx)xdx = −2

∫

T

uβu2
xxxdx.

A similar result can be derived for the DLSS equation. The functional E =
∫

(uα/2)2
xdx

is an entropy if α lies in between the two reals roots of 20 − 100α + 53α2, i.e. α ∈
(0, 2274 . . . , 1.6593 . . .).

The situation is more complicated concerning second-order entropies since even for
fourth-order equations, polynomials of order 8 need to be solved. We have not found
second-order entropies for the thin-film or DLSS equation using quantifier elimination or
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Figure 1. Values of α and β providing an entropy.

the sum-of-squares method. This does not mean that there are no second-order entropies
for these equations since our proof is based on pointwise estimates of the integrand.

4.2. Multi-dimensional equations. In principle, the strategy for the one-dimensional
PDEs can be generalized in a straight forward way to multi-dimensional equations. In
this situation, we have to deal with polynomial variables for all the partial derivatives.
Integration-by-parts rules are obtained by differentiating products in all variables. Practi-
cally, this strategy is useless since it leads to polynomial expression in many variables ξk

and a huge number of shift polynomials Ti. A better approach is not to incorporate all
products of differential expressions. As this is still current research, we will only sketch
some ideas.

Our main idea is to exploit the symmetry of the problem. For instance, consider the
problem of deriving first-order entropies for a fourth-order equation in d space dimensions.
Then the polynomials are a linear combination of 14 O(d)-invariant scalar expressions like

‖∇3u‖3, ∇∆u · ∇2u · ∇u, |∇u|6, . . . ,

where ∇2u denotes the Hessian of u and ∇3u the corresponding 3-tensor. Then we perform
the following steps:

(1) Restrict to those integration-by-parts rules which can be written in the above 14
expressions alone. This leads to 7 decision variables.

(2) Perform a rotation and/or dilation to eliminate all dependencies on first derivatives.
The remaining polynomials are at most of order three.

(3) Eliminating the third-order terms gives a quadratic problem in R
N , where the

variables represent derivatives of second and third order.
(4) Decomposing R

N into certain subspaces, it is enough to consider the quadratic
problem on the subspaces. This yields a semi-definite programming problem in 9
variables with 7 parameters.
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Example 8. In this example we detail the problem of finding zeroth-order entropies for
the thin-film equation,

ut + div (uβ∇∆u) = in T
d, t > 0, u(·, 0) = u0,

we proceed slightly different than above (see Jüngel/Matthes 2006). There are 7 scalar
expressions containing exactly four derivatives:

η4
G = u−4|∇u|4, η2

L = u−2(∆u)2, trace(η2
H) = u−2trace(∇2u)2,

η2
GηL = u−3|∇u|2∆u, η2

GηH = u−1(∇u)⊤∇2u(∇u), ηGηT = u−2∇∆u · ∇∆u,

ηD = u−1∆2u.

The expressions on the left-hand sides have to be read as formal symbols and not as
products. There are four shift polynomials of interest:

T1(η) = (α + β − 3)η4
G + η2

GηL + 2η2
GηH ,

T2(η) = (α + β − 2)η2
GηL + η2

L + ηGηT ,

T3(η) = (α + β − 2)η2
GηH + trace(η2

H) + ηGηT ,

T4(η) = (α + β − 1)ηGηT + ηD.

The (canonical) characteristic polynomial is s0(η) = −ηGηH . It can be shown that the
general normal form reads as follows:

(s0 + c1T1 + c2T2 + c3T3)(η) = c1(α + β − 3)η4
G + c2η

2
L + c3trace(η2

H)

+ ((α + β − 2)c2 + c1)η
2
GηL + ((α + β − 2)c3 + 2c1)η

2
GηH ,

and c2 and c3 satisfy the relation c2 + c3 = 1. Actually, it is even possible to reduce the
quantifier elimination problem to three scalar variables ‖ηG‖, (trace(η2

H))1/2, and ηL and
one decision variable. Then, employing the algebra tool QEPCAD, one can show that the
zeroth-order functionals are entropies if 3/2 ≤ α + β ≤ 3. This is the same condition as in
the one-dimensional case.

4.3. New functional inequalities. The entropy–entropy dissipation approach can be
also used to prove some functional inequalities. As an example, we will show that for all
positive smooth functions u, it holds

(12)

∫

T

uα(log u)4
xdx ≤ 9

α2

∫

T

uα(log u)2
xxdx, α > 0.

