Skript

Modellierung mit partiellen Differentialgleichungen

Anton Arnold

TU Wien, WS 2011/12

TU Wien, WS 2013/14

TU Wien, WS 2015/16

TU Wien, WS 2017/18

TU Wien, WS 2019/20

TU Wien, WS 2021/22

TU Wien, WS 2023/24

25. Januar 2024

Inhaltsverzeichnis

1	Ver	kehrsflussmodelle – hyperbolische Erhaltungsgesetze	5
	1.1	Modellierung	
	1.2	skalare hyperbolische Erhaltungsgleichungen	S
	1.3	Ampelproblem	19
	1.4	Numerische Methoden	21
		1.4.1 Lineare Advektionsgleichung	21
		1.4.2 nicht-lineare Erhaltungsgesetze	29
2	Strö	omungsmechanik	33
	2.1	Euler Gleichungen	33
	2.2	Navier-Stokes Gleichungen	38
		2.2.1 Helmholtz-Hodge Zerlegung	46
		2.2.2 Rotation	48
	2.3	Wirbelmodelle	50
		2.3.1 Vektorfelder aus Quellen und Wirbeln	50
		2.3.2 Die Wirbelgleichung	52
		2.3.3 Bewegung von Punktwirbeln im \mathbb{R}^2	57
	2.4	Grenzschichten für Navier-Stokes Gleichungen	65
3	Elas	stizitätstheorie	71
	3.1	Notation	71
	3.2	Hyperelastische Materialien	72
	3.3	Variations formulierung	73
	3.4	Linearisierte Elastizitätstheorie	75
4	Diff	usionsfilter in der Bildverarbeitung	79
	4.1	lineare Diffusionsfilter	79
	4.2	nichtlineare Diffusionsfilter	81
		4.2.1 das Perona-Malik Modell	82
		4.2.2 regularisiertes Perona-Malik Modell	83
		4.2.3 anisotrope Diffusionsfilter	87
	4.3	Kantenschärfung, Schock Filter	89
5	Mus	sterbildung/Reaktions-Diffusionsgleichungen	93
	5.1	Reaktions-Diffusionsgleichungen	93
	5.2	Turing Mechanismus	
	5.3	Musterbildung in einem Beispiel-System	99

Inhaltsverzeichnis

	5.4 Tierfellmuster	
6	Probleme mit freiem Rand / Dünnfilm Gleichung6.1 Herleitung aus Navier-Stokes Gleichung6.2 Randbedingungen6.3 Positivität der Lösung	115
7	kollektives Verhalten - kinetische Gleichungen7.1 mikroskopische ODE-Modelle	
8	nichtlineare Wellen – Solitonen 8.1 Anwendungen von KdV 8.2 Schrödinger Streuprobleme für KdV 8.3 inverses Streuproblem	131
Α	Literaturverzeichnis	143
В	Folien	145

1 Verkehrsflussmodelle – hyperbolische Erhaltungsgesetze

Ziel der Vorlesung:

Einführung in mehrere anwendungsbezogene Differentialgleichungsmodelle: Diskussion der Modellierung, von analytischen und numerischen Aspekten.

1.1 Modellierung

<u>Prototyp-Frage:</u> Wie lange sollten Ampelphasen sein, damit sich während der Grünphase der Stau vor der Ampel auflöst?

vereinfachende Modellannahmen:

- einspurige Straße ohne Überholmöglichkeit
- keine Zu-/Abfahrten (bzw. Abzweigungen) vor der Straße
- stark befahrene Straße: keine Beschreibung der individuellen Autos, sondern nur Fahrzeugdichte $\rho(x,t)$ (z.B. Fahrzeug pro km) am Ort $x \in \mathbb{R}$ zur Zeit t > 0.

Anzahl der Fahrzeuge im Intervall (a, b) zur Zeit t:

$$\int_{a}^{b} \rho(x,t) \mathrm{d}x$$

- v(x,t) sei Geschwindigkeit der Autos an (x,t)
 - \Rightarrow Autos, die x zur Zeit t passieren: $\rho(x,t)v(x,t)=J(x,t)$... Flussdichte.

ges.: Bewegungsgleichung für Dichte ρ

Bilanzgleichung $\forall (a, b)$:

$$\frac{\mathrm{d}}{\mathrm{d}t} \underbrace{\int\limits_{a}^{b} \rho(x,t) \mathrm{d}x}_{\text{Fahrzeuge in }(a,b)} = \underbrace{\rho(a,t)v(a,t)}_{\text{Zufluss}} - \underbrace{\rho(b,t)v(b,t)}_{\text{Abfluss}} = - \int\limits_{a}^{b} \frac{\partial (\rho v)}{\partial x}(x,t) \mathrm{d}x$$

⇒ Kontinuitätsgleichung

$$\rho_t + (\rho v)_x = 0, \quad x \in \mathbb{R}, t > 0 \tag{1.1}$$

mit Anfangsbedingung (AB): $\rho(x,0) = \rho_0(x), x \in \mathbb{R}$.

ges.: (konstituive) Gleichung für v; beinhaltet Modellierungsinformation über Verkehrsdynamik und Fahrverhalten.

Annahme $v = v(\rho)$ mit

- $v(\rho)$ monoton fallend (bei dichterem Verkehr fahren Autos langsamer)
- $v(\rho_{\text{max}}) = 0$ (ab einer max. Fahrzeugdichte bzw. unter einem Auto-Mindestabstand steht die Autokolonne)
- evtl.: $v(0) = v_{\text{max}}$ (auf leerer Straße wird Maximalgeschwindigkeit eingehalten)
- 1) Lighthill-Whitham-Richards (LWR) Modell (1955; einfachstes Modell, $v(\rho)$ linear):

$$v(\rho) = v_{\text{max}} \left(1 - \frac{\rho}{\rho_{\text{max}}} \right), 0 \le \rho \le \rho_{\text{max}}$$

$$\Rightarrow \text{ aus (1.1) wird: } \rho_t + \left[v_{\text{max}} \rho \left(1 - \frac{\rho}{\rho_{\text{max}}} \right) \right]_x = 0, x \in \mathbb{R}, t > 0$$

$$(1.2)$$

2) Greenberg Modell:

$$v(\rho) = v_{\text{ref}} \ln \frac{\rho_{\text{max}}}{\rho}, 0 < \rho \le \rho_{\text{max}}$$

$$\Rightarrow \rho_t - v_{\text{ref}} \left(\rho \ln \frac{\rho}{\rho_{\text{max}}}\right)_r = 0$$
(1.3)

Kritik am Greenberg Modell: Für Dichte $\to 0$ wird die Geschwindigkeit $v(\rho)$ unbeschränkt – ist unrealistisch.

(1.2), (1.3) sind Erhaltungsgesetze, da die Auto-Gesamtzahl erhalten bleibt. Formale Integration von (1.1) gibt:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}} \rho(x,t) \mathrm{d}x = -\int_{\mathbb{R}} \frac{\partial}{\partial x} [\rho(x,t)v(\rho(x,t))] \mathrm{d}x = 0.$$

(1.2), (1.3) sind hyperbolische Gleichungen:

Definition 1.1. Das Gleichungssystem

$$u_t + \partial_x f(u) = 0, \quad x \in \mathbb{R}, t > 0$$

$$u(x,0) = u_0(x), \quad x \in \mathbb{R}$$
(1.4)

 $mit\ f: \mathbb{R}^m \to \mathbb{R}^m\ hei \beta t$ hyperbolisch, $wenn\ f'(u) \in \mathbb{R}^{m \times m}\ diagonalisier bar\ ist\ und\ nur$ reelle Eigenwerte hat $(\forall u \in \mathbb{R}^m)$.

Eine Funktion $u: \mathbb{R} \times [0, \infty) \to \mathbb{R}^m$ heißt klassische Lösung, wenn $u \in C^1(\mathbb{R} \times (0, \infty)) \cap C^0(\mathbb{R} \times [0, \infty))$ und (1.4) punktweise erfüllt.

Vereinfachung des LWR-Modells:

Transformation von (1.2) auf dimensionslose Form:

L und τ seien typische Längen- und Zeitskalen, sodass $L/\tau = v_{\rm max}$.

skalierte Variable:

$$x_s := \frac{x}{L} \quad , \quad t_s := \frac{t}{\tau} \quad , \quad u := 1 - \frac{2\rho}{\rho_{\text{max}}}$$

$$\Rightarrow \partial_t \rho = \frac{1}{\tau} \partial_{t_s} \left[\frac{\rho_{\text{max}}}{2} (1 - u) \right] = -\frac{\rho_{\text{max}}}{2\tau} \partial_{t_s} u,$$

$$\partial_x \left[v_{\text{max}} \rho \left(1 - \frac{\rho}{\rho_{\text{max}}} \right) \right] = \frac{1}{L} \partial_{x_s} \left[v_{\text{max}} \underbrace{\frac{\rho_{\text{max}}}{2} (1 - u)}_{=\rho} \underbrace{\frac{1}{2} (1 + u)}_{=\rho} \right]$$

 $=-\frac{\rho_{\max}}{2\tau}\partial_{x_s}\left(\frac{u^2}{2}\right)$

$$\Rightarrow u_t + \left(\frac{u^2}{2}\right)_x = 0, \qquad x \in \mathbb{R}, t > 0$$

$$u(x, 0) = u_0(x), \quad x \in \mathbb{R},$$

$$(1.5)$$

mit $u_0 = 1 - 2\rho_0/\rho_{\text{max}}$, Index "s" weggelassen.

(1.5) heißt nicht-viskose Burgers Gleichung.

$$\begin{array}{lll} \rho = 0 & \Leftrightarrow & u = 1; v = v_{\max} \dots \text{ leere Straße} \\ \rho = \rho_{\max} & \Leftrightarrow & u = -1; v = 0 \dots \text{Stau} \end{array}$$

Beispiel 1.2.

$$u_0(x) = \begin{cases} 1, & x < 0 \\ 1 - x, & 0 \le x < 1 \\ 0, & x \ge 1 \end{cases}$$

Charakteristikenmethode für $u_t + uu_x = 0$:

$$\frac{\mathrm{d}t}{\mathrm{d}s} = 1, \quad \frac{\mathrm{d}x}{\mathrm{d}s} = u, \quad \frac{\mathrm{d}u}{\mathrm{d}s} = 0,$$

mit
$$t(0) = 0, x(0) = x_0, u(0) = u_0(x_0) \Rightarrow s = t.$$

 $\Rightarrow u(t) = u_0(x_0)$ (also const.) entlang der Charakteristik $x(t) = u_0(x_0)t + x_0, t \ge 0$
 \Rightarrow Lösung für $x \in \mathbb{R}, t < 1$:

$$u(x,t) = \begin{cases} 1, & x < t < 1\\ \frac{1-x}{1-t}, & t \le x < 1\\ 0, & x \ge 1 > t \end{cases}$$
 (1.6)

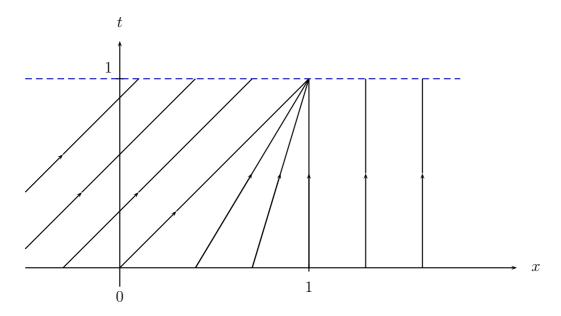


Abbildung 1.1: Charakteristiken: keine Trajektorien (= Bewegungskurven) der Fahrzeuge, sondern Ausbreitung der Dichtewerte $\rho(x,t)$

Lösung wird bei t=1 an x=1 unstetig (es entsteht ein Schock). Das passiert auch für eine (leicht) geglättete AB mit $u_0 \in C^1(\mathbb{R})$: Eine klassische Lösung existiert dann nur für eine endliche Zeit.

Fragen:

- \exists Lösung für $t \ge 1$?
- Welcher Lösungsbegriff?

<u>Referenzen</u>: [Jü] §1,3; [LV] §1-3.

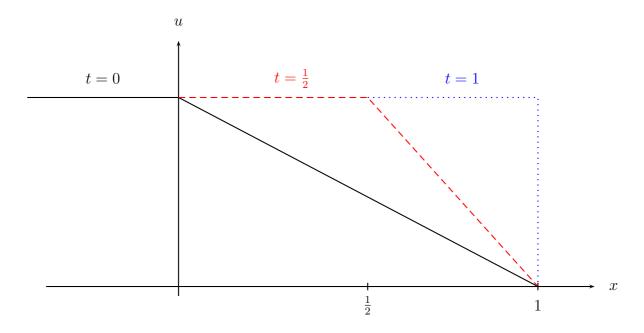


Abbildung 1.2: Lösung (1.6)

1.2 skalare hyperbolische Erhaltungsgleichungen

betrachte das hyp. Erhaltungsgesetz

$$u_t + f(u)_x = 0 , x \in \mathbb{R}, t > 0$$

 $u(x,0) = u_0(x) , x \in \mathbb{R}$

$$(1.7)$$

mit $f: \mathbb{R} \to \mathbb{R}$.

generelle Voraussetzung: $f''(u) > 0 \quad \forall u \in \mathbb{R}$ ("echte Nichtlinearität")

Motivation der schwachen Lösung: Multipliziere (1.7) mit

$$\Phi \in C^1_0(\mathbb{R}^2) := \{ \Phi \in C^1(\mathbb{R}^2) \mid \Phi \text{ hat kompakten Träger} \},$$

integriere über $\mathbb{R}_x \times \mathbb{R}_t^+$:

$$0 = \int_{0}^{\infty} \int_{\mathbb{R}} (u_t + f(u)_x) \Phi dx dt$$
$$= -\int_{0}^{\infty} \int_{\mathbb{R}} (u \Phi_t + f(u) \Phi_x) dx dt - \int_{\mathbb{R}} u(x, 0) \Phi(x, 0) dx$$

Für die letzten beiden Integrale nur "u integrierbar" nötig.

Definition 1.3. Sei $L^1_{loc} \ni u : \mathbb{R} \times \mathbb{R}^+ \to \mathbb{R}$ mit $f(u) \in L^1_{loc}$. u heißt schwache Lösung von (1.7), wenn

$$\int_{0}^{\infty} \int_{\mathbb{R}} (u\Phi_t + f(u)\Phi_x) dx dt = -\int_{\mathbb{R}} u_0(x)\Phi(x,0) dx \quad \forall \Phi \in C_0^1(\mathbb{R}^2).$$
 (1.8)

Jede klassische Lösung ist eine schwache Lösung, aber nicht notwendigerweise umgekehrt. andere schwache Formulierung:

Integriere (1.7) über $(a, b) \times (s, t)$ für beliebige $a, b \in \mathbb{R}; s, t > 0$:

$$\int_{a}^{b} u(x,t)dx - \int_{a}^{b} u(x,s)dx = -\int_{s}^{t} f(u(b,\tau))d\tau + \int_{s}^{t} f(u(a,\tau))d\tau.$$

$$(1.9)$$

Man kann zeigen: Jede schwache Lösung (lt. Def. 1.3) erfüllt auch (1.9).

Betrachten nun Erhaltungsgesetze mit unstetigen Anfangsdaten; entsteht z.B. in Bsp. 1.2 zu t=1. Wegen der Translationsinvarianz von (1.7) in x und t betrachten wir diese Anfangsunstetigkeit nur an (0,0).

Definition 1.4. Gleichung (1.7) mit AB

$$u_0(x) = \begin{cases} u_l & , & x < 0 \\ u_r & , & x \ge 0 \end{cases}$$
 (1.10)

 $mit u_l, u_r \in \mathbb{R} \ hei \beta t \ Riemann \ Problem.$

Sei u(x,t) Lösung von (1.7), (1.10).

 $\Rightarrow u(\alpha x, \alpha t)$ ist auch Lösung $\forall \alpha > 0$.

Das ist ein Indiz, dass u nur von $\xi = x/t$ abhängt, also $u = \tilde{u}(\xi)$.

Berechnung von $\tilde{u}(\xi)$:

$$\Rightarrow 0 = u_t + f(u)_x = -\frac{x}{t^2} \tilde{u}'(\xi) + f'(\tilde{u}(\xi)) \tilde{u}'(\xi) \frac{1}{t}$$
$$= \frac{1}{t} \tilde{u}'(\xi) [f'(\tilde{u}(\xi)) - \xi] \qquad \forall \xi$$

 \Rightarrow 3 Möglichkeiten:

- $\tilde{u}'(\xi) = 0 \Rightarrow \tilde{u}(\xi) = \text{const.}$
- u ist unstetig entlang $\xi = x/t$, also $\exists \tilde{u}'(\xi)$.

• $f'(\tilde{u}(\xi)) = \xi$ $\Rightarrow \tilde{u}(\xi) = (f')^{-1}(\xi); \exists \text{ Inverse von } f' \text{ (auf } f'(\mathbb{R})), \text{ da } f'' > 0 \text{ auf } \mathbb{R}$ (lt VS).

Wir betrachten nun 3 Fälle von ABen, die diesen 3 Möglichkeiten entsprechen:

Fall 1,
$$u_l = u_r$$
: $u(x,t) = u_r = u_l \quad \forall x \in \mathbb{R}, t \ge 0$.

Fall 2, $u_l > u_r$:

Vgl. mit Bsp. 1.2 ab t=1: Fahrzeugdichte für x>0 größer als für x<0. \Rightarrow größere (positive) Geschwindigkeit für x<0 als für x>0.

 \Rightarrow erwarten eine Schock-Kurve, d.h. Unstetigkeitslinie der Lösung an $x = \psi(t)$

Lemma 1.5. Die Funktion

$$u(x,t) := \begin{cases} u_l & , & x < st \\ u_r & , & x \ge st \end{cases}$$
 (1.11)

ist genau dann eine schwache Lösung von (1.7), (1.10), wenn die Schock-Geschwindigkeit s die Rankine-Hugoniot (RH) Bedingung erfüllt:

$$s = \psi'(t) = \frac{f(u_l) - f(u_r)}{u_l - u_r}. (1.12)$$

(Es ist sogar die eindeutige "Entropielösung", siehe Satz 1.13.)

Beweis. Sei $\Phi \in C_0^1(\mathbb{R}^2)$. u = const, außer auf x = st. \Rightarrow

$$\int_{0}^{\infty} \int_{\mathbb{R}} u \Phi_{t} dx dt = \int_{0}^{\infty} \left(\int_{-\infty}^{st} u \Phi_{t} dx + \int_{st}^{\infty} u \Phi_{t} dx \right) dt$$

$$\text{```} u = 0'' \int_{0}^{\infty} \left(\partial_{t} \int_{-\infty}^{st} u \Phi dx - su(st - 0, t) \Phi(st, t) \right)$$

$$+ \partial_{t} \int_{st}^{\infty} u \Phi dx + su(st + 0, t) \Phi(st, t) dt$$

$$= - \int_{\mathbb{R}} u(x, 0) \Phi(x, 0) dx - s(u_{l} - u_{r}) \int_{0}^{\infty} \Phi(st, t) dt.$$

$$\int_{0}^{\infty} \int_{\mathbb{R}} f(u) \Phi_{x} dx dt \stackrel{\text{splitten, part. Int.}}{=} \int_{0}^{\infty} \left(- \int_{-\infty}^{st} f(u)_{x} \Phi dx + f(u(st - 0, t)) \Phi(st, t) \right) dt$$

$$- \int_{st}^{\infty} f(u)_{x} \Phi dx - f(u(st + 0, t)) \Phi(st, t) dt$$

$$\stackrel{\text{"}f(u)_{x}=0"}{=} (f(u_{l}) - f(u_{r})) \int_{0}^{\infty} \Phi(st, t) dt.$$

Also folgt

$$\int_{0}^{\infty} \int_{\mathbb{R}} (u\Phi_t + f(u)\Phi_x) dx dt = -\int_{\mathbb{R}} u_0(x)\Phi(x,0) dx,$$

genau wenn (1.12) gilt.

Bemerkung 1.6. Schwache Lösungen von (1.7), (1.10) sind *nicht* eindeutig! Zusätzlich zu (1.11) gibt es weitere, die z.B. aus 3 Schocks bestehen (siehe Übung; vlg. auch Satz 1.13).

Verallgemeinerte Rankine-Hugoniot Bedingung für u nicht stückweise konstant und s nicht konstant:

$$s(t) = \psi'(t) = \frac{f(u_l(t)) - f(u_r(t))}{u_l(t) - u_r(t)}$$
(1.13)

$$\operatorname{mit} u_l(t) = \lim_{x \nearrow \psi(t)} u(x,t), \ u_r(t) = \lim_{x \searrow \psi(t)} u(x,t).$$

Beispiel 1.7. Sei $f(u) = u^2/2, u_l = 0, u_r = -1.$

$$\Rightarrow s = \frac{1}{2} \frac{u_l^2 - u_r^2}{u_l - u_r} = -\frac{1}{2}$$

Charakteristiken siehe Abb. 1.3

Fall 3, $u_l < u_r$: (1.11) ist auch hier *eine* schwache Lösung:

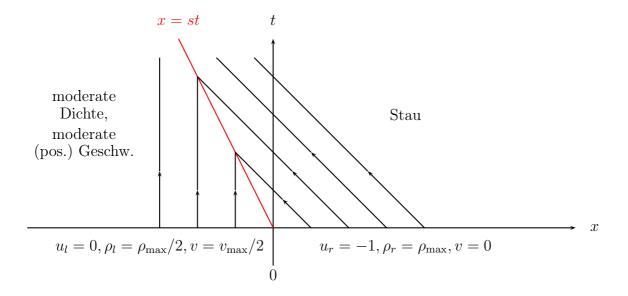
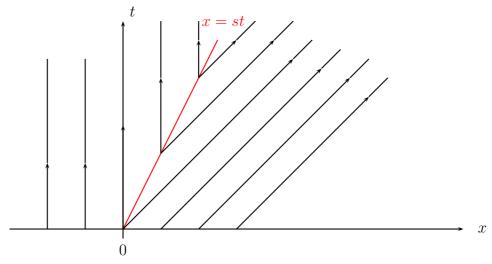


Abbildung 1.3: linkes Stauende an x=st. Charakteristiken sind keine Fahrzeugtrajektorien.

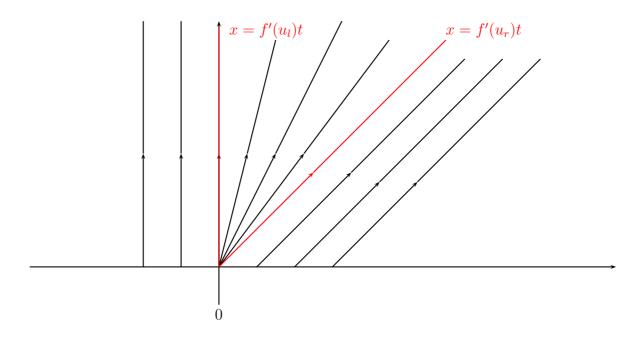


Charakteristiken von (1.7) für $f(u) = u^2/2, u_l = 0, u_r = 1, s = \frac{1}{2}$.

Lösung ist "instabil", da Charakteristiken in der Schock-Kurve starten. Aus dem Schock wird "neu generierte" Information transportiert, die also nicht in u_0 enthalten ist.

Weitere schwache Lösung von (1.7), (1.10):

$$u_2(x,t) := \begin{cases} u_l &, & x < f'(u_l)t \\ (f')^{-1} \left(\frac{x}{t}\right) &, & f'(u_l)t \le x \le f'(u_r)t \\ u_r &, & x > f'(u_r)t \end{cases}$$
(1.14)



Charakteristiken von Verdünnungswelle (engl: rarefaction wave) u_2 für $f(u) = u^2/2, u_l = 0, u_r = 1, (f')^{-1}(\xi) = \xi$: Also $u_2(x,t) = \frac{x}{t}$ für $0 \le x \le t$.

∃ sogar unendlich viele schwache Lösungen!

Lösungsbegriff so schwach, dass Eindeutigkeit verloren ging.

Frage: Welche ist die "richtige" bzw. physikalisch relevante Lösung?

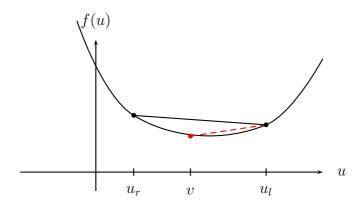
2 Auswahlmöglichkeiten: erster Zugang über eine Entropiebedingung:

Definition 1.8. Eine schwache Lösung $u : \mathbb{R} \times \mathbb{R}^+ \to \mathbb{R}$ von (1.7), (1.10) erfüllt die Entropiebedingung von Oleinik, wenn entlang jeder Unstetigkeitskurve $x = \psi(t)$ gilt:

$$\frac{f(u_l(t)) - f(v)}{u_l(t) - v} \ge \psi'(t) \ge \frac{f(u_r(t)) - f(v)}{u_r(t) - v} \tag{1.15}$$

 $\forall t \in \mathbb{R}^+, \forall v \ zwischen \ u_l(t) \ und \ u_r(t).$

Bem: Lösungen ohne Unstetigkeit erfüllen (1.15) trivialerweise. (1.15) wird auch für nichtkonvexe f verwendet.



Aus RH-Bedingung (1.13) folgt

$$\sigma(v) := \underbrace{\frac{f(u_l) - f(v)}{u_l - v}}_{\text{\nearrow in v, da $f'' > 0$}} \overset{(1.15)}{\geq} \psi' = s \stackrel{\text{RH}}{=} \frac{f(u_l) - f(u_r)}{u_l - u_r} = \sigma(u_r) \qquad \forall v \text{ zwischen } u_l \text{ und } u_r.$$

Wegen der Monotonie von $\sigma(v)$ ist σ an $v = u_r$ maximal falls $u_l < u_r$, und minimal falls $u_l > u_r$.

$$\Rightarrow u_l \ge u_r \text{ (für } f'' > 0)$$

Schock-Lösung (1.11) erfüllt im Fall 3 ($u_l < u_r$) die Entropie-Bediungung also *nicht*. Für u_2 aus (1.14) ist Entropie-Bedingung trivial, da u_2 stetig.

Mit $v \to u_{l,r}$ in (1.15): Ausbreitungsgeschwindigkeit der Charakteristiken erfüllt die Entropiebedingung von Lax:

$$f'(u_l) \ge \frac{f(u_l) - f(u_r)}{u_l - u_r} \ge f'(u_r), \text{ da } f'' > 0.$$

Interpretation: Charakteristiken müssen von rechts und links in den Schock laufen und sie brechen dort ab. D.h. "mathematische Entropie" bzw. "Information" bzw. Wertebereich von u(.,t) nimmt im Laufe der Zeit ab (vgl. 2. Hauptsatz der Thermodynamik; physikalische Entropie [= - mathematische Entropie] nimmt dort zu).

Zweiter Zugang mit Entropiefunktion / Viskositätslösung:

AN: (1.7) ist nur Idealisierung der Diffusionsgleichung

$$u_t + f(u)_x = \varepsilon u_{xx}, \quad x \in \mathbb{R}, t > 0 \tag{1.16}$$

mit (kleinem) $\varepsilon > 0$. (1.16) hat eindeutige glatte Lösung u^{ε} .

Konvention: Die Grenzfunktion $u:=\lim_{\varepsilon\to 0}u^\varepsilon$ sei die physikalisch relevante Lösung, $Viskosit \ddot{a}tsl\ddot{o}sung$.

Ziel: Finde eine Bedingung (nur) an die schwache Lösung u, dass sie diesen Limes darstellt.

Definition 1.9. Das Funktionenpaar $\eta \in C^2(\mathbb{R})$ und $\psi \in C^1(\mathbb{R})$ heißen Entropie und (zugehöriger) Entropiefluss, wenn $\eta'' > 0$, und für alle klassischen Lösungen u von (1.7)

$$\eta(u)_t + \psi(u)_x = 0, \quad x \in \mathbb{R}, t > 0 \tag{1.17}$$

gilt. Bem: Es folgt $\psi' = f'\eta'$.

Annahmen zum Limes verschwindender Viskosität ($\forall T > 0$):

$$u^{\varepsilon} \xrightarrow{\varepsilon \to 0} u$$
 punktweise f.ü. in $\mathbb{R} \times (0,T)$,
$$u^{\varepsilon} \xrightarrow{\varepsilon \to 0} u \text{ in } L^{1}_{loc}(\mathbb{R} \times (0,T)),$$

$$\|u^{\varepsilon}\|_{L^{\infty}(\mathbb{R} \times (0,T))} \leq \text{const.} \quad \forall 0 < \varepsilon < 1,$$

$$\|\eta'(u^{\varepsilon})u^{\varepsilon}_{x}\|_{L^{1}(\mathbb{R} \times (0,T))} \leq \text{const.} \quad \forall 0 < \varepsilon < 1.$$

Dann gilt (ohne Bew.): u löst (1.7).

Modifikation der Entropiegleichung (1.17) für unstetiges u:

Multipliziere (1.16) mit $\eta'(u^{\varepsilon})$; wähle ψ , sodass $\psi' = f'\eta'$:

$$\eta(u^{\varepsilon})_t + \psi(u^{\varepsilon})_x = \varepsilon \eta'(u^{\varepsilon})u_{xx}^{\varepsilon} = \varepsilon (\eta'(u^{\varepsilon})u_x^{\varepsilon})_x - \varepsilon \eta''(u^{\varepsilon})(u_x^{\varepsilon})^2;$$

multipliziere mit $\Phi \in C_0^1(\mathbb{R}^2), \Phi \geq 0$, integriere über $\mathbb{R} \times (0, \infty)$:

$$\int_{0}^{\infty} \int_{\mathbb{R}} \left[\eta(u^{\varepsilon})_{t} + \psi(u^{\varepsilon})_{x} \right] \Phi dx dt
= -\varepsilon \int_{0}^{\infty} \int_{\mathbb{R}} \eta'(u^{\varepsilon}) u_{x}^{\varepsilon} \Phi_{x} dx dt - \varepsilon \int_{0}^{\infty} \int_{\mathbb{R}} \underbrace{\eta''(u^{\varepsilon})}_{>0} \underbrace{(u_{x}^{\varepsilon})^{2} \Phi}_{\geq 0} dx dt
\leq \varepsilon \|\eta'(u^{\varepsilon}) u_{x}^{\varepsilon}\|_{L^{1}(\mathbb{R} \times (0,T))} \|\Phi_{x}\|_{L^{\infty}(\mathbb{R} \times (0,T))} \xrightarrow{\varepsilon \to 0} 0 \quad \text{mit } T = T(\Phi).$$
(1.18)

Da $\Phi \geq 0$ beliebig ist, gilt für den Limes $u := \lim u^{\varepsilon}$:

$$\Rightarrow \eta(u)_t + \psi(u)_x \le 0$$
 (für glatte Lösungen). (1.19)

Für schwache Lösungen gilt (aus Ungleichung (1.18) nach partieller Integration in x, t):

$$\int_{0}^{\infty} \int_{\mathbb{R}} \left[\eta(u) \Phi_t + \psi(u) \Phi_x \right] dx dt \ge - \int_{\mathbb{R}} \eta(u_0(x)) \Phi(x, 0) dx \quad \forall \Phi \in C_0^1(\mathbb{R}^2), \ \Phi \ge 0.$$
 (1.20)

Bem: Für den (direkten) Limes $\varepsilon \to 0$ in der linken Seite von (1.18) sind unsere Annahmen nicht stark genug um (1.19) zu erhalten. Man sollte ihn daher im ε -Analogon von (1.20) durchführen. Nach dem Rückgängigmachen der partiellen Integrationen kann man (1.19) schließen.

Definition 1.10. Sei $u : \mathbb{R} \times \mathbb{R}^+ \to \mathbb{R}$ eine schwache Lösung von (1.7). u heißt Entropielösung, wenn \forall strikt konvexen Entropien η und die zugehörigen Entropieflüsse ψ die Ungleichung (1.20) gilt.

<u>Bem:</u> 1) Für Schockwellen ist die Entropieungleichung (1.20) äquivalent zur Entropiebedingung von Oleinik (1.15) (siehe Th. II.1.1 in [LF]).

- 2) Laut [DeLellis-Otto-Westdieckenberg, 2003] gilt: Für diese Äquivalenz reicht in Definition 1.10 ein strikt konvexes η .
- 3) Verdünnungswelle u_2 ist Entropielösung, erfüllt sogar Entropiegleichung (1.17) f.ü. (da u_2 stetig, \exists schwache Ableitung) bzw. (1.20) mit "=".
- 4) Entropielösungen sind i.A. nicht zeitreversibel: Aus einem Schock würde eine Verdünnungswelle werden (und umgekehrt).

Beispiel 1.11. Sei
$$f(u) = \frac{u^2}{2}, \eta(u) = u^2 \Rightarrow \psi(u) = \frac{2}{3}u^3$$
 (da $\psi' = f'\eta'$). Sei $\Phi \in C_0^1(\mathbb{R}^2), \Phi \geq 0$.

Es gilt: Schockwelle (1.11) ist für $u_l < u_r$ keine Entropielösung, da (mit $s = \frac{u_l + u_r}{2}$) für (1.11) gilt:

$$\int_{0}^{\infty} \int_{\mathbb{R}} \left[\underbrace{u^{2}}_{=\eta(u)} \Phi_{t} + \underbrace{\frac{2}{3}u^{3}}_{=\psi(u)} \Phi_{x} \right] dxdt$$

$$u_{t} \stackrel{=}{=} 0^{\circ} \int_{0}^{\infty} \left[\partial_{t} \int_{-\infty}^{st} u^{2} \Phi dx - su_{t}^{2} \Phi(st, t) + \partial_{t} \int_{st}^{\infty} u^{2} \Phi dx + su_{r}^{2} \Phi(st, t) \right]$$

$$+ \frac{2}{3}u_{t}^{3} \Phi(st, t) - \frac{2}{3}u_{r}^{3} \Phi(st, t) \right] dt$$

$$= -\int_{\mathbb{R}} u_{0}(x)^{2} \Phi(x, 0) dx - \underbrace{u_{t} + u_{r}}_{2} (u_{t}^{2} - u_{r}^{2}) \int_{0}^{\infty} \Phi(st, t) dt$$

$$+ \frac{2}{3}(u_{t}^{3} - u_{r}^{3}) \int_{0}^{\infty} \Phi(st, t) dt$$

$$= -\int_{\mathbb{R}} \underbrace{u_{0}(x)^{2}}_{=\eta(u_{0})} \Phi(x, 0) dx + \frac{1}{6}(u_{t} - u_{r})^{3} \int_{0}^{\infty} \underbrace{\Phi(st, t)}_{\geq 0} dt$$

$$\geq -\int_{\mathbb{R}} \eta(u_{0}(x)) \Phi(x, 0) dx \quad \Leftrightarrow \quad u_{t} \geq u_{r}.$$

Also: (1.11) erfüllt die Entropieungleichung (1.20) genau für $u_l \ge u_r$.

Ähnlich zum Beispiel folgt für $u_l < u_r$: Nur Verdünnungswelle u_2 ist Entropielösung.

Zusammenfassung:

Satz 1.12. Sei $f \in C^2(\mathbb{R})$ mit f'' > 0 in \mathbb{R} .

(1) Sei $u_l > u_r$:

$$\Rightarrow u(x,t) = \begin{cases} u_l & , & x < st \\ u_r & , & x > st \end{cases} \quad mit \quad s := \frac{f(u_l) - f(u_r)}{u_l - u_r}$$

ist eine schwache Entropielösung von (1.7).

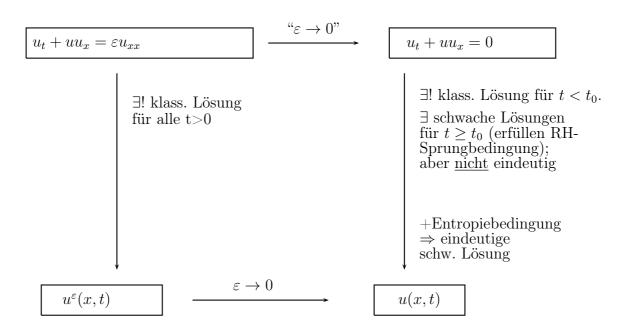
(2) Sei $u_l < u_r$: u_2 aus (1.14) ist schwache Entropielösung von (1.7).

Satz 1.13 (Kruzkov, 1970). Sei $f \in C^2(\mathbb{R}), u_0 \in L^1(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$.

 $\Rightarrow \exists ! \ schwache \ Entropiel\"{o}sung \ von \ (1.7).$

Beweis. schwierig, [LF], [Wa]; für f glm. konvex siehe auch §3.4.2 in [Ev].

Zusammenfassung für $f(u) = \frac{u^2}{2}$:



<u>Referenzen</u>: [Jü] §2, [LV] §3, [Ho] §5.

1.3 Ampelproblem

LWR-Modell für $u = 1 - \frac{2\rho}{\rho_{\text{max}}}$:

$$u_t + \left(\frac{u^2}{2}\right)_x = 0 \quad , \quad x \in \mathbb{R} \tag{1.21}$$

AB:

$$\rho_0(x) = \begin{cases} \overline{\rho} > 0 & , & x < 0 \\ 0 & , & x > 0 \end{cases}$$

$$\overline{u} := 1 - 2\overline{\rho}/\rho_{\max} \in (-1, 1)$$

Ampel an x = 0 schaltet zu t = 0 auf rot; Ampelphase habe die Dauer $\omega > 0$.

Frage: Baut sich der Stau in der Grünphase $[\omega, 2\omega)$ wieder ab?

Schritt 1: Rotphase $(0 \le t \le \omega)$

Löse (1.21) auf $(-\infty,0)$ mit Randbedingung (RB) $u(x=0,t)=-1\dots$ modelliert rote Ampel.

Lösung aus (1.11) für $0 < t \le \omega$:

$$u(x,t) = \begin{cases} \overline{u} & , & x < st \\ -1 & , & st < x < 0 ; \\ 1 & , & x > 0 \end{cases} \qquad s = \frac{u_l + u_r}{2} = \frac{\overline{u} - 1}{2} < 0$$

Schritt 2: Grünphase $(t \ge \omega)$

Löse (1.21) auf \mathbb{R} mit AB

$$u(x,\omega) = \begin{cases} \overline{u} & , & x < s\omega \\ -1 & , & s\omega < x < 0 \\ 1 & , & x > 0 \end{cases}$$

also 2 Riemannprobleme:

a) Da
$$\overline{u} > -1$$
: Schock $\psi(t) = st, s = \frac{\overline{u} - 1}{2}$

b) Da -1 < 1: Verdünnungswelle, ausgehend von $(0, \omega)$

 \Rightarrow Lösung für $t \ge \omega$:

$$u(x,t) = \begin{cases} \overline{u} &, & x < st \\ -1 &, & st < x < \omega - t \\ \frac{x}{t - \omega} &, & \omega - t \le x \le t - \omega \\ 1 &, & x > t - \omega \end{cases}$$

korrekt solange $st < \omega - t$, bzw. $t < t_1 := \frac{\omega}{s+1} = \frac{2\omega}{\overline{u}+1}$ (sowohl $t_1 \le 2\omega$ als auch $t_1 > 2\omega$ möglich).

Schritt 3: Grünphase $(t > t_1)$

Ab $t=t_1$ interagieren Schock und Verdünnungswelle.

Löse (1.21) auf \mathbb{R} mit AB $u(x, t_1)$ und verallgemeinerte RH-Bedingung für Schock ab (st_1, t_1) :

$$s(t) = \psi'(t) = \frac{1}{2} [u(\psi(t) + 0, t) + u(\psi(t) - 0, t)]$$

= $\frac{1}{2} \left(\frac{\psi(t)}{t - \omega} + \overline{u} \right), \quad t > t_1;$

also lineare GDGl. für $\psi(t)$ mit AB $\psi(t_1)=st_1=\omega\frac{\overline{u}-1}{\overline{u}+1}$

Lösung:

$$\psi(t) = \underbrace{\overline{u}(t-\omega)}_{\substack{\text{dominant} \\ \text{für } t \to \infty}} -\sqrt{t-\omega} \sqrt{\omega(1-\overline{u}^2)}, \quad t \ge t_1$$

2 Fälle:

a) $\underline{\overline{u} \leq 0}$ (große Verkehrsdichte): $\Rightarrow t_1 \geq 2\omega$, also nur für längere Grünphasen relevant. $\psi(t) \xrightarrow{t \to \infty} -\infty \Rightarrow \exists$ Schock $\forall t$.

Er bewegt sich nach $-\infty$ mit Geschwindigkeit $\psi'(t) \xrightarrow{t\to\infty} \overline{u}$;

also Reduktion der Schock-Geschwindigkeit von $s = \frac{\overline{u} - 1}{2} < 0$ auf \overline{u} mit $|\overline{u}| \le |s|$.

Da ja
$$\psi'(t) = \frac{u_l + u_r(t)}{2} = \frac{\overline{u} + u_r(t)}{2} \xrightarrow{t \to \infty} \overline{u}$$
: Sprunghöhe $u_l - u_r(t) \xrightarrow{t \to \infty} 0$

b) $\overline{u} > 0$ (geringe Verkehrsdichte): $\Rightarrow t_1 < 2\omega$

 $\psi(t) \stackrel{t \to \infty}{\longrightarrow} \infty$, also Schockkurve $\psi(t)$ geht in positive x-Richtung.

 $\psi(t_2) = 0$ hat eindeutige Lösung $t_2 = \omega/\overline{u}^2$:

Dann hat sich Rückstau bzw. Beeinträchtigung hinter der Ampel völlig aufgelöst.

Auflösung der Verkehrsbeeinträchtigung (hinter der Ampel) während Grünphase $[\omega, 2\omega)$ $\Leftrightarrow t_2 \leq 2\omega$, d.h. $\overline{u} \geq 1/\sqrt{2}$ bzw.

$$\overline{\rho} \le \rho_0 := \frac{\rho_{\text{max}}}{2} \left(1 - \frac{1}{\sqrt{2}} \right) \approx 0.146 \rho_{\text{max}},$$

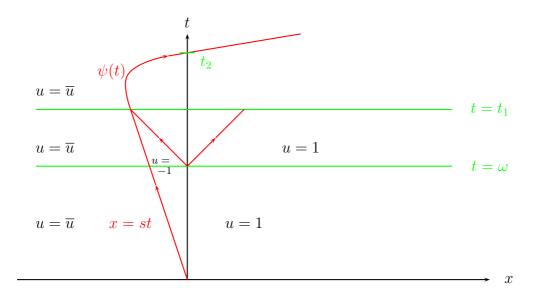


Abbildung 1.4: Schockkurve für $\overline{u} > 0$

also unabhängig von Länge der Grünphase!

Für $\overline{\rho} > \rho_0$: Rückstau bzw. Beeinträchtigung wächst mit t.

Zusammenfassung:

- $\overline{\rho} \ge \rho_{\text{max}}/2$: Schon eine Rotphase stört Verkehr auf Dauer; auch wenn danach immer grün ist.
- $(1-1/\sqrt{2})\rho_{\max} \overline{\rho} < \rho_{\max}/2$: Rückstau akkumuliert sich mit der Zeit; verschwindet aber bei "Dauergrün" wieder.
- $\overline{\rho} \leq (1 1/\sqrt{2})\rho_{\text{max}}/2$: Einfluss der Rotphase (hinter der Ampel) verschwindet vor Ende der Grünphase.
- \bullet aktuelle Forschung der Verkehrsmodellierung inkludiert: stochastische Modelle, Wechselwirkung mit (teil)automatischen Fahrzeugen

Referenzen: [Jü] §3

1.4 Numerische Methoden

1.4.1 Lineare Advektionsgleichung

• nur finite Differenzen Methoden, fast immer explizit

• zunächst für lineare Advektionsgleichung (mit a > 0):

$$u_t + au_x = 0, \quad x \in \mathbb{R}, t > 0$$

 $u(x, 0) = u_0(x), \quad x \in \mathbb{R}.$ (1.22)

Für $u_0 \in L^1_{loc}(\mathbb{R})$ ist die explizite schwache Lösung

$$u(x,t) = u_0(x-at)$$
. (1.23)

• hier nur gleichmäßiges Gitter (x_j, t_n) mit

$$x_j = jh \quad (j \in \mathbb{Z}) \quad , \quad t_n = nk \quad (n \in \mathbb{N}_0), \quad h, k > 0.$$

Approximation $u_j^n \sim u(x_j, t_n)$

Definition 1.14 (Differenzenquotienten).

$$\begin{array}{lll} \mathbf{D}_x^+ v_j = \frac{v_{j+1} - v_j}{h} & \dots & \text{Vorwärtsdifferenz} \\ \mathbf{D}_x^- v_j = \frac{v_j - v_{j-1}}{h} & \dots & \text{Rückwärtsdifferenz} \\ \mathbf{D}_x^0 v_j = \frac{v_{j+1} - v_{j-1}}{2h} & \dots & \text{zentrale Differenz} \\ \mathbf{D}_x^2 v_j = \frac{v_{j+1} - 2v_j + v_{j-1}}{h^2} & \dots & \text{zweite Differenz} \end{array}$$

Es gilt $D_x^0 v_j = \frac{1}{2} (D_x^+ + D_x^-) v_j$ und mit Taylorformel:

$$\mathrm{D}_x^+ v_j = v'(x_j) + O(h) \quad \text{(für } v \in C^2(\mathbb{R})\text{)}$$

$$D_x^0 v_j = v'(x_j) + O(h^2)$$
 (für $v \in C^3(\mathbb{R})$).

Ersetzen der Ableitungen in (1.22) durch entsprechende Differenzenquotienten liefert finite Differenzen Schemata.

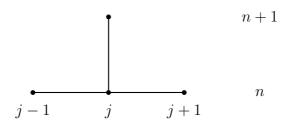
1. Idee: zentrales Schema:

$$\frac{u_j^{n+1} - u_j^n}{k} = -a \frac{u_{j+1}^n - u_{j-1}^n}{2h}, \quad n \ge 0, j \in \mathbb{Z};$$

bzw.

$$u_j^{n+1} = u_j^n - \frac{ak}{2h}(u_{j+1}^n - u_{j-1}^n).$$

 \rightarrow explizites Schema mit Diskretisierungsstern ("numerical stencil"):



Nachteil: Methode ist instabl, d.h. entwickelt im Laufe der Zeit (künstliche) Oszillationen $(\rightarrow \ddot{\text{U}}\text{bung})$.

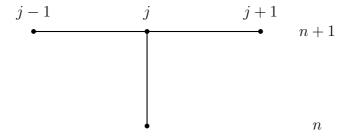
2. Idee: *implizites* Schema:

$$\frac{u_j^{n+1} - u_j^n}{k} = -a \frac{u_{j+1}^{n+1} - u_{j-1}^{n+1}}{2h}, \quad , n \ge 0, j \in \mathbb{Z},$$

bzw.

$$\frac{ak}{2h}u_{j+1}^{n+1} + u_j^{n+1} - \frac{ak}{2h}u_{j-1}^{n+1} = u_j^n.$$

Nachteil: In jedem Zeitschritt ein lineares Gleichungssystem (tridiagonal) zu lösen. Diskretisierungsstern:



3. Idee: Lax-Friedrichs Schema:

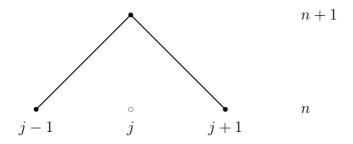
Approximation der t-Ableitung (zunächst für u(x,t) geschrieben):

$$\frac{1}{k} \left(u(x, t+k) - \frac{1}{2} [u(x+h, t) + u(x-h, t)] \right) ,$$

also

$$u_j^{n+1} = \frac{1}{2} \left(u_{j+1}^n + u_{j-1}^n \right) - \frac{ak}{2h} \left(u_{j+1}^n - u_{j-1}^n \right), \quad n \ge 0, j \in \mathbb{Z}$$
 (1.24)

Diskretisierungsstern:



Vorteil: (bedingt) stabil (für $\frac{k}{h}$ klein genug \rightarrow Übung)

Nachteil: Lösung wird stark ausgeschmiert, geglättet.

 \forall Schemata gilt: Exakte Lösung (1.23) erfüllt Differenzenschema *nicht*. Daher:

Definition 1.15. Einsetzen der exakten Lösung ins Differenzenschema $U^{n+1} = \mathcal{H}_k U^n$ liefert lokalen Abschneidefehler ("local truncation error") – als Residuum. Notation: $U^n = \{u_j^n, j \in \mathbb{Z}\}$; der Operator \mathcal{H}_k ist der Propagator des Schemas bei Zeitschrittweite k.

Beispiel: lokaler Abschneidefehler für das Lax-Friedrichs-Schema (1.24):

$$L_k(x,t) := \frac{1}{k} \left(u(x,t+k) - \mathcal{H}_k(u(.,t);x) \right)$$

$$= \frac{1}{k} \left(u(x,t+k) - \frac{1}{2} [u(x+h,t) + u(x-h,t)] \right)$$

$$+ \frac{a}{2h} [u(x+h,t) - u(x-h,t)].$$

Führender Faktor $\frac{1}{k}$ ist wichtig für die richtige Ordnung des Schemas; die globale Ordnung ist eine Stufe tiefer als die lokale Ordnung.

u(x, t + k) ist die exakte Lösung zur Zeit t + k; $\mathcal{H}_k(u(.,t);x)$ ist das Ergebnis eines numerischen Schritts, ausgehend von der exakten Lösung zur Zeit t.

Taylor Entwicklung in t, x um das kontinuierliche Argument (x,t) für u glatt genug:

$$\Rightarrow L_{k}(x,t) = \frac{1}{k} \left[\left(u + u_{t}k + \frac{1}{2}u_{tt}k^{2} + O(k^{3}) \right) - \frac{1}{2} \left(2u + u_{xx}h^{2} + O(h^{4}) \right) \right] + \frac{a}{2h} \left(2u_{x}h + O(h^{3}) \right) = \underbrace{u_{t} + au_{x}}_{=0} + \frac{1}{2} \left(u_{tt}k - u_{xx}\frac{h^{2}}{k} \right) + O(k^{2}) + O\left(\frac{h^{4}}{k}\right) + O(h^{2})$$
 (1.25)

Aus (1.22): $u_{tt} = -au_{xt} = a^2u_{xx}$.

Sei $\frac{k}{h}$ = konst (das ist ab nun unsere Standardannahme).

$$\Rightarrow L_k(x,t) = \frac{k}{2} \left(a^2 - \left(\frac{h}{k} \right)^2 \right) u_{xx}(x,t) + O(h^2) = O(k) , \qquad (1.26)$$

also

$$|L_k(x,t)| \le Ck \quad \forall k < k_0$$

 $\forall (x,t)$, da C nur durch $\|(u_0)_{xx}\|_{L^{\infty}(\mathbb{R})}$ bestimmt ist.

 \rightarrow "Methode erster Ordnung (in k)"; numerische Lösung für kleines k > 0 immer besser.

Definition 1.16. Methode ist konsistent, wenn $||L_k(.,t)||_{L^1(\mathbb{R})} \to 0$ für $k \to 0$ (\forall festen t > 0).

- 2 Zugänge zur besseren Übereinstimmung zwischen PDE und numerischem Schema:
 - 1. (anderes) Schema höherer Ordnung für die gegebene PDE (siehe 6. Idee);
 - 2. gleiches Schema (1.24), aber modifizierte PDE (h und k abhängig!).

Aus (1.26): Lax-Friedrichs ist sogar Methode zweiter Ordnung für die *modifizierte Glei-chung*:

$$u_t + au_x = \underbrace{-\frac{k}{2} \left(a^2 - \left(\frac{h}{k}\right)^2\right)}_{-iD} u_{xx} \quad , x \in \mathbb{R}, t > 0.$$

$$(1.27)$$

Dabei suchen wir jene (modifizierte) Gleichung(en), die durch das betrachtete Schema besser gelöst wird als (1.22). Modifizierte Gleichungen sind nicht eindeutig bestimmt.