This inequality resembles the logarithmic Sobolev inequality, mentioned in the introduc-
tion,

∫

T

u2 log
u2

M2
dx ≤ C

∫

T

u2(log u)2
xdx,

where M2 =
∫

u2dx/L and T ∼ [0, L).
Inequality (12) can be written as

0 ≤
∫

T

uα
(
(log u)2

xx − c(log u)4
x

)
dx =

∫

T

(

(1 − c)
(ux

u

)4

− 2
(ux

u

)2uxx

u
+

(uxx

u

)2)

.
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Writing the integrand as a polynomial, (12) is shown if

∃c > 0 : ∀ξ ∈ R
2 : q(ξ) = (1 − c)ξ4

1 − 2ξ2
1ξ2 + ξ2

2 ≥ 0.

There is only one integration-by-parts rule which is relevant here. Thus we have to show:

∃c1 ∈ R, c > 0 : ∀ξ ∈ R
2 : (q + c1T1)(ξ) = (1 − c − c1(α − 3))ξ4

1 + (3c − 2)ξ2
1ξ2 + ξ2

2 ≥ 0.

We apply Lemma 4 and obtain eventually the relation

9c2
1 + 4αc1 + 4c ≤ 0,

which is true if and only if 9c ≤ α2. It can be shown (see Jüngel/Matthes 2006 for details)
that this choice is optimal.

It is also possible, by the same technique, to prove multi-dimensional inequalities. For
instance, we have shown in Jüngel/Matthes 2007:

Theorem 9. Let u ∈ H2(Td) ∩ W 1,4(Td) ∩ L∞(T2), d ≥ 2, and assume that infT u > 0.
Then, for any 0 < γ < 2(d + 1)/(d + 2),

(13)
1

2(γ − 1)

∫

Td

d∑

i,j=1

u2∂2
ij(log u)∂2

ij(u
2(γ−1))dx ≥ κγ

∫

Td

(∆uγ)2dx,

if γ 6= 1, or
∫

Td

d∑

i,j=1

u2|∂2
ij(log u)|2dx ≥ κ1

∫

Td

(∆u)2dx,

if γ = 1, respectively, where

(14) κγ =
p(γ)

γ2(p(γ) − p(0))
and p(γ) = −γ2 +

2(d + 1)

d + 2
γ −

(d − 1

d + 2

)2

.

The constant κγ is positive if

(
√

d − 1)2

d + 2
< γ <

√
d + 1)2

d + 2
.

We sketch the proof of the above theorem. First, we define the variables in which will
wish to work. Let θ, λ, and µ be defined by

θ =
|∇u|

u
, λ =

1

d

∆u

u
, (λ + µ)θ2 =

∇u⊤

u

∇2u

u

∇u

u
,

where ∇2u denotes the Hessian of u. Furthermore, it is possible to show (see [8]) that the
following expression defines the variable ρ ≥ 0:

‖∇2u‖2

u2
=

(

dλ2 +
d

d − 1
µ2 + ρ2

)

.
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With these definitions, we can write the left-hand side J and the right-hand side K of (13)
as

J =
1

2(γ − 1)

∫

Td

d∑

i,j=1

u2∂2
ij(log u)∂2

ij(u
2(γ−1))dx

=

∫

Td

u2γ
(

dλ2 +
d

d − 1
µ2 + ρ2 − 2(2 − γ)(λ + µ)θ2 + (3 − 2γ)θ4

)

dx,

K =
1

γ2

∫

Td

(∆uγ)2dx =

∫

Td

u2γ(dλ + (γ − 1)θ2)2dx.

Second, we identify those integration by parts which are useful for the analysis:

I1 =

∫

Td

div (u2γ−2(∇2u − ∆uI) · ∇u)dx = 0,

I2 =

∫

Td

div (u2γ−3|∇u|2∇u)dx = 0.

Both integrals can be written in terms of θ, λ, µ, and ρ. (The precise expressions can
be found in Jüngel/Matthes 2007.) The problem of finding a constant c0 > 0 such that
J − c0K ≥ 0 can now be formulated as:

Find c0, c1, c2 such that J − c0K = J − c0K + c1I1 + c2I2 ≥ 0.