(1.27) ist eine Advektions-Diffusionsgleichung falls $D \ge 0$ (für D < 0 wäre sie rückwärts parabolisch und instabil!). Also muss gelten:

$$a^2 - \left(\frac{h}{k}\right)^2 \le 0 \quad \left(\Leftrightarrow \frac{|a|k}{h} \le 1 \dots \text{ Stabilitätsbedingung}\right).$$

Also muss gelten: (max.) numerische Ausbreitungsgeschwindigkeit $\frac{h}{k} \ge$ reale Ausbreitungsgeschwindigkeit |a|.

Für $k \to 0$ und $\frac{h}{k}$ =konst geht (1.27) formal gegen $u_t + au_x = 0$ (vgl. Limes verschwindender Viskosität in (1.16)).

Das Lax-Friedrichs-Verfahren für (1.22) impliziert also eine künstliche Diffusion (mit Konstante D > 0) und verhindert damit Unstetigkeiten und Oszillationen.

<u>Stabilität</u> bedeutet, dass die Fehlerfortpflanzung beschränkt bleibt (für $k \to 0$).

Definition 1.17. Für eine gewählte Norm ist die numerische Methode \mathcal{H}_k stabil, wenn $\forall T: \exists C > 0 \ und \ k_0 > 0 \ mit$:

$$\|(\mathcal{H}_k)^n\| \le C \quad \forall \, nk \le T \,, \, 0 < k < k_0$$

z.B. für
$$\|\mathcal{H}_k\| \le 1 + \alpha k$$
 \Rightarrow $\|(\mathcal{H}_k)^n\| \le (1 + \alpha k)^n \le e^{\alpha kn} \le e^{\alpha T}$.

Definition 1.18. Methode ist konvergent, wenn $u_i^n \xrightarrow{h,k\to 0} u(x_j,t_n) \ \forall j, n.$

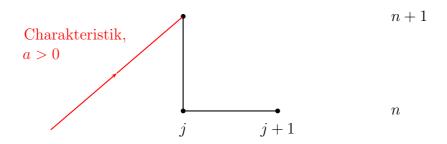
Satz 1.19 (Lax-Äquivalenz Satz; Fundamentalsatz der Numerischen Analysis). Für lineare konsistente Differenzenmethoden gilt: $stabil \Leftrightarrow konvergent$.

4. Idee: Downwind Schema:

Ziel: Reduktion der numerischen Diffusion (im Vergleich zum Lax-Friedrichs-Schema)

$$u_j^{n+1} = u_j^n - \frac{ak}{h} \left(u_{j+1}^n - u_j^n \right)$$
 [für $a > 0$, sonst Vertauschung von (1.28), (1.29)] (1.28)

Diskretisierungsstern:



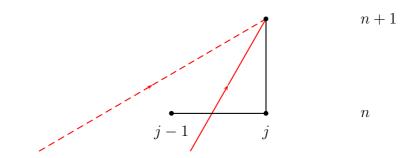
exakte Lösung (1.23): rechts laufende Welle

Nachteil: Schema sinnlos (instabil), da Informationstransport in falsche Richtung.

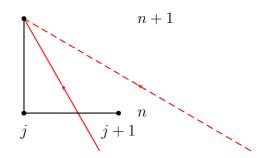
5. Idee: Upwind-Schema:

$$u_j^{n+1} = u_j^n - \frac{ak}{h}(u_j^n - u_{j-1}^n), \quad n \ge 0, j \in \mathbb{Z}$$
 [für $a > 0$] (1.29)

Diskretisierungsstern:



mögl. Charakteristiken für 2 Werte von a>0



mögl. Charakteristiken für 2 Werte von a < 0

Vorteil: keine Oszillationen; weniger künstliche Diffusion (kleineres D) als Lax-Friedrichs. lokaler Abschneidefehler:

$$L_k(x,t) := \frac{1}{k} \left(u(x,t+k) - u(x,t) + \frac{ak}{h} \left(u(x,t) - u(x-h,t) \right) \right)$$

$$\stackrel{\text{Taylor}}{=} \frac{ak}{2} \left(a - \frac{h}{k} \right) u_{xx} + O(h^2) + O(k^2) \quad \dots \text{ Methode 1. Ordnung (in } k)$$

Modifizierte Gleichung zweiter Ordnung (mit k/h = konst):

$$u_t + au_x = \underbrace{-\frac{ak}{2} \left(a - \frac{h}{k}\right)}_{=:D} u_{xx} \tag{1.30}$$

$$(1.30) \text{ sachgemäß gestellt} \quad \Leftrightarrow \quad D \ge 0 \quad \Leftrightarrow \quad 0 \le \frac{ak}{h} \le 1. \tag{1.31}$$

D.i. ein Indikator für die Stabilität vom numerischen Schema, aber kein Beweis.

(1.31) heißt Courant-Friedrichs-Levy (CFL) Bedingung; ist hier Stabilitätsbedingung (vgl. Charakteristikensteigung im Diskretisierungsstern). typischer Wert in Praxis: $\frac{ak}{h} \approx 0.8$

6. Idee: Lax-Wendroff-Schema (für $a \in \mathbb{R}$):

Herleitung über Taylorreihe:

$$u(x, t + k) = u(x, t) + ku_t(x, t) + \frac{k^2}{2}u_{tt}(x, t) + O(k^3);$$

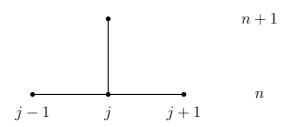
verwende

$$u_t = -au_x, u_{tt} = a^2 u_{xx}$$

und zentrale und zweite Differenzen Approximation für u_x , u_{xx} :

$$\Rightarrow u_{j}^{n+1} = u_{j}^{n} - \frac{k}{2h}a(u_{j+1}^{n} - u_{j-1}^{n}) + \frac{k^{2}}{2h^{2}}a^{2}(u_{j+1}^{n} - 2u_{j}^{n} + u_{j-1}^{n})$$

Diskretisierungsstern:



CFL-Bedingung: $\frac{|a|k}{h} \le 1$.

Lax-Wendroff ist Schema zweiter Ordnung. Die modifizierte Gleichung dritter Ordnung ist

$$u_t + au_x = \frac{h^2}{6}a\left(\frac{k^2}{h^2}a^2 - 1\right)u_{xxx}.$$
 (1.32)

D.i. dispersive Gleichung; keine numerische Diffusion.

numerische Lösung für unstetige Daten:

z.B.
$$u_0(x) = \begin{cases} 1 & , & x < 0 \\ 0 & , & x > 0 \end{cases}$$

Phänomene:

- Schemata 1. Ordnung glätten die Unstetigkeit aus.
- Schemata 2. Ordnung entwickeln Oszillationen (vgl. Gibbs Phänomen).
- Alle (besprochenen) Schemata berechnen die richtige "Schock"geschwindigkeit.
- Konvergenzordnung reduziert sich von 1 auf $\frac{1}{2}$ bzw. von 2 auf $\frac{2}{3}$ (L^1 -Fehler betrachten, aber *nicht* L^{∞} -Fehler)

Referenzen: [Jü] §4, [LV] §10.

1.4.2 nicht-lineare Erhaltungsgesetze

Betrachte als Beispiel: Burgers Gleichung bzw. LWR-Modell:

$$\begin{cases} u_t + uu_x = 0, & x \in \mathbb{R}, t > 0 \\ u(x, 0) = u_0(x) \end{cases}$$
 (1.33)

1. Idee: modifiziertes Upwind-Schema:

z.B. für $u_0 \geq 0$:

$$u_j^{n+1} = u_j^n - \frac{k}{h} u_j^n (u_j^n - u_{j-1}^n), n \in \mathbb{N}_0, j \in \mathbb{Z}$$
(1.34)

Für
$$u_j^0 = \begin{cases} 1 & , & j < 0 \\ 0 & , & j \ge 0 \end{cases}$$
 gilt: $u_j^0 = u_j^1 = u_j^2 = \dots \ \forall j \in \mathbb{Z}.$

 \Rightarrow numerische Lösung konvergiert gegen $u(x,t) = u_0(x)$!

Aber d.i. keine schwache Lösung von (1.33) bzw. von $u_t + \frac{1}{2}(u^2)_x = 0$!

Für andere Riemann Probleme: numerische Methode liefert laufende Schockwelle, aber mit falscher Geschwindigkeit!

 \Rightarrow Methode unbrauchbar

Problem: Schema (1.34) diskretisiert (1.33), aber *nicht* die Burgers Gleichung in *Erhaltungsform*: $u_t + \frac{1}{2}(u^2)_x = 0$. Vgl. Übungsbeispiel: $u_t + \frac{1}{2}(u^2)_x = 0$, $(u^2)_t + \frac{2}{3}(u^3)_x = 0$ haben unterschiedliche schwache Lösungen.

Definition 1.20. (a) Ein Differenzen Schema der Form

$$u_j^{n+1} = u_j^n - \frac{k}{h} [F(u_{j-p}^n, \dots, u_{j+q}^n) - F(u_{j-1-p}^n, \dots, u_{j-1+q}^n)]$$
(1.35)

mit einer numerischen Flussfunktion $F: \mathbb{R}^{p+q+1} \to \mathbb{R}$ heißt konservativ.

(b) Ein konservatives Schema heißt konsistent (mit $u_t + f(u)_x = 0$), wenn F lokal Lipschitz stetig ist, und $F(u, ..., u) = f(u) \ \forall u \in \mathbb{R}$.

einfacher Fall: p = 0, q = 1

$$\to u_j^{n+1} = u_j^n - \frac{k}{h} [F(u_j^n, u_{j+1}^n) - F(u_{j-1}^n, u_j^n)]$$
(1.36)

konservatives Schema \Rightarrow diskrete Massenerhaltung (wegen Teleskopsumme in j) \Rightarrow korrekte Geschwindigkeit von (geglätteten) Schocks.

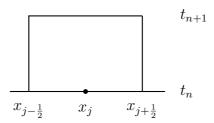
Interpretation von (1.36):

schwache Lösung von $u_t + f(u)_x = 0$ erfüllt (siehe (1.9))

$$\frac{1}{h} \int_{x_{j-1/2}}^{x_{j+1/2}} u(x, t_{n+1}) dx = \frac{1}{h} \int_{x_{j-1/2}}^{x_{j+1/2}} u(x, t_n) dx$$

$$- \frac{k}{h} \left[\frac{1}{k} \int_{t_n}^{t_{n+1}} f(u(x_{j+1/2}, t)) dt - \frac{1}{k} \int_{t_n}^{t_{n+1}} f(u(x_{j-1/2}, t)) dt \right] (1.37)$$

mit Zellmittelpunkten $x_{j\pm\frac{1}{2}} := (j\pm\frac{1}{2})h$.



Interpretiere u_i^n als Approximation für Zellmittelwert von u(x,t):

$$u_j^n \sim \overline{u}_j^n := \frac{1}{h} \int_{x_{j-1/2}}^{x_{j+1/2}} u(x, t_n) dx$$

und $F(u_j^n, u_{j+1}^n)$ als Approximation des mittleren Flusses durch $x_{j+1/2}$ über (t_n, t_{n+1}) :

$$F(u_j^n, u_{j+1}^n) \sim \frac{1}{k} \int_{t_n}^{t_{n+1}} f(u(x_{j+\frac{1}{2}}, t)) dt$$

 \Rightarrow Schema (1.36) folgt aus (1.37).

Beispiel 1.21. Upwind-Schema für Burgers Gleichung:

$$u_j^{n+1} = u_j^n - \frac{k}{h} \left[\frac{1}{2} (u_j^n)^2 - \frac{1}{2} (u_{j-1}^n)^2 \right], \quad n \ge 0, j \in \mathbb{Z}$$

für $u_j^n \ge 0 \quad \forall n, j$.

$$F(u_j, u_{j-1}) = \frac{1}{2}u_j^2$$
; Schema 1. Ordnung.

Beispiel 1.22. Lax-Friedrichs Schema:

$$u_j^{n+1} = \frac{1}{2}(u_{j-1}^n + u_{j+1}^n) - \frac{k}{2h}(f(u_{j+1}^n) - f(u_{j-1}^n)),$$

$$F(u_j, u_{j+1}) = \frac{h}{2k}(u_j - u_{j+1}) + \frac{1}{2}(f(u_j) + f(u_{j+1})),$$

Schema 1. Ordnung, konservativ, konsistent

Beispiel 1.23. <u>Lax-Wendroff-Schema</u>:

$$u_j^{n+1} = u_j^n - \frac{k}{2h} \left(f(u_{j+1}^n) - f(u_{j-1}^n) \right)$$

$$+ \frac{k^2}{2h^2} \left[f'(u_{j+1/2}^n) (f(u_{j+1}^n) - f(u_j^n)) - f'(u_{j-1/2}^n) (f(u_j^n) - f(u_{j-1}^n)) \right]$$

mit $u_{j\pm\frac{1}{2}}^n := (u_j^n + u_{j\pm 1}^n)/2.$

Schema konservativ, konsistent, 2. Ordnung.

Konvergenz:

vage Idee: num. Lösung aus Bsp. 1.21-1.23 konvergiert gegen eine schwache Lösung von $u_t + f(u)_x = 0$ (für $h, k \to 0$).

Problem: schwache Lösung i.A. nicht eindeutig!

Definition 1.24. Total variation einer Funktion $v : \mathbb{R} \to \mathbb{R}$:

$$TV(v) := \sup \sum_{j=1}^{N} |v(\xi_j) - v(\xi_{j-1})|,$$

Supremum über alle Zerlegungen ("subdivisions") $-\infty = \xi_0 < \xi_1 < \ldots < \xi_N = \infty \text{ von } \mathbb{R}$.

Für
$$v \in C^1(\mathbb{R}) : \mathrm{TV}(v) = \int\limits_{\mathbb{R}} |v'(x)| \mathrm{d}x$$

Notwendig für $\mathrm{TV}(v) < \infty$: $\exists \lim_{x \to \pm \infty} v(x)$.

Satz 1.25 (Lax-Wendroff). Sei $\{u_l(x,t), l \in \mathbb{N}\}$ eine Folge von numerischen Lösungen, berechnet mit konsistenter und konservativer Methode auf Gitterfolge mit $h_l, k_l \stackrel{l \to \infty}{\longrightarrow} 0$. (u_l sei z.B. konstante Fortsetzung von u_i^n auf den Zellen.)

Es existiere eine Funktion u(x,t) mit:

(1)
$$u_l \stackrel{l \to \infty}{\longrightarrow} u$$
 in $L^1(\Omega) \quad \forall \Omega = (a, b) \times (0, T),$

(2)
$$\forall T > 0 : \exists R > 0 \ mit$$

$$\mathrm{TV}(u_l(.,t)) < R \quad \forall 0 \le t \le T, \quad \forall l \in \mathbb{N}.$$

 $\Rightarrow u(x,t)$ ist eine schwache Lösung von $u_t + f(u)_x = 0$

Beweis. [LV]
$$\S12$$
.

Bemerkung 1.26. Satz 1.25 liefert nicht die Konvergenz der numerischen Approximationsfolge u_l ; und auch nicht, dass u die Entropielösung ist.

Satz 1.27. Zusätzlich zu den Voraussetzungen von Satz 1.25 gelte: $(\eta, \psi) \in C^2(\mathbb{R}) \times C^1(\mathbb{R})$ mit $\eta'' > 0$ sei ein Entropie-Entropiefluss-Paar (siehe Def. 1.9). Sei $\Psi : \mathbb{R}^{p+q+1} \to \mathbb{R}$ eine numerische Entropieflussfunktion, konsistent mit ψ (d.h. $\Psi(u, \ldots, u) = \psi(u) \ \forall u \in \mathbb{R}$) und

$$\eta(u_j^{n+1}) \le \eta(u_j^n) - \frac{k}{h} \left[\Psi(u_{j-p}^n, \dots, u_{j+q}^n) - \Psi(u_{j-1-p}^n, \dots, u_{j-1+q}^n) \right] \quad \forall j, n$$
 (1.38)

 $\Rightarrow u(x,t)$ (aus Satz 1.25) erfüllt die (schwache) Entropieungleichung (1.20):

$$\int_{0}^{\infty} \int_{\mathbb{R}} \left[\eta(u) \Phi_t + \psi(u) \Phi_x \right] dx dt \ge - \int_{\mathbb{R}} \eta(u_0(x)) \Phi(x, 0) dx \quad \forall \Phi \in C_0^1(\mathbb{R}^2), \ \Phi \ge 0. \tag{1.39}$$

u ist also Entropielösung.

Beweis. [LV]
$$\S12$$
.

Bemerkung 1.28. 1. vgl. (1.38) mit Entropieungleichung (1.19):

$$\eta(u)_t + \psi(u)_x \le 0.$$

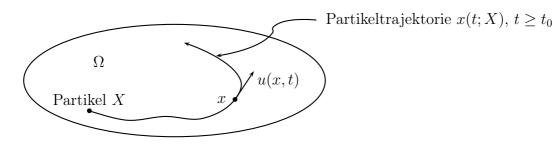
- 2. Laut [DeLellis-Otto-Westdieckenberg, 2003] reicht in Def. 1.10 für Entropielösungen schon ein strikt konvexes η .
- 3. Die Voraussetzung (1.38) gilt z.B. für das *Godunov Schema*, einer speziellen Version der Upwind Methode (Details in [LV] §13, [Jü] §5).

Referenzen: [Jü] §4, [LV] §12.

2 Strömungsmechanik

2.1 Euler Gleichungen

Betrachte Strömung eines Fluids (=Flüssigkeit oder Gas) im Gebiet $\Omega \subset \mathbb{R}^d$, d=2,3.



 $\rho(x,t)$... Massendichte

 $u(x,t) \ge 0 \dots$ Geschwindigkeits(vektor)feld

 $p(x,t)\dots$ Druck

- hier: Beschreibung mit *Euler-Koordinaten*, d.h. x ist fester Raumpunkt, durch den verschiedene Materiepunkte hindurchfließen.
- alternative Beschreibung mit Lagrange-Koordinaten (meist in §3): $X \in \Omega$ ist ein Materiepunkt (bzw. Partikel), $t \mapsto x(t;X)$ mit $x(t_0;X) = X$ seine Bewegung bzw. Trajektorie.

Ziel: Herleitung der 3 Euler Gleichungen:

(a) Massenerhaltung:

betrachte (beliebiges) zeitlich festes Gebiet $R \subset \Omega$ mit glattem Rand ∂R und äußerem Normalvektor ν :

Bilanzgleichung:

$$\frac{\mathrm{d}}{\mathrm{d}t} \underbrace{\int\limits_{R} \rho(x,t) \mathrm{d}x}_{\text{Gesamt masse in } R} = - \underbrace{\int\limits_{\partial R} \rho u \cdot \nu \mathrm{d}S}_{\text{Massenfluss durch}}$$

Divergenzsatz
$$\Rightarrow \int_{R} \rho_t + \operatorname{div}(\rho u) dx = 0 \quad \forall R \subset \Omega$$

 $\Rightarrow \left[\rho_t + \operatorname{div}(\rho u) = 0, x \in \Omega \right] \dots Kontinuit \"{a}tsgleichung$ (2.1)

(b) Impulserhaltung:

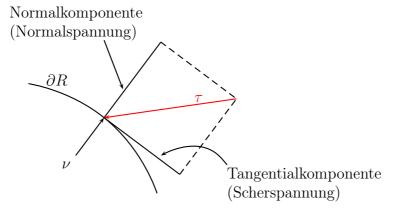
aus 2. Newtonschem Gesetz: Masse × Beschleunigung = Kraft,

also Impulsänderung durch externe/Volumenkräfte und Oberflächenkräfte

 $R \subset \Omega \dots$ beliebiges (fixes) Teilgebiet

Impuls der Masse in R: $\int_{R} \rho u dx$

- \bullet externe/Volumenkräfte: $\int\limits_R \underbrace{\rho f}\limits_{\substack{\text{Kraftdichte,} \\ \text{geg. Vektorfeld } f}} \mathrm{d}x$ (z.B: Gravitation, elektromagnetisch)
- Oberflächenkräfte auf ∂R mit äußerem Normalvektor ν : Spannungsvektor ("stress vector") $\tau = \tau(x, t, \nu)$



Man kann zeigen:

- 1. $\tau(x,-\nu)=-\tau(x,\nu)$. . . lokales Spannungsgleichgewicht (aus 3. Newtonschem Gesetz)
- 2. τ hängt linear von ν ab, also $\tau(x,\nu)=T(x)\cdot\nu;$ Matrix T . . . Spannungstensor (aus Impulserhaltung)
- 3. $T = T^{\top}$, Rotations invarianz (aus Drehimpulserhaltung)

ges. Oberflächenkraft:

$$\int_{\partial R} \tau(x, t, \nu) dS = \int_{\partial R} T(x, t) \cdot \nu dS \stackrel{\text{Div. Satz}}{=} \int_{R} \text{div } T dx = \int_{R} \nabla \cdot T dx$$

 \Rightarrow Kraftdichte auf Fluid: $\rho f + \nabla \cdot T$

Sei $X \in \Omega$ ein Partikel; $x(t;X) = (x_1(t), x_2(t), x_3(t))$ die Partikeltrajektorie Geschwindigkeit des Partikels X: $\dot{x}(t) = u(x(t), t)$ [X in Notation ausgelassen] Beschleunigung des Partikels X:

$$a(t) = \ddot{x}(t) = \frac{\mathrm{d}}{\mathrm{d}t} u(x(t), t)$$

$$= u_{x_1} \underbrace{\dot{x_1}}_{=u_1} + u_{x_2} \underbrace{\dot{x_2}}_{=u_2} + u_{x_3} \underbrace{\dot{x_3}}_{=u_3} + u_t = u_t + \underbrace{(u \cdot \nabla)}_{\substack{\text{skalarer} \\ \text{Diff. operator}}} u = \frac{\mathrm{D}u}{\mathrm{D}t},$$

mit der Materialableitung $\frac{\mathbf{D}}{\mathbf{D}t} := \partial_t + u \cdot \nabla$

Sie beschreibt die zeitliche Änderungsrate einer x- und t-abhängigen physikalischen Größe (z.B. Temperatur) in einem Volumenelement, das in einem Strömungsfeld mit Geschwindigkeit u transportiert wird. Sie beschreibt also die Änderung im (mit der Strömung) bewegten Bezugssystem.

Bsp.: Die Temperaturverteilung ändere sich (in 1D) nur dadurch, dass sie mit der Strömung transportiert wird, also $\tilde{T}(x,t) = \tilde{T}_0(x-ut) \Rightarrow \frac{D\tilde{T}}{Dt} = 0$.

2. Newtonsches Gesetz \Rightarrow Bilanzgleichung für Dichten:

$$\rho \frac{\mathbf{D}}{\mathbf{D}t} u = \rho f + \nabla \cdot T$$

addiere $u\rho_t + u\operatorname{div}(\rho u) = 0$

$$\Rightarrow \partial_{t}(\underbrace{\rho u}_{\text{Impuls-}\atop \text{dichte}}) + \underbrace{u \operatorname{div}(\rho u) + \rho(u \cdot \nabla)u}_{=\nabla \cdot (\rho u \otimes u) \dots \nabla \text{ von Impuls-Flussdichte}} = \rho f + \nabla \cdot T$$

$$\Rightarrow \left[\partial_{t}(\rho u) + \nabla \cdot (\rho u \otimes u - T) = \rho f\right] \dots \text{ Impuls-bilanzgleichung}$$

$$(2.2)$$

Spezialfall: reibungsfreies Fluid \rightarrow keine Scherspannung:

$$\tau(x,\nu) = -p(x)\nu, p \dots$$
 Druck $\Rightarrow T = -p(x)I, \nabla \cdot T = -\nabla p$

$$\Rightarrow \partial_t(\rho u) + \nabla \cdot (\rho u \otimes u) + \nabla p = \rho f \tag{2.3}$$

<u>Bem.</u>: keine Tangentialkräfte \Rightarrow Rotation kann nicht gestartet/gestoppt werden.

(c) Energieerhaltung

Bilanz: Energieänderung = $\underbrace{\text{Leistung}}_{\text{Kraft} \cdot \text{Geschw}}$ - Wärmeverlust

Energie
dichte:
$$\rho\left(\underbrace{\frac{|u|^2}{2}}_{\text{kin. Energie}} + \underbrace{e}_{\text{innere Energie}}\right)$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int\limits_{R} \rho\left(\frac{|u|^2}{2} + e\right) \mathrm{d}x = \underbrace{-\int\limits_{\partial R} \rho\left(\frac{|u|^2}{2} + e\right) u \cdot \nu \, \mathrm{d}S}_{\text{Energiefluss durch }\partial R} + \int\limits_{R} \rho\underbrace{\int\limits_{\text{Leistung durch } \atop \text{Vol.kräfte}} \int\limits_{\text{Oberfl.kräfte}} \mathcal{T} \underbrace{u}_{\text{Wärmefluss durch }\partial R} - \underbrace{h}_{\text{Wärmefluss durch }\partial R} \right) \mathrm{d}S \quad \forall R \subset \Omega$$

$$\int_{\partial R} (\tau \cdot u - h) \, dS = \int_{\partial R} \nu \cdot (T \cdot u - q) \, dS;$$

mit $h(x,t) = \nu \cdot q(x,t)$; $q \dots$ Wärmeflussdichte (=Vektor)

 $Divergenzsatz \Rightarrow Energie-Bilanzgleichung:$

(2.1), (2.2), (2.4) ... allgemeine Bilanzgleichugen; diese inkludieren bisher keine Physik bzw. Materialeigenschaften. Sie sind aber Ausgangspunkt für *Euler* (mit T = -pI) und *Navier-Stokes Gleichungen* (in §2.2). Insgesamt werden wir 2×2 Modelle betrachten: reibungs(frei) \times (in)kompressibel.

Spezialfälle:

- a) Fouriersches Abkühlungsgesetz: $q=-\kappa\nabla \tilde{T},\kappa\dots$ Wärmeleitfähigkeit, $\tilde{T}\dots$ Temperatur
- b) reibungsfreies Fluid: $T = -pI \Rightarrow \operatorname{div}(T \cdot u) = -\operatorname{div}(pu)$
- c) reibungsfreies ideales Gas:

$$T = -pI, p = \rho R \tilde{T}, R \dots$$
 Gaskonstante

oft: $e = c_V \tilde{T} + \text{const}$ (für polytrope Gase), c_V ... spezifische Wärme bei konst. Volumen

d) reibungsfreies ideales Fluid mit f = 0, q = 0:

kompressible Euler Gleichungen (für reibungsfreies ideales Fluid):

$$\begin{cases} \rho_t + \operatorname{div}(\rho u) = 0 \\ \partial_t(\rho u) + \nabla \cdot (\rho u \otimes u) + \nabla p = 0 \\ \partial_t \left[\rho \left(\frac{|u|^2}{2} + e \right) \right] + \operatorname{div} \left[\rho u \left(\frac{|u|^2}{2} + e \right) + p u \right] = 0 \end{cases}$$

D.i. hyperbolisches Erhaltungsgesetz: 5 Gleichungen für 6 Variablen (ρ, u, p, e) . Man braucht noch eine (physikalische) Zustandsgleichung, z.B. $e = c_V \tilde{T} + \text{const}, p = \rho R \tilde{T}$.

e) reibungsfreies, inkompressibles Fluid mit f = 0, q = 0:

Strömung u(x,t) ist inkompressibel, wenn \forall mitbewegten Gebiete $R(t) \subset \Omega$ gilt:

vol
$$(R(t)) = \int_{R(t)} dx = \text{const in } t.$$

Das gilt genau für div u = 0, da

$$0 = \frac{d}{dt} \operatorname{vol} (R(t)) = \frac{d}{dt} \int_{R(t)} dx \stackrel{(*)}{=} \int_{\partial R(t)} u(x,t) \cdot \nu dS = \int_{R(t)} \operatorname{div} u dx$$

1D-Illustration von (*): $\frac{d}{dt} \int_{a(t)}^{b(t)} \mathrm{d}x = \dot{b}(t) - \dot{a}(t) = u(b(t)) - u(a(t))$ (detaillierterer Bew. von (*): [CM] §1.1).

Inkompressibilität ist gute Näherung für "kleine Geschwindigkeiten" (z.B. Machzahl Ma := |u|/c < 0.3, mit c ... Schallgeschwindigkeit).

Zusätzlich gelte $\frac{\mathrm{D}e}{\mathrm{D}t} = 0$ (z.B. $e = \mathrm{const}$):

inkompressible Euler Gleichungen:

$$\begin{cases} \rho_t + \operatorname{div}(\rho u) = 0 \\ \partial_t(\rho u) + \nabla \cdot (\rho u \otimes u) + \nabla p = 0 \\ \operatorname{div} u = 0 \end{cases}$$

5 Gleichungen für 5 Variable

Energiegleichung ist "automatisch" erfüllt (\rightarrow Übung).

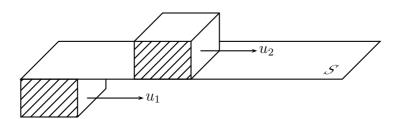
Referenzen: [CM] §1.1

2.2 Navier-Stokes Gleichungen

Ziel: Herleitung der NS-Gleichungen

Scherspannung ("shear stress") in Fluid (=Gas oder Flüssigkeit) hängt nur von lokalen

Änderungen der Geschwindigkeit u(x) ab, d.h. von $\frac{\partial u}{\partial x} = \left(\frac{\partial u_i}{\partial x_j}\right)_{i,j=1,2,3}$



Fluid in Ruhe (d.h. u=0) oder in homogener Bewegung (d.h. u= const): keine Scherspannung, d.h. τ hat nur Normalkomponente:

$$\tau(x,\nu) = -p(x)\nu, \quad p \dots Druck, \quad \Rightarrow \quad T = -p(x)I$$

$$\underline{\text{allgemein:}} \ T = \underbrace{-pI}_{\text{Normalspannungen}} + \sigma$$

Matrix $\sigma = (\sigma_{ij})_{i,j=1,2,3}$... viskoser Spannungstensor (Scherkräfte durch Reibung, Viskosität)

Annahmen an σ — als Funktion von $\frac{\partial u}{\partial x}$:

1. $\sigma\left(\frac{\partial u}{\partial x}\right)$ ist linear, d.h. Newtonsches Fluid (Bsp. Wasser, Öl):

$$\sigma_{ij}(x) = \sum_{k,l=1}^{3} C_{ijkl} \frac{\partial u_k}{\partial x_l}(x)$$
 (3⁴ = 81 Koeffizienten)

nicht-Newtonsche Bsp: Ketchup, Shampoo, Blut, Stärke-Suspension (Viskosität nicht konstant).

2. Fluid ist isotrop, d.h. ∄ ausgezeichnete Richtung

 $\Rightarrow \sigma$ ist invariant unter (Starrkörper-)Drehungen, d.h.

$$\sigma\left(U \cdot \frac{\partial u}{\partial x} \cdot U^{-1}\right) = U \cdot \sigma\left(\frac{\partial u}{\partial x}\right) \cdot U^{-1} \quad \forall \text{ orthogonalen Matrizen } U \tag{2.5}$$

Flüssigkristalle sind ein Bsp. von anisotropen Flüssigkeiten.

3. σ ist symmetrisch (folgt aus Drehimpulserhaltung)

Aus (2.) folgt:

$$\sigma = \sigma(D)$$
 mit $D := \frac{1}{2} \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial x}^{\top} \right)$... Deformationstensor (strain tensor)

Beweis. $\sigma=0$ für Rotationen mit konst. Winkelgeschwindigkeit; z.B. Rotation um x_3 -Achse: $\tilde{u}=\omega(-x_2,x_1,0)^{\top}, \frac{\partial \tilde{u}}{\partial x}=\omega\left(\begin{smallmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{smallmatrix} \right)$

$$\sigma(\frac{\partial \tilde{u}}{\partial x}) = 0 \Rightarrow C_{ij21} = C_{ij12} \quad ; \quad i, j = 1, 2, 3$$

analog für x_1 -, x_2 -Achse: $C_{ij23} = C_{ij32}, C_{ij13} = C_{ij31}$.

$$\Rightarrow \sigma_{ij} = C_{ij11}(u_1)_{x_1} + C_{ij22}(u_2)_{x_2} + C_{ij33}(u_3)_{x_3} + C_{ij12}((u_1)_{x_2} + (u_2)_{x_1}) + C_{ij13}((u_1)_{x_3} + (u_3)_{x_1}) + C_{ij23}((u_2)_{x_3} + (u_3)_{x_2}),$$

also $\sigma = \sigma(D)$.

- $\sigma = \sigma^T$ ist eine lineare, isotrope (d.h. (2.5) erfüllende) Funktion von D. Dafür lässt sich zeigen, dass σ , D kommutieren¹ (vgl. Satz von Rivlin-Ericksen, [EGK] §5.9).
- $\Leftrightarrow \sigma, D$ gleichzeitig diagonalisierbar
- $\Rightarrow \sigma_i$ (=EWe von σ) sind lineare Funktionen von d_i (=EWe von D)

Laut Rotationsinvarianz (2.): σ_i ist symmetrische Funktion bez. Indexvertauschungen

$$\Rightarrow \sigma_i = \lambda \underbrace{\left(d_1 + d_2 + d_3\right)}_{\text{Sp } D = \text{div } u} + 2\mu d_i \quad ; \quad i = 1, 2, 3.$$

Rücktransformation in Basis von σ , D:

$$\Rightarrow \boxed{\sigma = \lambda(\operatorname{div} u)I + 2\mu D} \tag{2.6}$$

nur mehr 2 Koeffizienten; zur Interpretation von λ, μ :

Beispiel 2.1. isotrope Expansion: u = cx, c > 0

$$\operatorname{div} u = 3c, D = cI$$

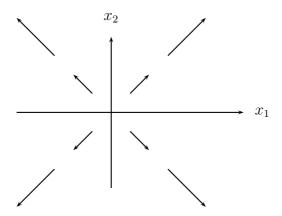
Spannungstensor:

$$T = -pI + \sigma = -pI + \lambda(\operatorname{div} u)I + 2\mu D = -(\underbrace{p - (3\lambda + 2\mu)c}_{\text{effektiver Druck}})I$$

 $\mu_d:=\lambda+\frac{2}{3}\mu\geq 0$... Druckviskosität bzw. 2. Viskositätskoeffizient

 \rightarrow effektiver Druck ist geringer als thermodynamischer Druck.

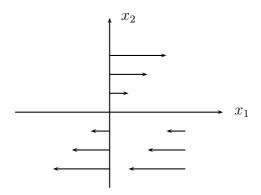
¹M.E. Gurtin, A short proof of the representation theorem for isotropic, linear stress-strain relations; J. of Elasticity 4, 1974



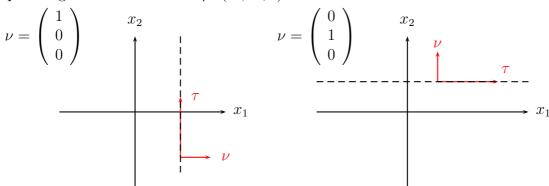
Beispiel 2.2. Scherströmung $u = (\kappa x_2, 0, 0)^{\mathsf{T}}, \kappa = \text{const}, p = 0$

$$\Rightarrow \operatorname{div} u = 0, D = \frac{1}{2} \begin{pmatrix} 0 & \kappa & 0 \\ \kappa & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\Rightarrow T = \lambda(\operatorname{div} u)I + 2\mu D = \mu \kappa \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$



Spannungsvektor $\tau = T \cdot \nu = \mu \kappa (\nu_2, \nu_1, 0)^\top$



 τ ist reine Scherkraft

$$\mu \geq 0 \dots Scherviskosität, 1. Viskositätskoeffizient$$

$$\Rightarrow \sigma = \underbrace{\mu_d(\operatorname{div} u)I}_{\text{Normalkomp. der Spannung}} + \underbrace{2\mu \left(D - \frac{1}{3}(\operatorname{div} u)I\right)}_{\text{Tangentialkomp. der Spannung}}$$

$$Sp(D - \frac{1}{3}(\operatorname{div} u)I) = \operatorname{div} u - \frac{1}{3}\operatorname{div} u \cdot 3 = 0$$

Einsetzen von $T=-pI+\sigma$ in Impulsbilanzgleichung (2.2):

$$\nabla \cdot T = -\nabla p + \nabla(\lambda \operatorname{div} u) + 2\nabla \cdot (\mu D)$$

 \Rightarrow kompressible Navier-Stokes Gleichungen:

$$\begin{cases} \rho_t + \operatorname{div}(\rho u) = 0 \\ \partial_t(\rho u) + \nabla \cdot (\rho u \otimes u - 2\mu D) + \nabla (p - \lambda \operatorname{div} u) = \rho f \\ \partial_t \left[\rho \left(\frac{|u|^2}{2} + e \right) \right] + \operatorname{div} \left[\rho u \left(\frac{|u|^2}{2} + e \right) + q - T \cdot u \right] = \rho f \cdot u \end{cases}$$

5 Gleichungen für 9 Variable (ρ, p, u, e, q)

Spezialfälle:

- a) $\lambda = \mu = 0 \implies$ kompressible Euler Gleichungen
- b) $\lambda = \text{const}, \mu = \text{const}$ (ab nun vorausgesetzt):

$$(2\nabla \cdot D)_i = \left(\nabla \cdot \left(\frac{\partial u}{\partial x} + \left(\frac{\partial u}{\partial x}\right)^{\top}\right)\right)_i = \sum_{j=1}^3 \frac{\partial}{\partial x_j} \left(\frac{\partial u_j}{\partial x_i} + \frac{\partial u_i}{\partial x_j}\right)$$
$$= \partial_{x_i}(\operatorname{div} u) + \Delta u_i$$

$$\Rightarrow \partial_t(\rho u) + \nabla \cdot (\rho u \otimes u) + \nabla (p - (\lambda + \mu) \operatorname{div} u) = \mu \Delta u + \rho f$$

c) inkompressibles, homogenes Fluid: (z.B. Wasser, Öl)

div $u = 0, \rho(x, t) = \rho_0 = \text{const} \Rightarrow \text{Kontinuitätsgleichung trivial erfüllt.}$

⇒inkompressible Navier-Stokes Gleichungen für homogenes Fluid:

$$\begin{cases} \rho_0 \left[u_t + \nabla \cdot (u \otimes u) \right] + \nabla p = \mu \Delta u + \rho_0 f & \text{(parabolisch für } u) \\ \operatorname{div} u = 0 \end{cases}$$
 (2.7)

4 Gleichungen für 4 Variable $(u, p) \to \text{geschlossenes System}$ mögliche Randbedingungen: $u(x, t) = 0, x \in \partial\Omega$ (Haftbedingung, "no slip condition") Falls $\mu=0$ (d.h. Scherkräfte, Viskosität vernachlässigbar) \Rightarrow inkompressible, homogene Euler Gleichungen:

$$\begin{cases} \rho_0[u_t + \nabla \cdot (u \otimes u)] + \nabla p = \rho_0 f & \text{(hyperbolisch für } u) \\ \operatorname{div} u = 0 \end{cases}$$
 (2.8)

mögliche Randbedingungen: $u(x,t) \cdot \nu = 0, x \in \partial \Omega$

Lösungstheorie:

 $\overline{\text{in } \mathbb{R}^2: \exists ! \text{ L\"osung}} \ \forall t \geq 0 \text{ f\"ur } (2.7) \text{ bzw. } (2.8)$

in \mathbb{R}^3 : \exists ! Lösung für "kleine Zeiten" für (2.7) bzw. (2.8). Ob eine Lösung $\forall t \geq 0$ existiert, ist unklar.

Problem in \mathbb{R}^3 : Es kann Turbulenzen oder "chaotisches Verhalten" geben; aber nicht in \mathbb{R}^2 .

d) ideales, kompressibles Gas: (z.B. Luft, dünne Gase)

konst. Scherviskosität $\mu \geq 0$

verschwindende Druckviskosität: $\mu_d = \lambda + \frac{2}{3}\mu = 0$

$$\Rightarrow \sigma = 2\mu [D - \frac{1}{3}(\operatorname{div} u)I]$$

Rest analog zu Euler Gleichungen

e) homogene, inkompressible, "langsame" Strömung:

Sei f = 0. Falls der nichtlineare Term $(u \cdot \nabla)u$ in (2.7) vernachlässigbar ist:

$$\nabla \cdot (u \otimes u) = (\underbrace{\operatorname{div} u}_{=0})u + (u \cdot \nabla)u \approx 0$$

 \Rightarrow Stokes Gleichungen (linear für u, p):

$$\begin{cases} u_t = -\frac{1}{\rho_0} \nabla p + \nu_0 \Delta u, & \nu_0 := \mu/\rho_0 \dots \text{ kinematische Viskosität} \\ \operatorname{div} u = 0 \end{cases}$$
 (2.9)

Motivation: Sei $\tilde{x}:=x/L,\ \tilde{u}:=u/U,$ mit typischer Referenzlänge L und Referenzgeschwindigkeit U.

$$\Rightarrow (u \cdot \nabla_x) u = \frac{U^2}{L} (\tilde{u} \cdot \nabla_{\tilde{x}}) \tilde{u}, \quad \nu_0 \Delta_x u = \nu_0 \frac{U}{L^2} \Delta_{\tilde{x}} \tilde{u}$$

Die Vernachlässigung dieses nichtlinearen Terms ist OK für $\frac{U^2}{L} \ll \nu_0 \frac{U}{L^2}$ bzw. für $Re:=\frac{LU}{\nu_0} \ll 1$... Reynoldszahl (dimensionslos)

Bem:

- Eigentlich fehlen noch typische Skalen von ∇u , Δu .
- Es werden nur $(u \cdot \nabla)u$ und Δu verglichen, da diese die Strömung "treiben"; ∇p ist nur der Response zur Nebenbedingung div u = 0, siehe (2.14).

Strömungen mit gleichen Reynoldszahlen erlauben (hinunter) skalierte Windkanalexperimente.

einige Viskositätszahlen:

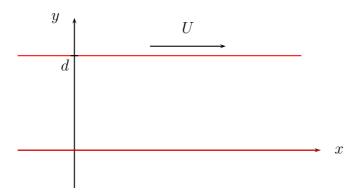
Luft $\mu = 1.8 \times 10^{-5} \text{Pa s}$

Wasser $\mu = 0.89 \times 10^{-3} \text{Pa} \, \text{s}$

Olivenöl $\mu = 0.8 \times 10^{-1} \text{Pa s}$

Beispiel 2.3. inkompressible, homogene, stationäre Strömung zwischen 2 parallel bewegten Platten (basierend auf Navier-Stokes (2.7)):

Annahmen: f = 0, 2D-Strömung, unendliche Platten, kein Druckabfall in x, also p = p(y).



$$\Rightarrow \operatorname{div} u = 0, \rho = \rho_0, \frac{\partial u}{\partial t} = 0$$

$$\begin{cases} \rho_0 \nabla \cdot (u \otimes u) + \nabla p = \mu \Delta u \\ \operatorname{div} u = 0 \end{cases}$$
(2.10)

Suchen spezielle x-unabh. Lösung, da Problem x-unabh.: $u(y) = (u_1(y), u_2(y))^{\top}, p = p(y)$ div $u = \underbrace{\partial_x u_1}_{=0} + \partial_y u_2 = 0 \implies u_2 = 0$ (wegen RB u(x, 0) = 0)

$$\Rightarrow \nabla \cdot (u \otimes u) = (\underbrace{\operatorname{div} u}_{=0})u + (\underbrace{u \cdot \nabla}_{u_1 \partial_x + u_2 \partial_y = 0})u = 0$$

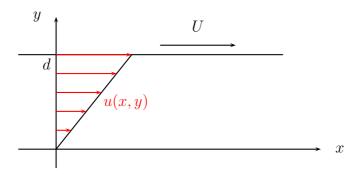
$$\Rightarrow \begin{cases} 0 = \mu \Delta u_1 = \mu \partial_y^2 u_1 \\ p_y = 0 \end{cases}$$

$$\Rightarrow p = \text{const} = p_0, \partial_y^2 u_1 = 0$$

Haftbedingung: $u_1(0) = 0, u_1(d) = U$

$$\Rightarrow u = u(y) = \left(\frac{Uy}{d}, 0\right)^{\top}$$

D.i. reine Scherströmung, "ebene Couette-Strömung".



Kraft auf ruhende (untere) Platte:

$$\tau(\nu) = T \cdot \nu = -p_0 \nu + \mu \frac{U}{d} (\nu_2, \nu_1)^{\top} \quad (\text{vgl. Bsp. 2.2 mit } \kappa = \frac{U}{d})$$

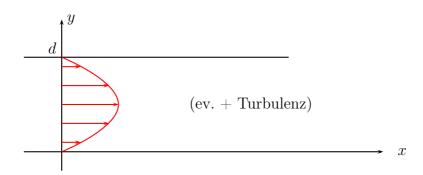
Für $\nu = (0, 1)^{\top}$: $\tau = (\mu \frac{U}{d}, -p_0)^{\top}$

Beispiel 2.4. wie Bsp. 2.3; beide Platten ruhen (d.h. U=0) mit Druckabfall $p_x=-c<0$. (2.10) ist also weiterhin x-unabhängig. \Rightarrow suchen x-unabhängige Lösung. \Rightarrow 1. Zeile von (2.10):

$$\begin{cases} p_x = \mu(u_1)_{yy} & \Rightarrow & (u_1)_{yy} = -\frac{c}{\mu} \\ u_1(0) = u_1(d) = 0 \end{cases}$$

$$\Rightarrow u(y) = \left(\frac{c}{2\mu}y(d-y), 0\right)^{\top}, p(x) = -cx + \underbrace{p_0}_{\text{=const}}$$

D.i. eine "ebene Poiseuille-Strömung" (Gleichgewicht zw. Druckabfall und Reibungskraft)



Anwendung zur Messung der Viskosität (in der Praxis Viskosimeter mit 2 konzentrischen Zylindern):

transportierte Masse pro Zeit pro Länge =
$$\int\limits_0^d \rho_0 u_1(y) \mathrm{d}y = \frac{\rho_0 c d^3}{12 \mu}$$

Poiseuille-Strömung wird instabil bei großen Reynoldszahlen; Übergang zu turbulenter Strömung.

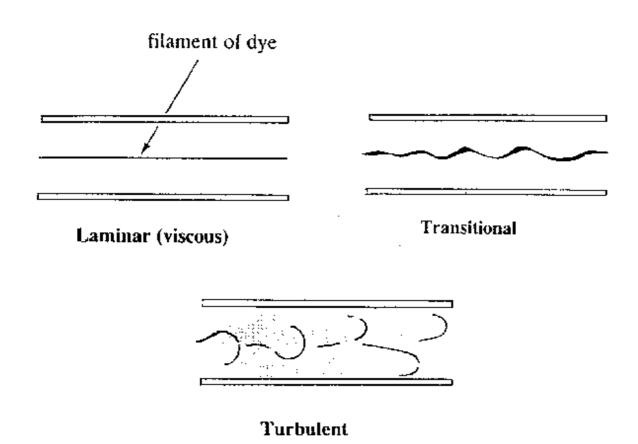


Abbildung 2.1: Rohr-Strömung für wachsendes Re: Übergang von laminarer zu turbulenter Strömung

<u>Referenzen</u>: [CM] §1.3, [EGK] §5.9

2.2.1 Helmholtz-Hodge Zerlegung

<u>Ziel:</u> Interpretation der inkompressiblen (Navier-)Stokes Gleichungen als Evolutionsgleichung für u mit p als Lagrange-Multiplikator zur Nebenbedingung div u = 0.

$$\begin{cases} u_t + (u \cdot \nabla)u = -\frac{1}{\rho_0} \nabla p + \nu_0 \Delta u &, & \Omega \\ \operatorname{div} u = 0 &, & \Omega \\ u \cdot \nu = 0 &, & \partial \Omega \end{cases}$$
(2.11)

Physikalisch wäre die einschränkendere RB $u|_{\partial\Omega}=0$ besser, für das nachfolgende (rein analytische) Lemma reicht aber $u\cdot \nu=0$.

Lemma 2.5 (Helmholtz-Hodge Zerlegung). Sei $\Omega \subset \mathbb{R}^d, d \geq 2$ beschränkt, mit $\partial \Omega \in C^{2,\alpha}(0 < \alpha < 1), w \in C^{1,\alpha}(\overline{\Omega}; \mathbb{R}^d)$.

 $\Rightarrow \exists ! u \in C^{1,\alpha}(\overline{\Omega}; \mathbb{R}^d), p \in C^{2,\alpha}(\overline{\Omega}) : (p \text{ skalar; bis auf additive Konstante eindeutig})$

$$w = u + \nabla p \tag{2.12}$$

 $mit \ div \ u = 0 \ in \ \Omega, \ u \cdot \nu = 0 \ auf \ \partial \Omega. \ (u, w \dots \ Vektorfelder)$

Beweis. 1. Zeige:

 $\forall u \text{ mit div } u = 0, u \cdot \nu = 0 \text{ auf } \partial \Omega \text{ gilt: } \int_{\Omega} u \cdot \nabla p dx = 0 \text{ (d.h. } u \perp \nabla p \text{ in } L^2(\Omega)),$ denn:

$$\operatorname{div}(pu) = (\operatorname{div} u)p + u \cdot \nabla p = u \cdot \nabla p$$

$$\Rightarrow 0 \stackrel{\text{RB}}{=} \int_{\partial \Omega} pu \cdot \nu ds = \int_{\Omega} \operatorname{div}(pu) dx = \int_{\Omega} u \cdot \nabla p dx \quad \checkmark$$

also: (2.12) ist orthogonale Zerlegung in $L^2(\Omega)$.

2. Eindeutigkeit: Sei $w = u_1 + \nabla p_1 = u_2 + \nabla p_2$

$$\Rightarrow 0 = (u_1 - u_2) + \nabla(p_1 - p_2), \ (u_1 - u_2) \cdot \nu \big|_{\partial\Omega} = 0, \ \operatorname{div}(u_1 - u_2) = 0 \quad (2.13)$$

$$\Rightarrow (\operatorname{nach} 1.) \quad (u_1 - u_2) \perp \nabla(p_1 - p_2) \text{ in } L^2(\Omega) \text{ und}$$

$$0 \stackrel{(2.13)}{=} \int_{\Omega} [(u_1 - u_2) + \underbrace{\nabla(p_1 - p_2)] \cdot (u_1 - u_2) dx}_{=0} = \int_{\Omega} |u_1 - u_2|^2 dx$$

$$\Rightarrow u_1 = u_2 \quad \Rightarrow \quad \nabla p_1 = \nabla p_2 \quad \checkmark$$

$${}^{2}\text{H\"{o}lder-Seminorm: }|f|_{C^{0,\alpha}(\overline{\Omega})}:=\sup_{x\neq y\in\Omega}\frac{|f(x)-f(y)|}{|x-y|^{\alpha}}, 0\leq\alpha\leq1;$$

$$\text{H\"{o}der-Norm: }||f||_{C^{n,\alpha}}:=||f||_{C^{n}}+\max_{|\beta|=n}|D^{\beta}f|_{C^{0,\alpha}}, n\in\mathbb{N}_{0}.$$

3. Existenz: Wir wollen: $w = u + \nabla p \Rightarrow \operatorname{div} w = \operatorname{div} u + \operatorname{div} \nabla p = \Delta p$ und auf $\partial \Omega : w \cdot \nu = \nabla p \cdot \nu$. Löse daher für p:

 $\Delta p = \operatorname{div} w$ in Ω , $\nabla p \cdot \nu = w \cdot \nu$ auf $\partial \Omega$ (= Neumann Problem für Poisson Gleichung)

Wegen div $w \in C^{0,\alpha}(\overline{\Omega})$ und $w \cdot \nu \in C^{1,\alpha}(\partial \Omega)$ existiert ein $p \in C^{2,\alpha}(\overline{\Omega})$ (s. VL Part. Diffgl.). Sei $u := w - \nabla p \in C^{1,\alpha}(\overline{\Omega})$

$$\Rightarrow \operatorname{div} u = \operatorname{div} w - \Delta p = 0 \quad \checkmark$$

$$u \cdot \nu \big|_{\partial\Omega} = w \cdot \nu \big|_{\partial\Omega} - \nabla p \cdot \nu \big|_{\partial\Omega} = 0. \quad \checkmark$$

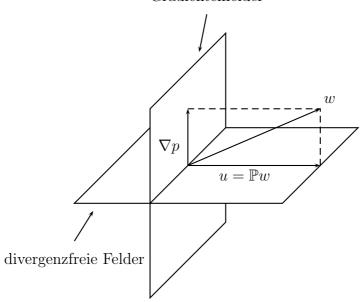
Definition 2.6. <u>Projektionsoperator:</u> $\mathbb{P}w := u$, wobei $w = u + \nabla p$, $\operatorname{div} u = 0$ und $u \cdot \nu = 0$, $\partial \Omega$.