A tedious computation shows that J − c0K + c1I1 + c2I2 equals

J − c0K =

∫

Td

u2γ(dλ2a1 + λθ2a2 + Q(θ, µ, ρ))dx,

where

a1 = 1 − dc0 − (d − 1)c1,

a2 = 2(γ − 1)(1 − dc0 − (d − 1)c1) + (d + 2)c2 − 2,

and Q(θ, µ, ρ) depends on θ, µ, and ρ but not on λ.
Third, we simplify the problem in the following way. We choose to eliminate λ by fixing

c1 and c2 such that a1 = a2 = 0. Then Q(θ, µ, ρ) becomes

Q(θ, µ, ρ) =
1

(d − 1)2(d + 1)
(b1µ

2 + 2b2µθ2 + b3θ
4

︸ ︷︷ ︸

≥0 if c0≤p(γ)/(p(γ)−p(0))

+ b4ρ
2

︸︷︷︸

≥0 if c0<1

),

where bi depend on d, c0, and γ. Thus, Q ≥ 0 if 0 ≤ c0 ≤ p(γ)/(p(γ)− p(0)), and choosing
κγ = c0/γ

2 gives the conclusion.
Elimination of λ from the above integrand is certainly not the only strategy to simplify

the problem in such a way that it can be analytically solved. However, there is strong
evidence from numerical studies of the multivariate polynomial that this strategy leads to
the optimal values for c0, at least for γ close to one.

We notice that the inequality (14) for γ = 1 has been employed in the existence proof
of the multi-dimensional DLSS equation. Indeed, one of the main steps of the existence
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proof is the derivation of a priori estimates. For instance, ony may employ log u as a test
function in the weak formulation of

ut +
∑

i,j

∂2
ij(u∂2

ij log u) = 0.

Then

∂t

∫

Td

u(log u − 1)dx =

∫

Td

ut log udx = −
∑

i,j

∫

Td

u(∂2
ij log u)2dx,

and (14) shows that

∂t

∫

Td

u(log u − 1)dx + 4κ1

∫

Td

(∆u)2dx ≤ 0.

This provides essentially an H2 estimate for the solution u(·, t) and it is the key of the
existence proof. Again, we refer to Jüngel/Matthes 2007 for details.

5. Open problems

By the presented algorithmic entropy construction method, many properties for nonlin-
ear PDEs can be derived. However, the method is still under development, and there are
many open problems. We mention only a few:

• The results are all valid for positive smooth solutions to the corresponding PDEs. In
order to make the computations rigorous, it is necessary to find an appropriate ap-
proximation of the PDE which satisfies two constraints: It should allow for smooth
positive solutions, and the approximation should not destroy the entropy structure
of the equation. For the thin-film equation, the term uβ has been regularized (see
Bernis/Friedman 1990). Concerning the DLSS equation, we have employed the
exponential variable u = ey (see Jüngel/Pinnau 2000, Jüngel/Matthes 2007). It
would be nice to have a general strategy for the approximation of a nonlinear PDE.

• We can allow for compound equations which are homogeneous in u, like the “desta-
bilized” thin-film equation

ut + (uβuxxx + quβux)x = 0 in T.

If q < 0, both terms in the brackets have the right sign (in the sense of well-
posedness) and entropy estimates are straight forward (just add the admissible
entropies for the thin-film and the porous-medium equation). However, if q > 0,
the sign of the second-order term has a destabilizing effect. It is still possible to
apply our method, and we found entropy estimates as long as q < (2π/L)2 (L being
the length of the 1D torus). We do not know how to handle an equation of the type

ut + (uβuxxx + quγux)x = 0 in T,

if q > 0 and β 6= γ since our method is based on homogenity in u.
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• Our method applies so far only to equations but not to systems. For instance, it is
well-known that there are entropies for cross-diffusion systems like

(b(u))t − div (A(u)∇u) = f(u),

where u(x, t) ∈ R
n, b : R

n → R
n is a monotone function (in the sense of operator

theory), and A(u) is a symmetric positive definite R
n × R

n matrix. There are
many applications in which such systems appears (see, for instance, Degond/Gé-
nieys/Jüngel 1997). Another example are the Euler equations of gas dynamics
(although they are hyperbolic conservation laws and not parabolic equations). Is it
possible to find new entropies for these systems of PDEs by applying the entropy
construction method?

• The quantifier elimination algorithms are valid for all polynomials. Actually, we
are only interested in a subclass of polynomials,

P (ξ) =
∑

p1,...,pk

cp1,...,pk
ξp1

1 · · · ξpk

k

satisfying 1 · p1 + · · ·+ k · pk = k. Is it possible to speed up the existing algorithms
for such polynomials?
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