 $\mathbb{P}:C^{1,\alpha}(\overline{\Omega})\to C^{1,\alpha}(\overline{\Omega})$ ist nach obigem Lemma wohldefiniert.

Eigenschaften:

- (a) P linear
- (b) $w = u + \nabla p = \mathbb{P}w + \nabla p$
- (c) $\mathbb{P}u = u \quad \forall u \text{ mit div } u = 0, u \cdot \nu \big|_{\partial\Omega} = 0$
- (d) $\mathbb{P}(\nabla p) = 0$.

Gradientenfelder



Wende \mathbb{P} auf (2.11) an:

$$\mathbb{P}\left(\partial_t u + \frac{1}{\rho_0} \nabla p\right) = \mathbb{P}(-(u \cdot \nabla)u + \nu_0 \Delta u)$$

Wegen div $\partial_t u = \partial_t \operatorname{div} u = 0$ und $(\partial_t u) \cdot \nu = \partial_t (u \cdot \nu) = 0$:

$$\mathbb{P}(\partial_t u) = \partial_t u \quad (\text{lt. (c)}).$$

Laut (d): $\mathbb{P}(\nabla p) = 0$

$$\Rightarrow \partial_t u = \mathbb{P}(-(u \cdot \nabla)u + \nu_0 \Delta u) \tag{2.14}$$

D.i. Evolutionsgleichung nur für u; p eliminiert!

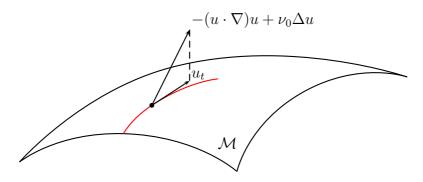


Abbildung 2.2: Mannigfaltigkeit \mathcal{M} durch div u = 0 bestimmt.

Achtung: $\operatorname{div}(\Delta u) = \Delta(\operatorname{div} u) = 0$, aber i.A. $(\Delta u) \cdot \nu \big|_{\partial\Omega} \neq 0$.

$$\Rightarrow$$
 i.A. $\mathbb{P}(\Delta u) \neq \Delta u$

(2.14) auch für numerische Algorithmen nützlich.

Bestimmung des Drucks p aus u:

(2.11):
$$\nabla p = -\rho_0[u_t + (u \cdot \nabla)u - \nu_0 \Delta u]$$

$$\stackrel{(2.14)}{=} \rho_0(\mathbb{I} - \mathbb{P})[-(u \cdot \nabla)u + \nu_0 \Delta u]$$

Referenzen: [CM] §1.3

2.2.2 Rotation

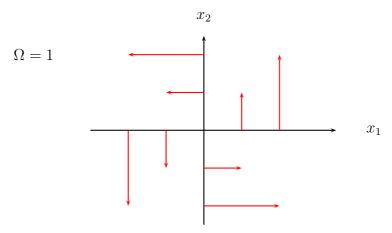
Definition 2.7. $\omega := \operatorname{rot} u := \nabla \times u$ heißt Rotation oder Wirbelfeld ("vorticity field") des 3D-Geschwindigkeitsfeldes u.

In 2D ist ω skalar: $\omega := \operatorname{rot} u := \partial_{x_1} u_2 - \partial_{x_2} u_1$ (eingebettet in \mathbb{R}^3).

Beispiel 2.1 (Fortsetzung). $u(x) = cx, c \in \mathbb{R}$

$$\omega = c \begin{pmatrix} \partial_{x_1} \\ \partial_{x_2} \\ \partial_{x_3} \end{pmatrix} \times \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Beispiel 2.8.
$$u(x) = \Omega(-x_2, x_1, 0)^{\top} \Rightarrow \omega = \text{rot } u = (0, 0, 2\Omega)^{\top}$$



 ω_3 = doppelte Winkelgeschwindigkeit um x_3 -Achse (= Drehachse).

Generell: Richtung von ω definiert (als Normalvektor) die lokale Rotationsebene, seine Länge die lokale Wirbelstärke.

lokale Zerlegung einer Strömung:

Bewegung \approx (starre) Translation + Deformation + (starre) Rotation

Lemma 2.9. Sei u(x) glattes 3D-Vektorfeld.

$$u(y) = u(x) + D(x) \cdot (y - x) + \frac{1}{2}\omega(x) \times (y - x) + O(\|y - x\|^2) \quad \forall x, y \in \mathbb{R}^3$$

Beweis. Laut Satz von Taylor:

$$u(y) = u(x) + \frac{\partial u}{\partial x}(x) \cdot (y - x) + O(\|y - x\|^2)$$

Weiters:

$$\left(D \cdot (y - x) + \frac{1}{2}\omega \times (y - x)\right)_{1} = \partial_{1}u_{1}(y_{1} - x_{1})
+ \frac{1}{2}(\partial_{1}u_{2} + \partial_{2}u_{1})(y_{2} - x_{2}) + \frac{1}{2}(\partial_{1}u_{3} + \partial_{3}u_{1})(y_{3} - x_{3})
+ \frac{1}{2}\left[\underbrace{(\partial_{3}u_{1} - \partial_{1}u_{3})(y_{3} - x_{3}) - (\partial_{1}u_{2} - \partial_{2}u_{1})(y_{2} - x_{2})}_{=\omega_{3}}\right]
= \partial_{1}u_{1}(y_{1} - x_{1}) + \partial_{2}u_{1}(y_{2} - x_{2}) + \partial_{3}u_{1}(y_{3} - x_{3})
= \sum_{i=1}^{3}\partial_{j}u_{1}(y_{j} - x_{j}) = \left[\frac{\partial u}{\partial x} \cdot (y - x)\right]_{1}$$

andere Komponenten analog.

Referenzen: [CM] §1.3, [MP] §1.2

2.3 Wirbelmodelle

Ziel: Wirbelformulierung für homogene, inkompressible Euler Gleichung

2.3.1 Vektorfelder aus Quellen und Wirbeln

Sei $G \subset \mathbb{R}^d$; d = 2, 3; einfach zusammenhängendes Gebiet;³ sei $u \in C^1(G, \mathbb{R}^d)$ (für dieses Kapitel).

Definition 2.10. u heißt wirbelfrei [irrotational, curl-free], wenn rot u = 0 in G.

uheißt konservativ, wenn $\int\limits_C u \mathrm{d}s$ ist wegunabhängig.

Satz 2.11. u wirbelfrei \Leftrightarrow u konservativ \Leftrightarrow \exists Potential $\varphi: u = \nabla \varphi$

Beweis. Analysis VL.

Lemma 2.12. Sei $u \in C^1(G)$ ein Vektorfeld. Dann:

- (i) $\operatorname{rot} u = 0 \quad \Leftrightarrow \quad \exists \varphi : u = \nabla \varphi$
- (ii) $\operatorname{div} u = 0 \quad \Leftrightarrow \quad \exists \text{ Vektor potential } A : u = \operatorname{rot} A \text{ (nur in } 3D)$

(2D-Interpretation nur über Einbettung in 3D:

$$\exists A = (0, 0, A_3)^\top : u = \text{rot } A = (\partial_2 A_3, -\partial_1 A_3, 0)^\top, \ bzw. \quad u = (\partial_2 A_3, -\partial_1 A_3)^\top =: \nabla^\perp A_3 \)$$

Ziel: Lösung $u \in C^1(G)$ des Systems

$$\begin{cases} \operatorname{rot} u = \omega & \text{in } G & (\text{Wirbel von } u: \omega \in C^{1}(G)) \\ \operatorname{div} u = f & \text{in } G & (\text{Quellen von } u: f \in C^{0}(G)) \end{cases}$$

$$(2.15)$$

Lösung von (2.15):

Da div rot u=0: (2.15) ist lösbar \Leftrightarrow div $\omega=0$:

Suchen zuerst spezielle Lösung $u_0 = (u_1, u_2, u_3)^{\top}$ mit $u_3 = 0$.

 $rot u_0 = \omega \quad \Leftrightarrow \quad$

$$\begin{cases}
-\partial_3 u_2 &= \omega_1 \\
\partial_3 u_1 &= \omega_2 \\
\partial_1 u_2 - \partial_2 u_1 &= \omega_3
\end{cases}$$

 $^{^3{\}mbox{Jeder}}$ geschlossene Weg kann stetig auf einen Punkt zusammengezogen werden.

Wähle spezielle Lösung

$$u_1 := \int \omega_2(x_1, x_2, x_3) dx_3$$

$$u_2 := -\int \omega_1(x_1, x_2, x_3) dx_3 + g(x_1, x_2)$$

mit
$$\partial_1 g = \partial_1 \int \omega_1 dx_3 + \partial_2 \int \omega_2 dx_3 + \omega_3$$
.

Allgemeine Lösung laut Lemma 2.12(i):

$$u = u_0 + \nabla \varphi$$
 , $\forall \varphi \in C^2(G)$

in 2D: durch Einbettung in \mathbb{R}^3 :

$$\operatorname{rot} u = \begin{pmatrix} \partial_1 \\ \partial_2 \\ 0 \end{pmatrix} \times \begin{pmatrix} u_1 \\ u_2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \partial_1 u_2 - \partial_2 u_1 \end{pmatrix}$$
 (2.17)

$$\Rightarrow \omega_1 = \omega_2 = 0$$
 (notwendige Bedingung an Daten) $\Rightarrow u_0 = (0, \int \omega_3 dx_1)^{\top}$

Rest analog.

Lösung von (2.16):

Allgemeine Lösung laut Lemma 2.12 (ii):

$$u = \underbrace{\left(\int f dx_1, 0, 0\right)^{\top}}_{\text{spezielle Löss}} + \operatorname{rot} A, \quad \forall A \in C^2(G)$$

in 2D:

Mit $\psi = A_3$.

$$u = \begin{pmatrix} \int f dx_1 \\ 0 \\ 0 \end{pmatrix} + \operatorname{rot} \begin{pmatrix} 0 \\ 0 \\ \psi \end{pmatrix} = \begin{pmatrix} \int f dx_1 + \partial_2 \psi \\ -\partial_1 \psi \\ 0 \end{pmatrix} \quad \forall \psi \in C^2(G).$$

System (2.15), (2.16): Seien f, ω geg. mit div $\omega = 0$ (da div rot u = 0).

Strategie: Zerlegung $u = u_q + u_w$, wobei u_q quellenfrei und u_w wirbelfrei sind.

Lemma 2.13. Sei div $\omega = 0$. Lösung u von (2.15), (2.16) hat die allgemeine Form $u = u_q + u_w$, wobei $u_q := \operatorname{rot} A$, $u_w := \nabla \varphi$, und A, φ lösen:

$$-\Delta A = \omega$$
 und div $A = 0$

bzw. $\Delta \varphi = f$.

Beweis. Löse zuerst

$$\begin{cases} \operatorname{div} u_q = 0 \\ \operatorname{rot} u_q = \omega \end{cases} \quad \text{(l\"{o}sbar, da div } \omega = 0$$

Laut Lemma 2.12 (ii): $u_q = \operatorname{rot} A$

$$\Rightarrow \omega = \operatorname{rot} u_q = \operatorname{rot} \operatorname{rot} A = \nabla(\operatorname{div} A) - \Delta A$$

Sei z.B. $\operatorname{div} A = 0$.

 $\Rightarrow -\Delta A = \omega$; ist mit div A = 0 kompatibel, da:

$$-\operatorname{div}(\Delta A) = -\Delta(\operatorname{div} A) = 0 = \operatorname{div} \omega.$$

Löse nun

$$\begin{cases} \operatorname{div} u_w = f \\ \operatorname{rot} u_w = 0 \end{cases}$$

Laut Lemma 2.12 (i): $u_w = \nabla \varphi$

$$\Rightarrow \operatorname{div} u_w = \operatorname{div} \nabla \varphi = f$$
, also $\Delta \varphi = f$

$$\Rightarrow u_0 := u_q + u_w$$
 ist spezielle Lösung von (2.15), (2.16).

Allgemeine Lösung: $u = u_0 + \nabla \tilde{\varphi}$, $\forall \tilde{\varphi} \text{ mit } \Delta \tilde{\varphi} = 0$.

Bemerkung 2.14. Eine Funktion $u = \nabla \varphi$ mit $\Delta \varphi = 0$ heißt *Laplacefeld*. Es ist quellenund wirbelfrei, da

$$\operatorname{rot} u = \operatorname{rot} \nabla \varphi = 0$$
 , $\operatorname{div} u = \Delta \varphi = 0$.

In der Strömungsdynamik beschreibt u dann eine inkompressible Potentialströmung.

2.3.2 Die Wirbelgleichung

homogene, inkompressible Euler Gleichung in \mathbb{R}^2 , \mathbb{R}^3 :

$$\begin{cases} \frac{\partial u}{\partial t} + (u \cdot \nabla)u = -\frac{1}{\rho_0} \nabla p \\ \operatorname{div} u = 0 \end{cases} \tag{2.18}$$

Es gilt: $(u \cdot \nabla)u = \frac{1}{2}\nabla |u|^2 - u \times \omega$ mit $\omega := \text{rot } u$ rot von (2.18) \Rightarrow

$$\partial_t \underbrace{\operatorname{rot} u}_{=\omega} + \frac{1}{2} \underbrace{\operatorname{rot}(\nabla |u|^2)}_{=0} - \operatorname{rot}(u \times \omega) = -\frac{1}{\rho_0} \underbrace{\operatorname{rot} \nabla p}_{=0}$$

$$rot(u \times \omega) = (\omega \cdot \nabla)u - \omega \underbrace{\operatorname{div} u}_{=0} - (u \cdot \nabla)\omega + u \underbrace{\operatorname{div} \omega}_{=\operatorname{div} \operatorname{rot} u = 0}$$

$$= (\omega \cdot \nabla)u - (u \cdot \nabla)\omega$$

 $\Rightarrow \partial_t \omega - (\omega \cdot \nabla)u + (u \cdot \nabla)\omega = 0$ Hier haben wir p eliminiert.

$$\Rightarrow \boxed{\frac{\mathrm{D}\omega}{\mathrm{D}t} = (\omega \cdot \nabla)u} \quad \text{mit rot } u = \omega, \text{div } u = 0 \dots \text{ Wirbelgleichung in } \mathbb{R}^3$$

 $(\omega \cdot \nabla)u$ beschreibt die Wirbelstreckung in 3D (mit gleichzeitiger Wirbelverdünnung und Erhöhung der Wirbelstärke).

Vereinfachung in 2D:

$$\omega = (0, 0, \partial_1 u_2 - \partial_2 u_1)^\top, \nabla = (\partial_1, \partial_2, 0) \Rightarrow (\omega \cdot \nabla) u = 0$$

$$\Rightarrow \boxed{\frac{\mathrm{D}\omega}{\mathrm{D}t} = 0} \quad \text{bzw. } \frac{\partial\omega}{\partial t} + u \cdot \nabla\omega = 0 \dots \text{Wirbelgleichung in } \mathbb{R}^2$$

 ω ist hier eine skalare Funktion! Die Wirbelgleichung ist nichtlinear, da $u=u[\omega]$.

A-priori Abschätzung an ω :

Lemma 2.15. Für die Wirbelgleichung in $D \subset \mathbb{R}^2$ mit $u \cdot \nu = 0$ auf ∂D gilt:

$$\Rightarrow \|\omega(\cdot, t)\|_{L^{p}(D)} = \|\omega_{0}\|_{L^{p}(D)} \quad , 1 \le p \le \infty, \forall t \ge 0 . \tag{2.19}$$

Beweis. Für $1 \le p < \infty$ multipliziere die Wirbelgleichung mit $|\omega|^{p-1} \operatorname{sign}(\omega)$:

$$(\partial_t \omega) |\omega|^{p-1} \operatorname{sign}(\omega) + (u \cdot \nabla \omega) |\omega|^{p-1} \operatorname{sign}(\omega) = 0,$$

$$\Rightarrow \partial_t |\omega|^p + u \cdot \nabla |\omega|^p = 0$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{D} |\omega|^{p} \mathrm{d}x = -\int_{D} u \cdot \nabla |\omega|^{p} \mathrm{d}x = -\int_{D} \mathrm{div}(u|\omega|^{p}) \mathrm{d}x + \int_{D} (\underbrace{\mathrm{div}\,u}_{=0}) |\omega|^{p} \mathrm{d}x$$
$$= -\int_{\partial D} (\underbrace{u \cdot \nu}_{=0}) |\omega|^{p} \mathrm{d}s = 0$$

Das liefert (2.19) für $1 \le p < \infty$. Der Fall $p = \infty$ folgt mit $\|\omega(\cdot,t)\|_{L^{\infty}(D)} = \lim_{p \to \infty} \|\omega(\cdot,t)\|_{L^{p}(D)}$.

D.i. wichtige Abschätzung für den Existenzbeweis in \mathbb{R}^2 (im \mathbb{R}^3 viel schwieriger).

Rekonstruktion von u aus ω :

1. Fall: Sei $D \subset \mathbb{R}^2$ einfach zusammenhängend, beschränkt

$$\begin{cases} \partial_1 u_2 - \partial_2 u_1 = \omega &, D \\ \partial_1 u_1 + \partial_2 u_2 = 0 &, D \\ u \cdot \nu = 0 &, \partial D \end{cases}$$
(2.20)

$$\text{div}\, u = 0 \Rightarrow \exists A = (0,0,\psi)^\top : u = \text{rot}\, A, \, \text{d.h.} \,\, u_1 = \partial_2 \psi, u_2 = -\partial_1 \psi, \, \text{bzw.} \,\, u = \nabla^\perp \psi \,\, \text{mit} \\ \nabla^\perp := \left(\begin{array}{c} \partial_2 \\ -\partial_1 \end{array} \right)$$

Definition 2.16. Für gegebenes u heißt ψ mit $u = \nabla^{\top} \psi$ Stromfunktion; sie ist bis auf additive Konstante eindeutig.

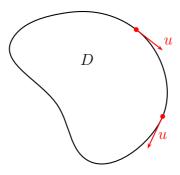
Definition 2.17. Die Integralkurven $x(s) = \begin{pmatrix} x_1(s) \\ x_2(s) \end{pmatrix}, s \in \mathbb{R}$ von u(x,t) für \underline{t} fest heißen Stromlinien. Sie lösen $\frac{\mathrm{d}x}{\mathrm{d}s} = u(x;t)$.

Achtung: Stromlinien \neq Teilchentrajektorien (außer in stationärer Strömung)

Interpretation:

Stromlinien sind Niveaulinien von $\psi(x,t)$ für t fest, denn:

$$\frac{\mathrm{d}}{\mathrm{d}s}\psi(x(s);t) = \partial_1\psi \,\dot{x}_1 + \partial_2\psi \,\dot{x}_2 = -u_2u_1 + u_1u_2 = 0$$



Integration vom tangentialen Vektorfeld u entlang von ∂D liefert x(s).

Wegen $u \cdot \nu = 0$ auf ∂D (also tangentiales Vektorfeld) gilt: Eine Integralkurve von u liegt auf ∂D , somit ist ∂D (mit geieigneter Parametrisierung) Stromlinie $\Rightarrow \psi = \text{const}$ auf ∂D .

Konvention: Wähle die additive Konstante für ψ so, dass $\psi = 0$ auf ∂D .

Damit ist ψ eindeutig bestimmt:

Lemma 2.18. $u=u[\omega]=\nabla^{\perp}\psi$ ist eindeutige Lösung von (2.20), wobei ψ das Potentialproblem

$$\begin{cases}
-\Delta \psi = \omega &, D \\
\psi = 0 &, \partial D
\end{cases}$$
(2.21)

löst.

Beweis. Existenz folgt aus (2.21) und $\omega = -\Delta \psi = \operatorname{rot}(\nabla^{\perp} \psi) \checkmark$

$$\begin{aligned} \operatorname{div} u &= \operatorname{div}(\nabla^{\perp} \psi) = 0 \checkmark \\ \psi \big|_{\partial D} &= 0 \Rightarrow \nabla \psi \perp \partial D \Rightarrow u = \nabla^{\perp} \psi \, || \, \partial D \checkmark \end{aligned}$$

Eindeutigkeit: Sei $v := u - \tilde{u}$, die Differenz zweier Lösungen. Also

$$\operatorname{rot} v = \operatorname{div} v = 0 \text{ in } D; v \cdot \nu = 0, \partial D$$

Laut Lemma 2.12 (i): $v = \nabla \varphi$

$$\Rightarrow 0 = \operatorname{div} v = \operatorname{div} \nabla \varphi = \Delta \varphi \text{ in } D, \nabla \varphi \cdot \nu = 0 \text{ auf } \partial D$$

$$\Rightarrow \varphi = \operatorname{const} \quad \Rightarrow \quad v = \nabla \varphi \equiv 0$$

Mit Lemma 2.18 ist nun die "Koeffizientenfunktion" $u[\omega]$ in der 2D-Wirbelgleichung

$$\frac{\partial \omega}{\partial t} + u[\omega] \cdot \nabla \omega = 0$$

definiert. Für den Beweis der sachgemäßen Gestelltheit von diesem Evolutionsproblem ist die a-priori Abschätzungen (2.19) essentiell (siehe §2.3 in [MP]; §3.2.3, 3.3, 4.2 in [MB]).

Darstellung von ω aus (2.21):

Satz 2.19.

$$\psi(x) = \int_{D} G_{D}(x, x')\omega(x')dx';$$

die Greensche Funktion G_D löst

$$\Delta_x G_D(x, x') = -\delta(x - x') \text{ in } D,$$

$$G_D(x, x') = 0 \quad \forall x \in \partial D \text{ oder } x' \in \partial D.$$

Es gilt:

$$G_D(x, x') = G(x, x') + \gamma(x, x') \quad mit \ G(x, x') = -\frac{1}{2\pi} \log|x - x'|, \ \Delta_x \gamma = \Delta_{x'} \gamma = 0, + RB \ f\"{u}r \ \gamma.$$

$$\Rightarrow u(x) = \nabla^{\perp} \psi(x) = \int_D \underbrace{\nabla_x^{\perp} G_D(x, x')}_{=:K_D(x, x')} \omega(x') \mathrm{d}x'.$$

Beweis. PDGl-VL.

Bemerkung 2.20. Unter welcher Bedingung erhält man eine stationäre Strömung?

Es gilt

$$u \cdot \nabla \omega = u_1 \partial_1 \omega + u_2 \partial_2 \omega = \partial_2 \psi \cdot \partial_1 \omega - \partial_1 \psi \cdot \partial_2 \omega$$
$$= \det \begin{pmatrix} \partial_1 \omega & \partial_2 \omega \\ \partial_1 \psi & \partial_2 \psi \end{pmatrix} =: \det J(\omega, \psi)$$

Also:

$$\frac{\partial \omega}{\partial t} = 0 \quad \Leftrightarrow \quad \det J(\omega, \psi) = 0 \quad \forall x \in D.$$

Dann sind $\omega(x), \psi(x)$ (funktional-)abhängig, d.h. $\omega = f(\psi)$ oder $\psi = g(\omega)$.

2. Fall: $D = \mathbb{R}^2$

Löse also:

$$\begin{cases} \operatorname{div} u = 0 \\ \operatorname{rot} u = \begin{pmatrix} 0 \\ 0 \\ \omega \end{pmatrix} \end{cases} \tag{2.22}$$

Analog zu Lemma 2.18 kann u bestimmt werden durch $u = \nabla^{\perp} \psi$ und $-\Delta \psi = \omega$ in \mathbb{R}^2 . Spezielle Lösung kann mit der Greenschen Funktion für die Poisson Gleichung in \mathbb{R}^2 ,

$$G(x, x') = -\frac{1}{2\pi} \log|x - x'|; x, x' \in \mathbb{R}^2$$

gegeben werden:

$$\psi(x) = \int_{\mathbb{R}^2} G(x, x') \omega(x') dx',$$

$$u_0(x) = \nabla^{\perp} \psi(x) = \int_{\mathbb{R}^2} K(x - x') \omega(x') dx'$$
(2.23)

mit

$$K(x-x') = -\frac{1}{2\pi} \frac{(x-x')^{\perp}}{|x-x'|^2} \quad ; \quad x^{\perp} = \begin{pmatrix} x_2 \\ -x_1 \end{pmatrix} \text{ für } x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}.$$

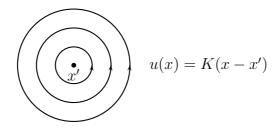
Bem. für Analysis bez. Existenz von u: Es gilt die verallgemeinerte Young Ungleichung

$$||u||_{L^{r}(\mathbb{R}^{2})} \le C||\omega||_{L^{p}(\mathbb{R}^{2})} \quad ; 1$$

Interpretation von K(x - x'):

Sei $\omega(x) = \delta(x - x'), x' \in \mathbb{R}^2$ gegeben.

 $\Rightarrow K(x-x') = \text{Geschwindigkeitsfeld } u(x),$ "erzeugt" durch Einheitswirbel $\omega(x) = \delta(x-x')$ an x':



Allgemeine Lösung von (2.22) (vgl. Bem. 2.14):

$$u = \nabla^{\perp} \psi + \underbrace{\nabla \varphi}_{\text{Laplacefeld}} \quad \text{mit } \Delta \varphi = 0 \text{ in } \mathbb{R}^2$$

Ohne "Randbedingungen im Unendlichen" ist die Lösung *nicht* eindeutig. Mögliche Randbedingungen:

$$u(x) \stackrel{|x| \to \infty}{\longrightarrow} u_{\infty} (= \text{const})$$
 (d.h. gleichförmige Strömung im Unendlichen) (2.24)

 \Rightarrow eindeutige Lösung von (2.22), (2.24) (z.B. für ω mit kompaktem Träger):

$$u = \nabla^{\perp} \psi + u_{\infty}$$

Referenzen: [MP] §1.2

2.3.3 Bewegung von Punktwirbeln im \mathbb{R}^2

Wir betrachten zunächst die Wirbelgleichung in $D \subset \mathbb{R}^2$, einfach zusammenhängend, beschränkt:

$$\omega_t = -u \cdot \nabla \omega \quad , \tag{2.25}$$

und u erfüllt: div u = 0 in D, $u \cdot \nu = 0$ aud ∂D .

Ziel: Zurückführen der PDGl. "Wirbelgleichung" auf ein System von GDGl.

Betrachte die Anfangsbedingung (Linearkombination von *Punktwirbeln*):

$$\omega_0(x) := \sum_{i=1}^N a_i \delta(x - x_i), \quad x \in D \subset \mathbb{R}^2$$
(2.26)

mit gegebenen Positionen $x_i \in D \subset \mathbb{R}^2$ und Stärken $a_i \in \mathbb{R}$.

In den Euler Gleichungen ist die Erhaltung von N Punktwirbeln für t>0 plausibel, da das Modell keine Diffusion/Viskosität enthält.

<u>Probleme:</u> Eine distributionelle Formulierung von PDGl (2.25) ist "delikat", da schon die Koeffizientenfunktion $u[\omega_0]$ an x_i singulär ist, also in der schwacher Formulierung nicht verwendbar. \Rightarrow Regularisierung nötig:

Folgende Stufenfunktion approximiert ω_0 :

$$\omega_0^{\varepsilon}(x) := \frac{1}{\varepsilon^2 \pi} \sum_{i=1}^N a_i \chi_{\underbrace{K(x_i, \varepsilon)}}(x)$$
Kreisscheibe

Es gilt $\chi_{K(x_i,\varepsilon)} \frac{1}{\varepsilon^2 \pi} \to \delta(x-x_i)$ in $\mathcal{D}'(D)$.

Zur Umformulierung betrachten wir $\forall f \in C^1(\bar{D})$ (und hinreichend glatte u, ω):

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{D} \omega f \mathrm{d}x = -\int_{D} (u \cdot \nabla \omega) f \mathrm{d}x \stackrel{\mathrm{div}\, u = 0}{=} -\int_{D} \mathrm{div}(f u \omega) \mathrm{d}x + \int_{D} \omega u \cdot \nabla f \mathrm{d}x$$

$$\stackrel{\mathrm{Div.Satz}}{=} -\int_{\partial D} f \omega \underbrace{u \cdot \nu}_{=0} \mathrm{d}s + \int_{D} \omega u \cdot \nabla f \mathrm{d}x.$$

 \Rightarrow Das motiviert die schwache Formulierung der Wirbelgleichung: ges.: $\omega \in C^1([0,T],L^2(D))$ mit

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle\omega(t),f\rangle = \langle\omega(t),u(t)\cdot\nabla f\rangle \quad \forall f\in C^1(\bar{D}),\omega(t=0) = \omega_0,$$
(2.27)

und
$$\langle f,g\rangle:=\int\limits_D f(y)g(y)\mathrm{d}y.$$
 Gleiche Form für $D=\mathbb{R}^2.$

Eigenschaften der Lösung $\omega^{\varepsilon}(t)$ von (2.27) in $D=\mathbb{R}^2$ mit AB ω_0^{ε} :

Satz 2.21. Für $D = \mathbb{R}^2$ gilt:

$$\lim_{\varepsilon \to 0} \langle \omega^{\varepsilon}(t), f \rangle = \sum_{i=1}^{N} a_{i} f(x_{i}(t)) = \langle \omega(t), f \rangle, \quad \forall f \in C^{1}(\mathbb{R}^{2}),$$

$$mit\ \omega(x,t) = \sum_{i=1}^{N} a_i \delta(x - x_i(t)).$$

 $x_i(t)$ löst die GDGl ("diskretes Wirbelmodel"):

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t} x_i(t) = u(x_i(t), t) = \sum_{j \neq i} K(x_i(t) - x_j(t)) a_j \\ x_i(0) = x_i \quad ; \quad i = 1, \dots, N. \end{cases}$$
(2.28)

(*) ... Geschwindigkeitsfeld der "anderen" Wirbel \Rightarrow ein (einziger) Wirbel ist stationär.

Beweis.
$$[MP]$$
 Th. 4.2.3.

Bemerkung 2.22. Ist $\omega(x,t)$ nun (maßwertige) Lösung von (2.27) zur AB ω_0 aus (2.26)? Fast, denn ω löst

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle\omega(t),f\rangle = \langle\omega(t),u_r\cdot\nabla f\rangle \quad \forall f\in C^1(\mathbb{R}^2)$$
(2.29)

mit der "regularisierten Geschwindigkeit"

$$u_r(x,t) := \int_{\mathbb{R}^2} \underbrace{\nabla^{\perp} G(x,x')}_{=K(x-x')} \underbrace{\chi_{\{x \neq x'\}} \omega(x',t)}_{=0 \text{ für } x=x'} dx'$$

$$(2.30)$$

(in mathematisch etwas schlampiger Notation).

 $\chi_{\{x\neq x'\}}$ verhindert die "Selbstinteraktion" der Punktwirbel; das wird nun als physikalische Zusatzannahme verwendet. (2.30) mit Singularitäten des Integralkerns an Position der Deltas wäre auch gar nicht definiert. Dass ein einziger Punktwirbel stationär sein muss, sieht man auch daraus, dass es dann keine bevorzugte Richtung gibt.

Ursache des Problems: Schwache Formulierung (2.27) mit Geschwindigkeitsfeld u aus (2.23) ist für distributionelle Lösung nicht definiert.

Lösung $\omega(t)$ mit $x_i(t)$ löst die PDGl (2.29)-(2.30) durch Rückführung auf GDGl-Sytem (2.28).

Wirbelmodell als Hamilton-System:

(2.28) ist äquivalent zu

$$\begin{cases}
a_i \frac{\mathrm{d}}{\mathrm{d}t} x_i^1 = \frac{\partial}{\partial x_i^2} H, & i = 1, ..., N, \\
a_i \frac{\mathrm{d}}{\mathrm{d}t} x_i^2 = -\frac{\partial}{\partial x_i^1} H, & (2.31)
\end{cases}$$

mit Hamiltonfunktion ("Energie")

$$H := -\frac{1}{4\pi} \sum_{j \neq i} \sum_{a_i a_j \ln |x_i - x_j|} a_i a_j \ln |x_i - x_j|;$$

Notation $x_i = (x_i^1, x_i^2)^{\top}$.

Vergleich zu Hamilton-Gleichungen der Punktmechanik:

ein Teilchen mit Masse m, kinetischer Energie $\frac{p^2}{2m}$, Impuls $p=m\,u$ und potentieller Energie V(x).

Mit Hamilton
funktion $H(x,p) := \frac{p^2}{2m} + V(x)$ gilt:

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t}x = \frac{\partial}{\partial p}H = \frac{p}{m} = u, \\ \frac{\mathrm{d}}{\mathrm{d}t}p = -\frac{\partial}{\partial x}H = -\frac{\mathrm{d}V}{\mathrm{d}x} = F & \dots & 2. \text{ Newtonsches Gesetz.} \end{cases}$$

Hamilton-Systeme haben immer folgende Eigenschaft:

"Energie" ist zeitlich konstant, also: $H(t) = \text{const} \quad \forall t$.

Ferner gilt hier:

Wirbelzentrum
$$B(t) := \frac{\sum_{i=1}^{N} a_i x_i(t)}{\sum_{i=1}^{N} a_i}$$
 ist zeitlich konstant (für $\sum_{i=1}^{N} a_i \neq 0$) $\Rightarrow M(t) := \sum_{i=1}^{N} a_i x_i(t) = \text{const.}$

Trägheitsmoment ("inertia") ist zeitlich konstant, also:
$$I(t) := \sum_{i=1}^{N} a_i |x_i(t)|^2 = \text{const}$$

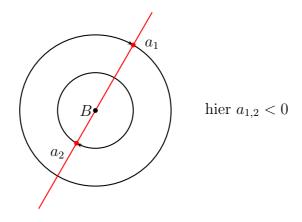
Also: 4 (skalare) erste Integrale der Bewegung \Rightarrow GDGl-System (2.31) für max. 3 Punktwirbel ($N \leq 3$) explizit lösbar (da Hamiltonsches System in \mathbb{R}^{2N} mit N+1 Poisson-kommutierenden Erhaltungsgrößen vollständig integrabel ist [V.I. Arnold, Dynamical Systems III]).

Beispiel 2.23. N=2:

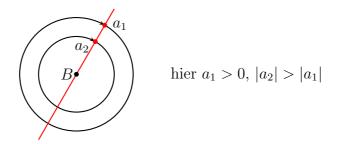
$$H = -\frac{1}{2\pi}a_1a_2\ln|x_1 - x_2| = \text{const} \quad \Rightarrow \quad |x_1(t) - x_2(t)| = \text{const}$$

Wirbelzentrum ... $B := \frac{M}{a_1 + a_2} = \text{const}$ und liegt auf Gerade durch $x_1(t)$ und $x_2(t)$.

1. Fall: $sign a_1 = sign a_2$

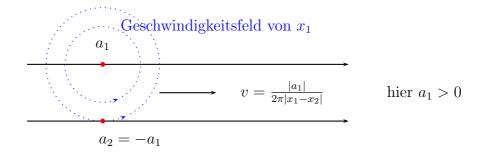


<u>2. Fall:</u> sign $a_1 \neq \text{sign } a_2 \text{ und } |a_1| \neq |a_2|$



Es gilt: Rotationsradius $\to \infty$ für $|a_1| \to |a_2|$

<u>3. Fall:</u> $a_1 = -a_2$



Frage: Hat das System (2.28) eine (zeitlich) globale Lösung? Es gibt 2 mögliche Probleme:

- a) $|x_i| \to \infty$ für $t \to T^*$.
- b) $|x_i(t) x_j(t)| \to 0$ für $t \to T^*$, also 2 "Teilchen" an einem Ort, und die rechte Seite von (2.28) ist nicht mehr definiert.

Antwort: Globale Lösbarkeit hängt von $\{\text{sign }a_i\}$ ab.

Satz 2.24. $Sei \operatorname{sign} a_i = \operatorname{sign} a_1 \neq 0, \forall i = 2, ..., N \Rightarrow L\ddot{o}sung \ von \ (2.28) \ \exists \ f\ddot{u}r \ 0 \leq t < \infty.$

Beweis. 1. Behauptung: System bleibt in endlichem Gebiet, d.h. $|x_i(t)| \leq \text{const } \forall t$, da:

$$|x_i(t)|^2 \le \frac{1}{|a_i|} \sum_j |a_j| |x_j|^2 = \frac{|I(t)|}{|a_i|} = \text{const} \quad \checkmark$$
 (2.32)

<u>2. Behauptung:</u> Alle Paare $k \neq l$ haben festen Mindestabstand $|x_k(t) - x_l(t)|$, d.h. Geschwindigkeit ist immer endlich $\forall t < \infty$, da:

$$-\underbrace{a_k a_l}_{>0} \ln |x_k(t) - x_l(t)| = 4\pi H(t) + \sum_{\substack{i \neq j \\ (i,j) \neq (k,l)}} a_i a_j \ln \underbrace{|x_i(t) - x_j(t)|}_{\leq |x_i| + |x_j|}$$

$$\stackrel{(2.32)}{\leq} 4\pi H(t) + \sum_{\substack{i \neq j \\ (i,j) \neq (k,l)}} a_i a_j \ln \left(\sqrt{\frac{|I|}{|a_i|}} + \sqrt{\frac{|I|}{|a_j|}} \right) =: C = \text{const} \quad \forall t.$$

$$\Rightarrow |x_k(t) - x_l(t)| \ge \exp\left(-\frac{C}{a_k a_l}\right) > 0 \quad \forall t \checkmark$$

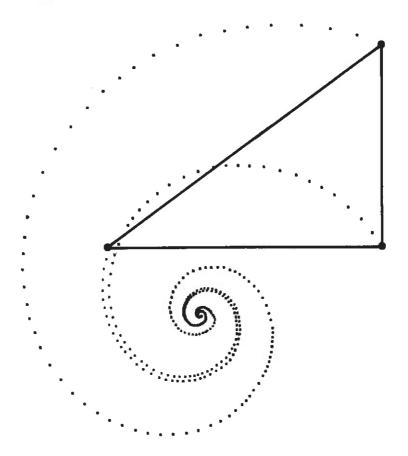
Für ungleiche Vorzeichen von a_i und $N \geq 3$ ist ein "Kollaps" (d.h. $x_i(T^*) = x_j(T^*)$) in endlicher Zeit möglich.

Beispiel 2.25. $N = 3, a_1 = a_2 = 2, a_3 = -1;$

$$x_1 = (-1, 0)^{\mathsf{T}}, x_2 = (1, 0)^{\mathsf{T}}, x_3 = (1, \sqrt{2})^{\mathsf{T}}$$

$$B = \left(-\frac{1}{3}, -\frac{\sqrt{2}}{3}\right)^{\top} \dots \text{Wirbelzentrum},$$

selbst-ähnliche Evolution, Kollaps bei $T^* = 3\sqrt{2}\pi$.



Nach dem Kollaps: Fortsetzung als (stationäre) 1-Wirbel-Strömung; ist nicht zeitreversibel!

Laut Satz 2.24 bleibt System für sign $a_i = \text{sign } a_1$ in endlichem Gebiet; Geschwindigkeiten bleiben auch endlich.

Verallgemeinerung:

Satz 2.26. Es gelte:

$$\forall J \subset \{1, \dots, N\} : \sum_{i \in J} a_i \neq 0.$$
 (2.33)

Dann gilt $\forall R > 0, T > 0$: $\exists \tilde{R} = \tilde{R}(a_i, R, N, T)$ (unabhängig von x_1, \dots, x_N !) mit

$$x_1, \dots, x_N \in K_R(0) \quad \Rightarrow \quad x_i(t) \in K_{\tilde{R}}(0) \quad \forall i = 1, \dots, N; \forall 0 \le t \le T$$

(falls Trajektorie so lange existiert).

Beweis. Corollary 4.2.1 [MP]

Bem: Bed. (2.33) nötig – siehe Bsp. 2.23, 3. Fall mit $x_1 \to x_2$.

Damit kann man zeigen:

Satz 2.27. Es gelte:
$$\forall J \subset \{1, ..., N\} : \sum_{i \in J} a_i \neq 0, N \geq 3.$$

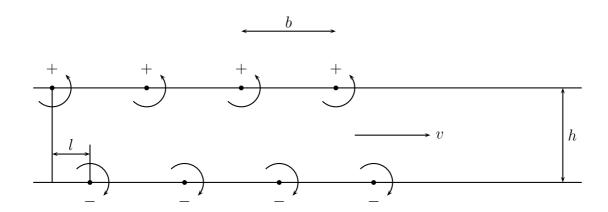
 \Rightarrow Für fast alle Anfangsbedingungen $(x_1, \ldots, x_N) \in \mathbb{R}^{2N}$:

 \exists globale Lösung $(x_1(t), \ldots, x_N(t))$ von (2.28); d.h.: Sei $A \subset \mathbb{R}^{2N}$ beschränkt, und $B \subset A$ die Menge der ABen, die zu einem Kollaps in endlicher Zeit führen. Dann:

$$\mu(B) = 0.$$

Beispiel 2.28 (von Kármán-Wirbelstraße).

• ∞ -viele Wirbel der Stärke $\pm a$



System unterliegt starrer Translation mit konstantem $v, \forall t > 0$.

• Anwendung: Umströmung eines Festkörpers ⇒ Viskosität (nur in Oberflächen-Nähe bedeutsam) erzeugt gegenläufige Wirbel, anschließend: Transport der Wirbel durch Euler-Strömung für (ziemlich) lange Zeit

• Wirbelstraße für geeignete a, b, h, l linear stabil.

Referenzen: [MP] §4.1-3

2.4 Grenzschichten für Navier-Stokes Gleichungen

Betrachte inkompressible, homogene (skalierte) Navier-Stokes Gleichungen mit no-slip RBen:

$$\begin{cases}
 u_t + (u \cdot \nabla)u + \nabla p &= \frac{1}{Re} \Delta u &, \Omega \\
 \text{div } u &= 0 &, \Omega \\
 u &= 0 &, \partial \Omega \\
 u(x,0) &= u_0(x) &, \Omega
\end{cases}$$
(2.34)

Im "Inneren" von Ω : Reibungsterm $\nu_0 \Delta u$ oft vernachlässigbar gegenüber konvektivem Term $(u \cdot \nabla)u \to \text{Euler Gleichungen}$ (da einfacher lösbar).

In <u>Grenzschichte bei $\partial\Omega$ </u>: Reibungsterm wesentlich, da u "klein" und Einfluss der RB.

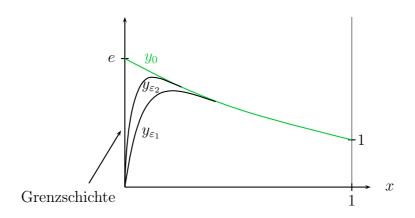
Ziel: Kopplung von Euler Gleichungen im Inneren von Ω mit Grenzschichtgleichungen.

Modelproblem für Methode der asymptotische Entwicklung:

$$\begin{cases} \varepsilon y'' + 2y' + 2y = 0, & 0 < x < 1, & \varepsilon \ll 1, \\ y(0) = 0, y(1) = 1 \end{cases}$$
 (2.35)

Exakte Lösung: $y_{\varepsilon}(x) = \frac{1}{e^{\lambda_1} - e^{\lambda_2}} \left(e^{\lambda_1 x} - e^{\lambda_2 x} \right) \approx e \left(e^{-x} - e^{-\frac{2x}{\varepsilon}} \right) \stackrel{\varepsilon \to 0, x > 0}{\longrightarrow} e^{1-x},$

$$\lambda_1 = \frac{-1 + \sqrt{1 - 2\varepsilon}}{\varepsilon} \overset{\text{Taylor}}{\approx} -1 \; , \; \lambda_2 = \frac{-1 - \sqrt{1 - 2\varepsilon}}{\varepsilon} \overset{\text{Taylor}}{\approx} -\frac{2}{\varepsilon} + 1$$



 $y_0 = e^{1-x}$ löst reduzierte Gleichung

$$\begin{cases} 2y' + 2y &= 0, \\ y(1) &= 1; \end{cases}$$
 (2.36)

ist für $x \gg \varepsilon$ gute Näherung für y_{ε} , aber nicht für $x \approx 0$.

Idee der asymptotischen Entwicklung: Approximation der Lösung von (2.35), separat auf $(0, \delta(\varepsilon))$ und $(\delta(\varepsilon), 1)$; hier $\delta(\varepsilon) = O(\varepsilon)$.

Schritt 1 (äußere Entwicklung):

Formaler Ansatz für Lösung auf $(\delta(\varepsilon), 1)$:

$$y(x) = y_0(x) + \varepsilon y_1(x) + \varepsilon^2 y_2(x) + \dots$$

Bem.: Konvergenz dieser "Reihe" interessiert hier nicht; sie wird immer nach wenigen Termen abgebrochen.

Einsetzen in $(2.35) \Rightarrow$

$$\varepsilon^{0}(2y_{0}' + 2y_{0}) + \varepsilon^{1}(y_{0}'' + 2y_{1}' + 2y_{1}) + \varepsilon^{2}(y_{1}'' + 2y_{2}' + 2y_{2}) + \dots = 0$$
$$\varepsilon^{0}y_{0}(1) + \varepsilon^{1}y_{1}(1) + \varepsilon^{2}y_{2}(1) + \dots = 1$$

Koeffizientenvergleich suggeriert:

$$2y'_{0} + 2y_{0} = 0 , y_{0}(1) = 1$$

$$y''_{0} + 2y'_{1} + 2y_{1} = 0 , y_{1}(1) = 0$$

$$y''_{1} + 2y'_{2} + 2y_{2} = 0 , y_{2}(1) = 0$$

$$\vdots$$

$$(2.37)$$

$$\Rightarrow y_0(x) = e^{1-x}, \dots$$

Schritt 2 (innere Entwicklung):

Die innere Entwicklung soll die Lösung auf $(0, \delta(\varepsilon))$ approximieren.

Setze $\xi := \frac{x}{\varepsilon}$ (schnelle Variable), $Y(\xi) := y(\varepsilon \xi)$.

 $Y(\xi)$ erfüllt

$$\frac{1}{\varepsilon}Y'' + \frac{2}{\varepsilon}Y' + 2Y = 0, \quad Y(0) = 0. \tag{2.38}$$

Entwicklungsansatz:

$$Y(\xi) = Y_0(\xi) + \varepsilon Y_1(\xi) + \varepsilon^2 Y_2(\xi) + \dots$$

Einsetzen in $(2.38) \Rightarrow$

$$\varepsilon^{-1}[Y_0'' + 2Y_0'] + \varepsilon^0[Y_1'' + 2Y_1' + 2Y_0] + \varepsilon[Y_2'' + 2Y_2' + 2Y_1] + \dots = 0$$

Koeffizientenvergleich sugeriert:

$$Y_0'' + 2Y_0' = 0 , Y_0(0) = 0$$

$$Y_1'' + 2Y_1' + 2Y_0 = 0 , Y_1(0) = 0$$

$$Y_2'' + 2Y_2' + 2Y_1 = 0 , Y_2(0) = 0$$
(2.39)

$$\Rightarrow Y_0(\xi) = a(1 - e^{-2\xi})$$
 für ein $a \in \mathbb{R}$.

Schritt 3 (matching):

Kompatibilitätsbedingung für y_0 und Y_0 für $\varepsilon \to 0$ (Y_0 liefert den Grenzschichtübergang zwischen RB an x = 0 und $y_0(\delta(\varepsilon))$; der ist aber für $\varepsilon > 0$ noch unstetig):

$$\lim_{\xi \to \infty} Y_0(\xi) \stackrel{!}{=} \lim_{x \to 0} y_0(x) \quad \Rightarrow \quad a = e.$$

Schritt 4 (Zusammenfassung der Approximation):

$$\tilde{y}(x) := \begin{cases} Y_0(\frac{x}{\varepsilon}), & x \in (0, \delta(\varepsilon)) \\ y_0(x), & x \in (\delta(\varepsilon), 1) \end{cases}$$

ist unstetig und noch keine Approximation der Ordnung $O(\varepsilon)$ an exakte Lösung y (vergleiche für $\delta(\varepsilon) = \varepsilon$: $y_0(\varepsilon) = e^{1-\varepsilon}$, $y_{\varepsilon}(\varepsilon)$).

Schritt 5 (gleichmäßige Approximation):

$$\hat{y}(x) := Y_0\left(\frac{x}{\varepsilon}\right) + y_0(x) - \lim_{x \to 0} y_0(x) = \dots = e\left(e^{-x} - e^{-\frac{2x}{\varepsilon}}\right) \qquad \text{(vgl. Taylorentw. von } y_\varepsilon\text{)}$$

ist gleichmäßige Approximation (bez. $x \in [0,1]$) der Ordnung $O(\varepsilon)$ (folgt aus Taylorent-wicklung von y_{ε}).

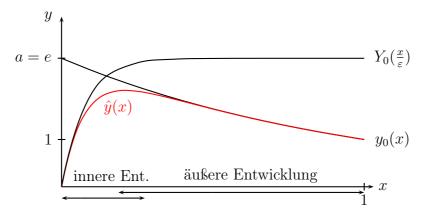
Bem.: In \hat{y} fällt die Summe der letzten beiden Terme für $x \to 0$ weg, sowie der erste und dritte Term für $x \to \infty$. Für kleines und großes x erhällt man also $\tilde{y}(x) \approx \hat{y}(x)$.

Bemerkung 2.29. 1) In der äußeren Entwicklung spielt $\varepsilon y''$ keine Rolle, wohl aber in der inneren Entwicklung - wegen Umskalierung auf $\xi = \frac{x}{\varepsilon}$.

- 2) Die nächsten Entwicklungsterme $y_1(x), Y_1(\xi)$ sind aus den *inhomogenen* ODEs in (2.37) bzw. (2.39) berechenbar.
- 3) Allgemeinere innere Entwicklung mit $\xi := \frac{x}{\varepsilon^{\alpha}}$ und

$$Y(\xi) = Y_0(\xi) + \varepsilon^{\beta} Y_1(\xi) + \varepsilon^{2\beta} Y_2(\xi) + \dots$$

Plausible Werte für $\alpha > 0$, $\beta > 0$ findet man durch Einsetzen in ODE und Ausbalancieren der dominanten ε -Terme (d.h. kleinste ε -Exponenten). Ziel: möglichst viele solche Terme.



Prandtl'sche Grenzschichtgleichungen (1904)

Betrachte 2D Navier-Stokes Gleichungen über ebener Platte, $u = (v, w)^{\top} \in \mathbb{R}^2$; $(x, y)^{\top} \in \Omega := \mathbb{R} \times \mathbb{R}^+$; sei $\varepsilon = \frac{1}{Re} \ll 1$ (aber fest):

$$\begin{cases}
\partial_t v + v \,\partial_x v + w \,\partial_y v + \partial_x p &= \varepsilon \Delta v \\
\partial_t w + v \partial_x w + w \,\partial_y w + \partial_y p &= \varepsilon \Delta w \\
\partial_x v + \partial_y w &= 0 \\
v|_{y=0} = w|_{y=0} &= 0 \\
v(0, x, y) = v_I(x, y); \quad w(0, x, y) = w_I(x, y)
\end{cases} (2.40)$$

Schritt 1 (äußere Entwicklung): Ansatz ("weg von $\{y = 0\}$ "):

$$v = v_0 + \varepsilon v_1 + \varepsilon^2 v_2 + \dots$$

$$w = w_0 + \varepsilon w_1 + \varepsilon^2 w_2 + \dots$$

$$p = p_0 + \varepsilon p_1 + \varepsilon^2 p_2 + \dots$$

Einsetzen in (2.40) liefert in tiefster Ordnung (ε^0) die Euler Gleichungen:

$$\begin{cases}
\partial_{t}v_{0} + v_{0} \partial_{x}v_{0} + w_{0} \partial_{y}v_{0} + \partial_{x}p_{0} &= 0 \\
\partial_{t}w_{0} + v_{0}\partial_{x}w_{0} + w_{0} \partial_{y}w_{0} + \partial_{y}p_{0} &= 0 \\
\partial_{x}v_{0} + \partial_{y}w_{0} &= 0 \\
v_{0}(0, x, y) = v_{I}(x, y); \quad w_{0}(0, x, y) = w_{I}(x, y)
\end{cases} (2.41)$$

(aber keine RB an y = 0)

Schritt 2 (innere Entwicklung):

Wir erwarten große Änderungen der Lösung in y-Richtung, aber nicht in x-Richtung \Rightarrow Skalierungsansatz nahe bei $\{y=0\}$:

$$T:=t,\ X:=x,\ Y:=rac{y}{arepsilon^{\alpha}},\ \mathrm{mit}\ \mathrm{zu}\ \mathrm{bestimmendem}\ \alpha>0;$$

$$\begin{array}{rcl} V(T,X,Y) &:= & v(t,x,\varepsilon^{\alpha}Y), \\ W(T,X,Y) &:= & w(t,x,\varepsilon^{\alpha}Y), \\ P(T,X,Y) &:= & p(t,x,\varepsilon^{\alpha}Y). \end{array}$$

Einsetzen in (2.40):

$$\begin{cases}
\partial_{T}V + V \partial_{X}V + \varepsilon^{-\alpha}W \partial_{Y}V + \partial_{X}P = \varepsilon \partial_{X}^{2}V + \varepsilon^{1-2\alpha}\partial_{Y}^{2}V \\
\partial_{T}W + V \partial_{X}W + \varepsilon^{-\alpha}W \partial_{Y}W + \varepsilon^{-\alpha}\partial_{Y}P = \varepsilon \partial_{X}^{2}W + \varepsilon^{1-2\alpha}\partial_{Y}^{2}W \\
\partial_{X}V + \varepsilon^{-\alpha}\partial_{Y}W = 0 \\
V|_{Y=0} = W|_{Y=0} = 0
\end{cases} (2.42)$$

Entwicklungsansatz für V, W, P:

$$V = V_0 + \varepsilon^{\beta} V_1 + \varepsilon^{2\beta} V_2 + \dots$$

$$W = W_0 + \varepsilon^{\beta} W_1 + \varepsilon^{2\beta} W_2 + \dots$$

$$P = P_0 + \varepsilon^{\beta} P_1 + \varepsilon^{2\beta} P_2 + \dots$$
(2.43)

mit noch zu bestimmendem $\beta > 0$.

Einsetzen in 3. Gleichung von $(2.42) \Rightarrow$

$$\left[\partial_X V_0 + \varepsilon^{\beta} \partial_X V_1 + \varepsilon^{2\beta} \partial_X V_2 + \dots\right] + \varepsilon^{-\alpha} \left[\partial_Y W_0 + \varepsilon^{\beta} \partial_Y W_1 + \varepsilon^{2\beta} \partial_Y W_2 + \dots\right] = 0$$

Führende ε -Potenz ist $\partial_Y W_0$; das suggeriert:

$$\partial_Y W_0 = 0, \ W_0(T, X, 0) = 0, \quad \forall T, X \Rightarrow \boxed{W_0 \equiv 0.}$$

Also ist die Vertikalgeschwindigkeit in der Grenzschichte max. von der Ordnung $O(\varepsilon^{\beta})$. Balance der nächst höheren ε -Potenz suggeriert $\alpha = \beta$, also

$$\partial_X V_0 + \partial_Y W_1 = 0.$$

Einsetzen von (2.43) in 1. Gleichung von (2.42) \Rightarrow

$$\begin{split} & \left[\partial_T V_0 + \varepsilon^\alpha \, \partial_T V_1 + \ldots \right] + \left[V_0 + \varepsilon^\alpha \, V_1 + \ldots \right] \cdot \left[\partial_X V_0 + \varepsilon^\alpha \, \partial_X V_1 + \ldots \right] \\ & + \varepsilon^{-\alpha} \left[0 + \varepsilon^\alpha \, W_1 + \ldots \right] \cdot \left[\partial_Y V_0 + \varepsilon^\alpha \, \partial_Y V_1 + \ldots \right] + \left[\partial_X P_0 + \varepsilon^\alpha \, \partial_X P_1 + \ldots \right] \\ & = \varepsilon \left[\partial_X^2 V_0 + \varepsilon^\alpha \, \partial_X^2 V_1 + \ldots \right] + \varepsilon^{1-2\alpha} \left[\partial_Y^2 V_0 + \varepsilon^\alpha \, \partial_Y^2 V_1 + \ldots \right]. \end{split}$$

Falls $1 - 2\alpha < 0$ wäre, gäbe es nur einen führenden Term: $\partial_Y^2 V_0 = 0$.

Die Wahl $1 - 2\alpha = 0$ liefert aber die maximale Anzahl führender Terme:

$$\partial_T V_0 + V_0 \,\partial_X V_0 + W_1 \,\partial_Y V_0 + \partial_X P_0 = \partial_Y^2 V_0,$$

und $\alpha = \beta = \frac{1}{2}$ liefert die Grenzschichtdicke $\delta(\varepsilon) = O(\varepsilon^{\frac{1}{2}})$.

Einsetzen von (2.43) in 2. Gleichung von $(2.42) \Rightarrow$

$$\left[\partial_{T}W_{0} + \varepsilon^{\frac{1}{2}}\partial_{T}W_{1} + \dots\right] + \left[V_{0} + \varepsilon^{\frac{1}{2}}V_{1} + \dots\right] \cdot \left[0 + \varepsilon^{\frac{1}{2}}\partial_{X}W_{1} + \dots\right]
+ \varepsilon^{-\frac{1}{2}}\left[0 + \varepsilon^{\frac{1}{2}}W_{1} + \dots\right] \cdot \left[0 + \varepsilon^{\frac{1}{2}}\partial_{Y}W_{1} + \dots\right] + \varepsilon^{-\frac{1}{2}}\left[\partial_{Y}P_{0} + \varepsilon^{\frac{1}{2}}\partial_{Y}P_{1} + \dots\right]
= \varepsilon\left[0 + \varepsilon^{\frac{1}{2}}\partial_{X}^{2}W_{1} + \dots\right] + \left[0 + \varepsilon^{\frac{1}{2}}\partial_{Y}^{2}W_{1} + \dots\right].$$

In führender Ordnung gilt $\partial_Y P_0 = 0$. (Druck ist const in Y in der Grenzschichte.) Schritt 3 (matching): Matching-Bedingungen:

$$\lim_{Y \to \infty} V_0(T, X, Y) \stackrel{!}{=} \lim_{y \to 0} v_0(t, x, y)$$

$$[0 = W_0 =] \quad \lim_{Y \to \infty} W_0(T, X, Y) \stackrel{!}{=} \lim_{y \to 0} w_0(t, x, y)$$

$$[P_0(T, X) =] \quad \lim_{Y \to \infty} P_0(T, X, Y) \stackrel{!}{=} \lim_{y \to 0} p_0(t, x, y)$$

2. Zeile und $W_0 \equiv 0$ liefern: $w_0(t, x, 0) = 0$ (D.i. typische Euler-RB $u_0 \cdot \nu = 0$.)

Lösungschritt 1: Löse die Euler Gleichungen (2.41) für v_0 , w_0 , p_0 mit $w_0(t, x, 0) = 0$ im Außenbereich (für y > 0).

Die 3. Zeile der Kopplungsbedingungen und $\partial_Y P_0 = 0$ liefern $P_0(T,X) = p_0(t,x,0)$, $\forall T=t,\, X=x$.

Also: Druck in der Grenzschichte = Druck der Außenströmung am Rand (y = 0).

Lösungschritt 2: Mit den von Außenströmung schon bekannten Funktionen $p_0|_{y=0}$, $v_0|_{y=0}$, löse in der Grenzschichte die Prandtl'schen Grenzschichtgleichungen (für $V_0, W_1; X \in \mathbb{R}$, $0 < Y < \infty$):

$$\begin{cases} \partial_T V_0 + V_0 \, \partial_X V_0 + W_1 \, \partial_Y V_0 + \partial_X (p_0|_{y=0}) &=& \partial_Y^2 V_0, \\ V_0|_{Y=0} &=& W_1|_{Y=0} &=& 0, \quad (\text{aus } (2.42), \, \text{letzte Zeile}) \\ \lim_{Y \to \infty} V_0(T,X,Y) &=& v_0(t,x,0), \\ \partial_X V_0 + \partial_Y W_1 &=& 0, \quad (\text{aus } (2.42), \, 3. \, \, \text{Zeile}) \\ V_0(0,X,Y) &=& v_I(x,0), \, Y > 0, \, \, \text{falls } \, u_I \, \, \text{keine Grenzschichte enthält.} \end{cases}$$

Das ist eine degeneriert parabolische Gleichung für V_0 (es 'fehlt' der Term $\partial_X^2 V_0$), wobei V_0 und W_1 durch eine lineare Gleichung 1. Ordnung gekoppelt sind.

Gesamte Approximation:

$$\begin{split} \hat{v}(t,x,y) &= V_0\left(t,x,\frac{y}{\varepsilon^{\frac{1}{2}}}\right) + v_0(t,x,y) - \underbrace{v_0(t,x,0)}_{\lim_{y\to 0}v_0}, \\ \hat{w}(t,x,y) &= w_0(t,x,y), \qquad \text{(keine Korrektur der Ordnung } O(\varepsilon^0), \text{ da } W_0 \equiv 0), \\ \hat{p}(t,x,y) &= p_0(t,x,y), \qquad \text{(da Druck =const in } Y \text{ in Grenzschichte}). \end{split}$$

Ergebnis: In einer Grenzschichte der vertikalen Dicke von $O(\sqrt{\varepsilon})$ wird die horizontale Geschwindigkeitskomponente v_0 korrigiert, damit an y=0 die Haft-RB u=0 erfüllt wird. Die vertikale Geschwindigkeitskomponente erfüllt als Lösung der Euler Gleichungen bereits $w_0(t, x, 0) = 0$ und muss daher nicht mehr korrigiert werden.

Referenzen: [EGK] §6.6

3 Elastizitätstheorie

Ziel: Modell, wie sich ein Körper unter äußerer Krafteinwirkung deformiert

3.1 Notation

- \bullet $\Omega\subset\mathbb{R}^d,\,d=2,3$: Referenzkonfiguration = jenes Gebiet, das vom Körper ohne Kräfteeinfluss ausgefüllt wird
- $x \in \Omega$: ein Materiepunkt
- $\Phi: \Omega \to \mathbb{R}^d$: Deformationsfeld. Der Materiepunkt x wird durch die Deformation nach $\Phi(x)$ verschoben (Beschreibung also in Lagrange Koordinaten; Φ braucht nicht volumserhaltend sein)
- $\frac{\partial \Phi}{\partial x} \in \mathbb{R}^{d \times d}$: Deformations gradient. Wir betrachten nur orientierungserhaltende Deformationen, also mit det $\frac{\partial \Phi}{\partial x} > 0$ (z.B. keine Spiegelungen)
- $u(x) := \Phi(x) x$: Verschiebungsfeld

Wir betrachten nun die relative Längenänderung durch Φ .

Sei $\Delta x \in \mathbb{R}^d$ ein kleiner Abstand zwischen 2 Materiepunkten \rightarrow

$$\frac{\|\Phi(x + \Delta x) - \Phi(x)\|^2}{\|(x + \Delta x) - x\|^2} = \frac{\|\frac{\partial \Phi}{\partial x}(x) \cdot \Delta x + \mathcal{O}(\|\Delta x\|^2)\|^2}{\|\Delta x\|^2}$$
$$= \frac{(\Delta x)^\top \cdot \left(\frac{\partial \Phi}{\partial x}(x)\right)^\top \cdot \frac{\partial \Phi}{\partial x}(x) \cdot \Delta x}{\|\Delta x\|^2} + \mathcal{O}(\|\Delta x\|)$$

Definition 3.1. Die symmetrische Matrix

$$C := \frac{\partial \Phi}{\partial x}^{\top} \cdot \frac{\partial \Phi}{\partial x} = \left(\frac{\partial u}{\partial x} + I\right)^{\top} \cdot \left(\frac{\partial u}{\partial x} + I\right)$$
(3.1)

heißt Cauchy-Green'scher Verzerrungstensor (strain tensor) und beschreibt die lokale, relative Längenänderung im Körper.

Es gilt

$$C = I \iff \exists Q \in \underbrace{O(d)}_{\text{orthog. Matrizen in } \mathbb{R}^d} : \Phi(x) = Q \cdot x + b$$

(also gibt es bei Starrkörperbewegungen keine relative Längenänderung).

Definition 3.2. Die symmetrische Matrix

$$E := \frac{1}{2}(C - I) = \frac{1}{2} \left(\frac{\partial u}{\partial x}^{\top} + \frac{\partial u}{\partial x} + \frac{\partial u}{\partial x}^{\top} \cdot \frac{\partial u}{\partial x} \right)$$

heißt Green'sche Verzerrungstensor und verschwindet bei diesen Starrkörperbewegungen (und ist quadratisch in u).

Die Matrix

$$\epsilon := \frac{1}{2} \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial x}^{\top} \right) \approx E \quad (\text{für kleine Variationen der Verschiebung})$$

 $hei\beta t$ linearisierter Verzerrungstensor.

3.2 Hyperelastische Materialien

Ein Körper wird unter Krafteinwirkung deformiert. Die verrichtete Arbeit wird als Deformationsenergie gespeichert. Ein elastischer Körper gibt diese Energie bei Wegnahme der Kraft vollständig zurück. Ein Material heißt hyperelastisch, falls die Deformationsenergie punktweise vom Cauchy-Green'schen Verzerrungstensor C abhängt:

$$E_{def} = \int_{\Omega} W(C(x)) dx,$$

mit der $Energiedichte \; W: \{A \in \mathbb{R}^{d \times d} \, | \, A = A^\top\} \to \mathbb{R}$

(bzw. allgemeiner W(x, C) für inhomogene Materialien).

Bsp: Gummi (isotrop; lineare Elastizität wäre dabei zu ungenau)

Wir betrachten nur *isotrope* Materialien, d.h. Materialeigenschaften in alle Richtungen gleich $\Rightarrow W$ ist invariant unter (Starrkörper-) Drehungen $\Rightarrow \tilde{W}(E) := W(\underbrace{I+2E})$ hängt

nur von SpE, Sp (E^2) (für d=2) und für d=3 zusätzlich det E ab. Herleitung analog zum Beweis der Form vom viskosen Spannungstensor $\sigma\left(\frac{\partial u}{\partial x}\right)$ in §2.2: E symmetrisch, also diagonalisierbar $\to W$ hängt nur von seinen Eigenwerten ab.

Lemma 3.3 (Hooke'sches Gesetz). Sei E = 0 ein lokales Minimum von \tilde{W} mit (o.B.d.A.) $\tilde{W}(0) = 0$. Dann gilt in quadratischer Näherung

$$\tilde{W}(E) \approx \frac{1}{2}\lambda(\operatorname{Sp} E)^2 + \mu\operatorname{Sp}(E^2),$$

mit den Lamé-Konstanten $\lambda, \mu \in \mathbb{R}$ (vgl. (2.6): $\sigma = \lambda(\operatorname{div} u)I + 2\mu D$).

Beweis (für d = 3).

Sei
$$\tilde{W}(E) = \hat{W}(\operatorname{Sp} E, \operatorname{Sp}(E^2), \operatorname{\underline{det}} E)$$
 mit $\hat{W} : \mathbb{R}^3 \to \mathbb{R}$.

Ist E=0 lokales Minimum von \tilde{W} , so gilt mit Taylor

$$\tilde{W}(E) = \underbrace{\hat{W}(0,0,0)}_{=0} + \underbrace{\partial_1 \hat{W}(0,0,0)}_{=0} \operatorname{Sp} E + \frac{1}{2} \underbrace{\partial_1^2 \hat{W}(0,0,0)}_{=:\lambda} (\operatorname{Sp} E)^2 + \underbrace{\partial_2 \hat{W}(0,0,0)}_{=:\mu} \operatorname{Sp}(E^2) + \mathcal{O}(\|E\|^3).$$

<u>Bem</u>: Hooke'sches Gesetz entspricht linearem Materialgesetz (vgl. Kraft-Dehnungsrelations in Feder)

3.3 Variationsformulierung

Sei $\partial\Omega=\Gamma_D\cup\Gamma_N$ (Dirichlet- bzw. Neumann-Rand). Der Körper sei an Γ_D fest eingespannt, und auf Γ_N wirke eine äußere Oberflächenkraft b. Weiters wirke auf Ω eine Volumskraft f, z.B. Gravitation. Die von den Kräften verursachte Verschiebung u impliziert eine Gesamtenergie

$$E_{ges}(u) = \int_{\Omega} W(C(u(x))) dx - \int_{\Omega} f \cdot u dx - \int_{\Gamma_N} b \cdot u dS$$

$$\xrightarrow{\text{Deformationsenergie}} \frac{\int_{\Omega} f \cdot u dx}{\int_{\Omega} Arbeit} - \int_{\Omega} b \cdot u dS$$

$$\xrightarrow{\text{der Oberflächenkraft}} \frac{\int_{\Omega} h \cdot u dx}{\int_{\Omega} Arbeit}$$
(3.2)

Bem: Integrationsgebiet Ω ... undeformierte Referenzkonfiguration

Ziel: finde Gleichung für gesuchte Verschiebung u — durch Minimierung von $E_{ges}(u)$. Zulässige Verschiebungen erfüllen $u|_{\Gamma_D} = 0$.

Sei u die minimierende Verschiebung und v eine weitere zulässige Verschiebung, also $v|_{\Gamma_D}=0$.

 $\Rightarrow \Psi : \mathbb{R} \to \mathbb{R}, \ \Psi(t) := E_{ges}(u+tv)$ hat an t=0 ein Minimum, also

$$0 = \Psi'(0) = \int_{\Omega} \underbrace{\left[\frac{\mathrm{d}W}{\mathrm{d}C}(C(u))\right]}_{\frac{\partial W}{\partial C_{i,i}} \in \mathbb{R}^{d \times d}} : \underbrace{\left[\frac{\mathrm{d}C}{\mathrm{d}u}(v)\right]}_{\in \mathbb{R}^{d \times d}} \mathrm{d}x - \int_{\Omega} f \cdot v \,\mathrm{d}x - \int_{\Gamma_N} b \cdot v \,\mathrm{d}S$$
(3.3)

 \forall zulässigen $v \Rightarrow$ liefert Minimalitätsbedingung für u.

 $\Psi'(0) = \delta E_{ges}(u,v)$... erste Variation von E_{ges} an u in Richtung v

Notation:

- $A:B:=\sum_{ij}A_{ij}\,B_{ij}=\operatorname{Sp}(A^{\top}\cdot B)$... Frobenius-Skalarprodukt für (reele) Matrizen.
- $\left(\frac{\partial v}{\partial x}\right)_{ij} = \left(\frac{\partial v_i}{\partial x_i}\right)$
- (div A)_i = $\sum_j \partial_{x_j} A_{ij}$... Divergenz einer Matrixfunktion A(x) ist ein Vektorfeld.

Erste Variation von $E_2(u) := \int_{\Omega} f \cdot u \, dx$:

$$\frac{\mathrm{d}\Psi_2}{\mathrm{dt}} = \frac{\mathrm{d}}{\mathrm{dt}} \int_{\Omega} f \cdot (u + t \, v) \, \mathrm{d}x = \int_{\Omega} f \cdot v \, \mathrm{d}x \quad \checkmark$$

nächstes Ziel: Darstellung von $\frac{\mathrm{d}W}{\mathrm{d}C}(C)$: $\frac{\mathrm{d}C}{\mathrm{d}u}(v)$.

• \forall (kleinen) symmetrischen Matrizen $\Delta \in \mathbb{R}^{d \times d}$:

$$W(C + \Delta) \stackrel{\text{Taylor}}{=} W(C) + \left[\frac{\mathrm{d}W}{\mathrm{d}C}(C) \right] : \Delta + \mathcal{O}(\|\Delta\|^2)$$

Die Matrix $\Sigma := 2 \frac{dW}{dC}(C)$ heißt 2. Piola-Kirchhoff'scher Spannungstensor mit $\Sigma_{ij} = 2 \frac{\partial W}{\partial C_{ij}}$ DaC symmetrisch ist, ist Σ symmetrisch; hängt i.A. von $\frac{\partial u}{\partial x}$ ab.

• \forall (kleinen) t > 0: $C(u + tv) = C(u) + \frac{dC}{du}(v)t + \mathcal{O}(t^2)$

Laut (3.1):
$$C(u+tv) = \left(\frac{\partial u}{\partial x} + t\frac{\partial v}{\partial x} + I\right)^{\top} \cdot \left(\frac{\partial u}{\partial x} + t\frac{\partial v}{\partial x} + I\right)$$

$$= C(u) + t \left[\left(\frac{\partial u}{\partial x} + I\right)^{\top} \cdot \frac{\partial v}{\partial x} + \frac{\partial v}{\partial x}^{\top} \cdot \left(\frac{\partial u}{\partial x} + I\right)\right] + \mathcal{O}(t^2)$$

 $\Rightarrow \frac{\mathrm{d}C}{\mathrm{d}u}(v) \ = \ \left(\frac{\partial u}{\partial x} + I\right)^\top \cdot \frac{\partial v}{\partial x} + \frac{\partial v}{\partial x}^\top \cdot \left(\frac{\partial u}{\partial x} + I\right) \ \dots \ \mathrm{Richtungsableit.} \ \mathrm{von} \ C \ \mathrm{an} \ u \ \mathrm{in} \ \mathrm{Richtung} \ v \ \mathrm{dec}(v) \ = \ \left(\frac{\partial u}{\partial x} + I\right)^\top \cdot \frac{\partial v}{\partial x} + \frac{\partial v}{\partial x}^\top \cdot \left(\frac{\partial u}{\partial x} + I\right) \ \dots \ \mathrm{Richtungsableit.} \ \mathrm{von} \ C \ \mathrm{an} \ u \ \mathrm{in} \ \mathrm{Richtung}(v) \ \mathrm{dec}(v) \ = \ \left(\frac{\partial u}{\partial x} + I\right)^\top \cdot \frac{\partial v}{\partial x} + \frac{\partial v}{\partial x}^\top \cdot \left(\frac{\partial u}{\partial x} + I\right) \ \ldots \ \mathrm{Richtungsableit.} \ \mathrm{von} \ C \ \mathrm{an} \ u \ \mathrm{in} \ \mathrm{Richtung}(v) \ \mathrm{dec}(v) \ \mathrm{de$

$$\begin{aligned} \bullet & \quad \text{Aus (3.3):} \quad \int_{\Omega} f \cdot v \, \mathrm{d}x + \int_{\Gamma_N} b \cdot v \, \mathrm{d}S = \int_{\Omega} \left[\frac{\mathrm{d}W}{\mathrm{d}C}(C) \right] : \left[\frac{\mathrm{d}C}{\mathrm{d}u}(v) \right] \mathrm{d}x \\ & = \frac{1}{2} \int_{\Omega} \Sigma : \left[\left(\frac{\partial u}{\partial x} + I \right)^{\top} \cdot \frac{\partial v}{\partial x} + \frac{\partial v^{\top}}{\partial x} \cdot \left(\frac{\partial u}{\partial x} + I \right) \right] \mathrm{d}x \\ & \stackrel{\Sigma \text{ symm.}}{=} \int_{\Omega} \Sigma : \left[\left(\frac{\partial u}{\partial x} + I \right)^{\top} \cdot \frac{\partial v}{\partial x} \right] \mathrm{d}x \stackrel{(*)}{=} \int_{\Omega} \left[\left(\frac{\partial u}{\partial x} + I \right) \cdot \Sigma \right] : \frac{\partial v}{\partial x} \, \mathrm{d}x \\ & \stackrel{Gauß}{=} - \int_{\Omega} \mathrm{div} \left(\left(\frac{\partial u}{\partial x} + I \right) \cdot \Sigma \right) \cdot v \, \mathrm{d}x + \int_{\Gamma_N} \left[\left(\frac{\partial u}{\partial x} + I \right) \cdot \Sigma \cdot n \right] \cdot v \, \mathrm{d}S \end{aligned}$$

 \forall zulässigen v und äußerem Normalvektor n.

(*) mit
$$A:(B\cdot C)=(B^{\top}\cdot A):C$$

- \Rightarrow Gleichung auch für Integranden \Rightarrow
- Gleichungen der Elastizitätstheorie (für $\frac{\partial u}{\partial x}$ und $\Sigma = \Sigma \left(\frac{\partial u}{\partial x} \right)$):

$$\begin{cases}
-\operatorname{div}\left(\left(\frac{\partial u}{\partial x} + I\right) \cdot \Sigma\right) &= f \text{ in } \Omega \\
\left(\frac{\partial u}{\partial x} + I\right) \cdot \Sigma \cdot n &= b \text{ auf } \Gamma_N
\end{cases}$$
(3.4)

Das sind die Euler-Lagrange Gleichungen von E_{ges} in (3.2).

Aus $\frac{\partial u}{\partial x}$ und $u|_{\Gamma_D} = 0$ erhält man $u(x), \ \forall x \in \Omega$.

3.4 Linearisierte Elastizitätstheorie

Annahmen:

- \bullet kleine Verschiebungen u
- kleine Verzerrung, $E \approx \epsilon$
- Es gilt das Hooke'sche Gesetz: $W(C) = \frac{\lambda}{2} (\operatorname{Sp} \epsilon)^2 + \mu \underbrace{\epsilon : \epsilon}_{=\operatorname{Sp}(\epsilon^2)}$
- \Rightarrow Minimierungsproblem: Finde zulässige Verschiebung u (also mit $u|_{\Gamma_D}=0),$ so dass

$$E_{ges}(u) = \int_{\Omega} \left(\frac{\lambda}{2} (\operatorname{Sp} \epsilon)^2 + \mu \epsilon : \epsilon - f \cdot u \right) dx - \int_{\Gamma_N} b \cdot u \, dS \to \min, \tag{3.5}$$

mit $\epsilon(u) := \frac{1}{2} \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial x}^{\top} \right)$. Weitere Annahme: $\lambda, \mu > 0$

Notation:

$$a(u,v) := \int_{\Omega} \frac{\lambda}{2} \underbrace{(\operatorname{Sp} \epsilon(u))}_{=\operatorname{div} u} (\operatorname{Sp} \epsilon(v)) + \mu \epsilon(u) : \epsilon(v) \, \mathrm{d}x,$$
$$l(u) := \int_{\Omega} f \cdot u \, \mathrm{d}x + \int_{\Gamma_{N}} b \cdot u \, \mathrm{d}S,$$

also: $J(u) := a(u, u) - l(u) \rightarrow \min$

nächstes Ziel: Bilinearform a ist koerziv auf "Raum der zulässigen Verschiebungen" $H_D^1 := \{u \in (H^1(\Omega))^d: u|_{\Gamma_D} = 0\}.$

Lemma 3.4 (Korn'sche Ungleichung). Sei Ω beschränktes Gebiet mit stückweise glattem Rand, und $\mu_{d-1}(\Gamma_D) > 0$. $\Rightarrow \exists c > 0$ mit

$$\int_{\Omega} \epsilon(u) : \epsilon(u) \, \mathrm{d}x \ge c \sum_{i=1}^{d} \|u_i\|_{H^1(\Omega)}^2 \qquad \forall u \in H_D^1.$$
(3.6)

Beweis. (hier nur für u glatt mit $u|_{\partial\Omega}=0$)

Es gilt die Formel

$$2\epsilon(u) : \epsilon(u) - \frac{\partial u}{\partial x} : \frac{\partial u}{\partial x} - (\operatorname{div} u)^{2} = \operatorname{div} \left(\frac{\partial u}{\partial x} \cdot u - (\operatorname{div} u) u \right).$$

$$\Rightarrow \int_{\Omega} 2\epsilon(u) : \epsilon(u) - \frac{\partial u}{\partial x} : \frac{\partial u}{\partial x} - (\operatorname{div} u)^{2} dx = \int_{\Omega} \operatorname{div} \left(\frac{\partial u}{\partial x} \cdot u - (\operatorname{div} u) u \right) dx$$

$$\stackrel{\text{Gauß}}{=} \int_{\partial \Omega} \left(\frac{\partial u}{\partial x} \cdot u - (\operatorname{div} u) u \right) \cdot n dS = 0, \quad \text{da } u|_{\partial \Omega} = 0.$$

$$(3.7)$$

Aus (3.7), Poincaré Ungleichung für u_i :

$$2\int_{\Omega} \epsilon(u) : \epsilon(u) \, \mathrm{d}x \ge \int_{\Omega} \frac{\partial u}{\partial x} : \frac{\partial u}{\partial x} \, \mathrm{d}x = \sum_{i=1}^{d} \| |\nabla u_i| \|_{L^2(\Omega)}^2 \ge c_p \sum_{i=1}^{d} \|u_i\|_{H^1(\Omega)}^2,$$

mit Konstanten $c_p > 0$.

für Beweis-Erweiterung: Poincaré Ungleichung gilt auch für (glatte) u, die nur an einem Randpunkt verschwinden.

<u>Bem</u>: Für d=1 entspricht (3.6) der Poincaré-Ungleichung. Für d>1 ist (3.6) aber nichttrivial, da links nur der symmetrische Teil von $\frac{\partial u}{\partial x}$, also $\frac{1}{2}\left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\right)$ vorkommt, aber nicht alle Ableitungen separat.

Satz 3.5. Sei $f \in L^2(\Omega)$, $b \in L^2(\Gamma_N)$. Unter den Voraussetzungen von Lemma 3.4 gilt : E_{ges} in (3.5) hat eindeutigen Minimierer $u \in H_D^1$.

Beweis. Die (symmetrische) BLF a ist auf H_D^1 stetig und koerziv (wegen Korn Ungleichung). Für Minimum muss (die schwache Formulierung) gelten:

$$0 \stackrel{!}{=} \delta E_{ges}(u, v) = 2a(u, v) - l(v), \quad \forall v \in H_D^1.$$

Behauptung folgt aus Lemma von Lax-Milgram.

[vgl.: Der Minimierer von $\frac{1}{2} \|\nabla u\|_{L^2}^2 - \int_{\Omega} f u dx$ erfüllt $-\Delta u = f$.]

Analog zur Herleitung von (3.4) erhält man die linearen Gleichungen der statischen Elastizitätstheorie als Euler-Lagrange Gleichungen von (3.5):

$$\begin{cases}
-\lambda \nabla (\operatorname{div} u) - 2\mu \operatorname{div} (\epsilon(u)) &= f, \ \Omega \\
\left(\lambda \operatorname{div} u + 2\mu \frac{\partial u}{\partial x}\right) \cdot n &= b, \ \Gamma_N
\end{cases}$$
(3.8)

Das ist ein lineares PDE-System 2. Ordnung.

Referenzen: [EGK] §5.10, §6.1.9, [Schö] §1,§2

4 Diffusionsfilter in der Bildverarbeitung

Diffusionsfilter sind

- optischer Linsenvorsatz für fotographische Spezialeffekte → Weichzeichner, Softener;
- softwaremäßige, digitale Bild(nach)bearbeitung, z.B. "Gaussian blur" (Weichzeichner) in *Photoshop*.

Anwendung/Ziele: Glättung von verrauschten Bildern, Weichzeichnung von zu scharfen ("harten") Fotos, Bildschärfung, Kantenerkennung (z.B. für Bildsegmentierung)

Betrachten hier nur schwarz-weiß Bilder mit Grauskala $f(x) \in [0, 1], x \in \Omega \subset \mathbb{R}^2$. Reale Anwendung: f diskret (Pixel) auf beschränktem Gebiet.

Hier nur $\Omega=\mathbb{R}^2$ um keine Probleme mit Randbedingungen zu haben. Ferner sei $f\in L^1(\mathbb{R}^2)\cap L^\infty(\mathbb{R}^2)$.

4.1 lineare Diffusionsfilter

einfachste Bildglättung durch Faltung mit 2D-Gauß-Funktion

$$K_{\sigma}(x) := \frac{1}{2\pi\sigma^2} \exp\left(-\frac{|x|^2}{2\sigma^2}\right)$$

mit Standardabweichung ("Breite") $\sigma > 0$:

$$(K_{\sigma} * f)(x) = \int_{\mathbb{R}^2} K_{\sigma}(x - y)f(y)dy$$
(4.1)

Auswirkungen:

- Da $K_{\sigma} \in C^{\infty}(\mathbb{R}^2) \Rightarrow K_{\sigma} * f \in C^{\infty}(\mathbb{R}^2)$, auch für $f \in L^1(\mathbb{R}^2)$.
- Im Frequenzbereich:

$$\widehat{K_{\sigma} * f}(\omega) = \widehat{K_{\sigma}}(\omega) \cdot \widehat{f}(\omega)$$
(4.2)

mit
$$\widehat{f}(\omega) = (\mathcal{F}f)(\omega) := \int_{\mathbb{R}^2} f(x)e^{-i\omega \cdot x} dx$$

Da
$$\widehat{K_{\sigma}}(\omega) = 2\pi \exp\left(-\frac{|\omega|^2}{2/\sigma^2}\right)$$
:

(4.1) ist $Tiefpa\beta$ -Filter, der hohe (Orts)Frequenzen (monoton) dämpft \Rightarrow Kantenglättung, Entrauschung

Äquivalenz zu linearem Diffusionsfilter:

$$\begin{cases} u_t &= \Delta u \ , \ x \in \mathbb{R}^2, t > 0 \\ u(x,0) &= f(x) \ , \ f \in L^1(\mathbb{R}^2) \cap L^{\infty}(\mathbb{R}^2) \end{cases}$$
 (4.3)

hat die eindeutige Lösung (z.B. unter der Annahme eines Gauß'schen Abklingens von u für $|x| \to \infty$):

$$u(x,t) = T_t f = \begin{cases} f(x) &, t = 0\\ (K_{\sqrt{2t}} * f)(x) &, t > 0. \end{cases}$$

 $\{T_t|t\geq 0\}$... Evolutionshalbgruppe der Diffusionsgleichung

Also: Zeit t entspricht der (Orts)Breite $\sqrt{2t}$ der Gauß-Funktion; Glättung von Bildstrukturen bis zur Ordnung σ entspricht Stoppzeit $T = \sigma^2/2$ des Diffusionsprozesses.

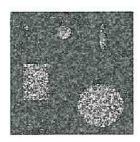
Maximum-Minimum-Prinzip:

$$\inf_{\mathbb{R}^2} f \le u(x,t) \le \sup_{\mathbb{R}^2} f \quad \text{auf } \mathbb{R}^2 \times [0,\infty)$$

- Bilder beinhalten typischerweise Strukturen auf einer großen Bandbreite von Skalen (z.B. Portraitfoto mit Auflösung jeder einzelnen Hautpore)
- Oft ist es a-priori unklar, welche Skala die "gewünschte Information" darstellt. ⇒ Es ist wünschenswert, die Bilddarstellung auf verschiedenen Skalen zu haben.
- Ausgangsbild f wird eingebettet in Evolutionsprozeß bzw. Skala von geglätteten/vereinfachten Bildern $\{u(x,t)|t\geq 0\}$.
- $u(x,t) \stackrel{t \to \infty}{\longrightarrow} 0$ (gleichmäßig auf beschränkten Gebieten)
 - \Rightarrow Immer mehr Bildstruktur geht verloren. \Rightarrow Nur "kleines" t praktisch relevant.
- Ein Bild kann nur als Repräsentant einer Äquivalenzklasse betrachtet werden, die alle Bilder desselben Objekts inkludiert. Unterschied zwischen 2 Bildern einer Klasse z.B. durch Grauwert-Verschiebung, Translation, Rotation, . . .

Numerische Aspekte:

- Diskrete Versionen der Faltung (4.1), Multiplikation (4.2) im Frequenzbereich (mittels FFT) und Diskretisierungen der Diffusionsgleichung sind *nicht* äquivalent.
- Bei dieser Anwendung meist explizite Finite-Differenzen-Schemata für (4.3).



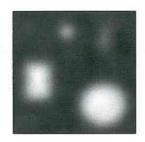


Abbildung 4.1: verrauschtes Original f, Diffusionsglättung mit mean-curvature-Gleichung, Gaußsche Diffusionsglättung, Diffusionsglättung mit anisotroper Diffusion orthogonal zu den Kanten [Ma]

Nachteile der linearen Gauß-Filterung:

- a) Isotropische Diffusion glättet Rauschen, aber auch Bildstrukturen (z.B. Kanten). Lokale Diffusion orthogonal zu Kanten ist unerwünscht.
- b) Lineare Diffusionsfilter verschieben "Kanten" bei Übergang von feinen zu groben Bildskalen (d.h. für größeres t).
- c) Topologie von Konturenlinien kann sich ändern (in 2D), z.B. Aufsplitten in 2 Konturenlinien bei Übergang zu gröberen Skalen.
- d) Glättung kommutiert nicht mit (nichtlinearen, monotonen) Abbildungen F, die den Kontrast ändern oder Grauwert verschieben: $T_t(F(f)) \neq F(T_t f)$
- (a), (b) kann mit nichtlinearen Diffusionsfiltern verbessert werden; (c), (d) mit morphologischen Gleichungen.

<u>Referenzen</u>: [We] §1.1, [Ma] §10

4.2 nichtlineare Diffusionsfilter

Ziel:

- nichtlineare PDGl. als verbessertes Modell zu (4.3);
 Bildskala {T_tf | t ≥ 0} wird weiterhin durch eine Evolutionshalbgruppe {T_t | t ≥ 0} dargestellt.
- Verwendung einer *skalaren* Diffusivität, die von lokalen Eigenschaften des Bilds abhängt.
- Erweiterung zu adaptiven Diffusionsmatrizen für anisotrope Diffusionsfilter

4.2.1 das Perona-Malik Modell

Modell:

skalare Diffusivität $g(|\nabla u|^2) > 0$ mit

$$g(s) \searrow ; \quad g(0) = 1, \quad g(s) \stackrel{s \to \infty}{\longrightarrow} 0$$

z.B.

$$g(s^2) = \frac{1}{1 + s^2/\lambda^2}$$
 (mit Parameter $\lambda > 0$) (4.4)

also:

$$\begin{cases} u_t - \operatorname{div}(g(|\nabla u|^2)\nabla u) &= 0 \quad ; x \in \mathbb{R}^2, t > 0 \\ u(x,0) &= f(x) \end{cases}$$

$$(4.5)$$

Motivation: wenig Diffusion bei Kanten, da dort $|\nabla u(x)|$ groß.

Kantenverschärfung:

1D-Variante von (4.5) mit Flussfunktion $\Phi(s) := sg(s^2)$:

$$u_t = \partial_x(\Phi(u_x)) = \Phi'(u_x)u_{xx} \tag{4.6}$$

Für g aus (4.4) gilt:

 $\Phi'(u_x) \ge 0$ für $|u_x| \le \lambda \Rightarrow (4.6)$ ist vorwärts parabolisch,

 $\Phi'(u_x) < 0$ für $|u_x| > \lambda \Rightarrow (4.6)$ ist rückwärts parabolisch

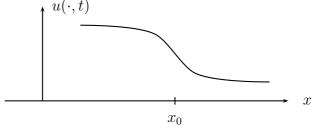
(d.h. Indiz für Schlechtgestelltheit von (4.6)).

 λ ist ein Kontrastparameter:

Für $|u_x| \leq \lambda$ (wenig lokaler Kontrast): Glättung;

für $|u_x| > \lambda$ (viel lokaler Kontrast): Kantenverschärfung (für "kurze Zeit", dann wachsende Oszillationen).

Wir betrachten nun das lokale Verhalten (in x und t) der Kantenverschärfung:



Kantenposition für eine "geglättete Kante"

Für eine "geglättete Kante" definieren wir die Kantenposition x_0 (zur Zeit t) als Wendepunkt ("inflection point") von u, also als Maximum von u_x^2 . Also gilt: $(u_x u_{xx})(x_0) = 0$ (mit $u_x(x_0) \neq 0$) und $(u_x u_{xxx})(x_0) < 0$.

Berechne $\partial_t(u_x^2)(x_0,t)$:

$$\partial_t(u_x^2) = 2u_x u_{xt} \stackrel{(4.6)}{=} 2u_x \Phi''(u_x) \underbrace{u_{xx}^2}_{=0 \text{ an } (x_0,t)} + 2\Phi'(u_x) \underbrace{u_x u_{xxx}}_{<0 \text{ an } (x_0,t)} > 0 \text{ an } (x_0,t) \text{ genau für } \Phi'(u_x) < 0,$$

also genau für $|u_x| > \lambda$. Dann also zeitliches Wachstum von $|u_x(x_0)|$, d.h. Kantenschärfung.

<u>2D-Gleichung</u> (4.5): Einführen von (lokalen) Koordinaten ξ, η tangential bzw. orthogonal zu den Niveaulinien von $u \Rightarrow$

$$u_{t} = g(|\nabla u|^{2}) \underbrace{\Delta u}_{=u_{\xi\xi} + u_{\eta\eta}} + g'(|\nabla u|^{2}) 2 \underbrace{\nabla^{\top} u \cdot \frac{\partial^{2} u}{\partial x^{2}} \cdot \nabla u}_{=|\nabla u|^{2} u_{\eta\eta}} = \underbrace{g(|\nabla u|^{2})}_{>0} u_{\xi\xi} + \underbrace{\Phi'(|\nabla u|)}_{\in \mathbb{R}} u_{\eta\eta}, \quad (4.7)$$

$$\Phi'(s) = g(s^2) + 2s^2 g'(s^2),$$

also vorwärts Diffusion entlang der Niveaulinien (z.B. parallel zu Kanten) und vorwärts/rückwärts Diffusion (je nach Vorzeichen von Φ') orthogonal dazu.

Ergebnis:

- Glättung von kleinen Fluktuationen (für $|\nabla u|$ klein),
- Kantenverschärfung (orthogonal zu Kanten) (für $|\nabla u|$ groß);
- PM-Filter funktionieren praktisch (d.h. numerisch) sehr gut (obwohl "tendentiell" schlecht gestellt, was aber bisher nicht bewiesen ist).

Begründung: numerische Schemata liefern eine "implizite" Regularisierung/Stabilisierung (verschwindet aber für feiner werdende Gitter).

• Nachteil: Rauschen (mit $|\nabla u|$ groß) wird als "Kante" missinterpretiert \Rightarrow wird erhalten oder gar verstärkt.

systematischer Ausweg durch folgende Regularisierung...

Referenzen: [We] §1.2, [Ma] §10, [TE]

4.2.2 regularisiertes Perona-Malik Modell

Ersetze Diffusivität $g(|\nabla u|^2)$ in (4.5) durch $g(|\nabla u_{\sigma}|^2) =: \alpha(x)$ mit $u_{\sigma} := K_{\sigma} * u \Rightarrow$

$$\begin{cases} u_t = \operatorname{div}(g(|\nabla u_{\sigma}|^2)\nabla u), t > 0, \\ u(x,0) = f(x). \end{cases}$$
(4.8)

 $\sigma>0$ ist ein weiterer Skalenparameter: Rauschen auf Längenskala kleiner als σ wird geglättet.

Betrachte (4.8) auf $\Omega := (0, a_1) \times (0, a_2)$ mit "Spiegelungsfortsetzung" von $f|_{\Omega}$ auf \mathbb{R}^2 (nötig zur Definition von u_{σ}).

Satz 4.1. Sei $f \in L^{\infty}(\Omega)$. \Rightarrow (4.8) hat eine eindeutige distributionelle Lösung u(x,t) mit:

$$u \in C([0,\infty); L^2(\Omega)) \cap L^2_{loc}(0,\infty; H^1(\Omega)) \cap C^{\infty}(\overline{\Omega} \times (0,\infty)),$$

 $\partial_t u \in L^2_{loc}(0,\infty; H^2(\Omega)).$

Für $a \le f \le b$ erfüllt u das Minimum/Maximum-Prinzip:

$$a \le u(x,t) \le b \quad \forall x \in \Omega, t \ge 0.$$

Beweis-Idee. a) Existenz mit Schauder'schem Fixpunktsatz für Abbildung: $v \mapsto w = \mathcal{U}(v)$ in $W(0,T) := \left\{ w, \frac{\mathrm{d}w}{\mathrm{d}t} \in L^2(0,T;H^1(\Omega)) \right\}$ für festes T > 0. w löst die lineare Gleichung

$$\begin{cases} w_t = \operatorname{div}(g(|\nabla v_{\sigma}|^2)\nabla w), t > 0\\ w(x,0) = f(x) \end{cases}$$
(4.9)

- b) Regularität mit "bootstrapping" Argument; d.h. aus $u(t) \in H^1(\Omega) \ \forall t > 0$ folgt $u(t) \in H^2(\Omega) \ \forall t > 0$, usw.
- c) Eindeutigkeit & stetige Abhängigkeit von AB durch Gronwall Lemma für Differenz zweier Lösungen.
- d) Minimum/Maximum-Prinzip mit Abschneidemethode.

Details: [CLMC], Th. 2.1 in [We]

Bemerkung 4.2. 1) Iteration von (4.9) konvergiert in $C([0,T]; L^2(\Omega)) \forall T > 0$ (siehe [CLMC]).

2) mögliche Diskretisierung von (4.8): finite Differenzen; $g(|\nabla u_{\sigma}|^2)$ explizit, Rest implizit in der Zeit [CLMC].

regelmäßiges Gitter $(ih, jh, n\Delta t)$,

$$h = \frac{1}{N+1}, 0 \le i, j \le N+1, u_{i,j}^n \approx u(ih, jh, n\Delta t)$$

Sei $\alpha_{i,j}^n \approx g(|\nabla K_\sigma * u|^2)(ih, jh, n\Delta t).$

Diskretisierung von $\partial_{x_1}(\alpha(x)u_{x_1})$ an $(ih, jh, n\Delta t)$:

$$\frac{1}{2h^2} \left[(\alpha_{i+1,j}^n + \alpha_{i,j}^n) (u_{i+1,j}^{n+1} - u_{i,j}^{n+1}) - (\alpha_{i,j}^n + \alpha_{i-1,j}^n) (u_{i,j}^{n+1} - u_{i-1,j}^{n+1}) \right],$$

analog für $\partial_{x_2}(\alpha(x)u_{x_2})$.

 \rightarrow semi-implizites Schema:

$$\begin{split} \frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} - \frac{1}{2h^2} \bigg[(\alpha_{i-1,j}^n + \alpha_{i,j}^n) u_{i-1,j}^{n+1} + (\alpha_{i,j-1}^n + \alpha_{i,j}^n) u_{i,j-1}^{n+1} \\ & + (\alpha_{i,j}^n + \alpha_{i+1,j}^n) u_{i+1,j}^{n+1} + (\alpha_{i,j}^n + \alpha_{i,j+1}^n) u_{i,j+1}^{n+1} \\ & - (4\alpha_{i,j}^n + \alpha_{i-1,j}^n + \alpha_{i,j-1}^n + \alpha_{i+1,j}^n + \alpha_{i,j+1}^n) u_{i,j}^{n+1} \bigg] = 0, \end{split}$$

AB:
$$u_{i,j}^0 = f(ih, jh), \quad 1 \le i, j \le N$$

Neumann-RB:
$$u_{i,0}^{n+1} = u_{i,1}^{n+1}, u_{i,N}^{n+1} = u_{i,N+1}^{n+1}, \qquad 0 \le i \le N+1,$$

 $u_{0,j}^{n+1} = u_{1,j}^{n+1}, u_{N,j}^{n+1} = u_{N+1,j}^{n+1}, \qquad 0 \le j \le N+1$

gesamte Struktur: $\frac{u^{n+1}-u^n}{\Delta t}+A_h(u^n)u^{n+1}=0$. Also ist folgendes lineares Gleichungssystem zu lösen:

$$(I + \Delta t A_h(u^n))u^{n+1} = u^n, \quad n \ge 0,$$

mit A_h block-tridiagonal, positive definit $\Rightarrow I + \Delta t A_h(u^n)$ invertierbar.

Invarianzen:

Sei $\{T_t, t \geq 0\}$ die Lösungshalbgruppe von (4.8).

a) Grauwert-Verschiebung:

Diffusivität $g(|\nabla u_{\sigma}|^2)$ hängt nur von ∇u , aber *nicht* von u ab. \Rightarrow

$$T_t(0) = 0 \quad , \quad t \ge 0$$

$$T_t(f+C) = T_t(f) + C \quad , \quad \forall t \ge 0; \forall C \in \mathbb{R}$$

Auf beschränkten Gebieten werden dazu auch die homogenen Neumann-RBen benötigt.

b) Kontrastinversion:

$$g(|-\nabla u_{\sigma}|^{2}) = g(|\nabla u_{\sigma}|^{2})$$

$$\Rightarrow T_{t}(-f) = -T_{t}(f) \quad \forall t \ge 0$$

c) mittlerer Grauwert:

$$\mu := \frac{1}{|\Omega|} \int_{\Omega} f(x) dx = \frac{1}{|\Omega|} \int_{\Omega} T_t(f) dx \quad t > 0$$

$$(4.10)$$

folgt aus Divergenzform von (4.8) und homogener Neumann-RB (vgl. Spiegelungsfortsetzung).

d) Translations-, Rotationsinvarianz für $\Omega = \mathbb{R}^2$.

Informations reduktion für t > 0:

Lokale Extrema von u werden in (4.8) nicht verstärkt:

Satz 4.3. Sei $x_0 \in \Omega$ ein lokales Extremum von $u(\cdot, t_0)$, für ein $t_0 > 0$. \Rightarrow $u_t(x_0, t_0) \leq 0$ falls x_0 lokales Maximum, $u_t(x_0, t_0) \geq 0$ falls x_0 lokales Minimum.

Beweis. Sei x_0 lokales Maximum, also $\nabla_x u(x_0, t_0) = 0, \Delta_x u(x_0, t_0) \leq 0$. An (x_0, t_0) gilt mit (4.8):

$$u_t = \underbrace{g(|\nabla u_{\sigma}|^2)}_{>0} \underbrace{\Delta u}_{\leq 0} + \nabla (g(|\nabla u_{\sigma}|^2)) \cdot \underbrace{\nabla u}_{=0} \leq 0.$$

Konvergenz der Lösung u aus (4.8) gegen mittleren Grauwert μ :

Satz 4.4. Sei $f \in L^{\infty}(\Omega)$, $\Omega = (0, a_1) \times (0, a_2)$.

$$\Rightarrow \|u(t) - \mu\|_{L^p(\Omega)} \le Ce^{-\lambda t}$$
, $1 \le p < \infty, t \ge 0$,

 $mit\ C, \lambda\ h\ddot{a}ngen\ von\ \Omega, p, ||f||_{\infty}\ ab.$

Beweis. $e(x,t) := u(x,t) - \mu$ erfüllt auch (4.8).

Laut Maximumsprinzip in Satz 4.1:

$$||e(t)||_{L^{\infty}(\Omega)} \le ||f||_{L^{\infty}(\Omega)} + |\mu| \quad \forall t \ge 0.$$
 (4.11)

 $\Rightarrow \nabla e_{\sigma}(t) = (\nabla K_{\sigma}) * e(t)$ erfüllt (mit Young Ungleichung für Faltung):

$$\|\nabla e_{\sigma}(t)\|_{L^{\infty}(\Omega)} \le \|\nabla K_{\sigma}\|_{L^{1}(\mathbb{R}^{2})} \|e(t)\|_{L^{\infty}(\Omega)} \stackrel{(4.11)}{\le} C_{1} \quad \forall t \ge 0$$

 $\Rightarrow \exists \nu > 0 \text{ mit } g(|\nabla e_{\sigma}(x,t)|^2) \ge \nu \quad \forall t > 0, \forall x \in \Omega.$

Zunächst Bew. für p=2: Aus (4.8) für e(t) folgt mit $\nabla e \cdot n \big|_{\partial\Omega} = 0$:

$$\int_{\Omega} ee_t dx = \int_{\Omega} e \operatorname{div}(g(|\nabla e_{\sigma}|^2) \nabla e) dx = -\int_{\Omega} |\nabla e|^2 \underbrace{g(|\nabla e_{\sigma}|^2)}_{>\nu} dx,$$

also

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|e(t)\|_{L^2(\Omega)}^2 \le -\nu \|\nabla e(t)\|_{L^2(\Omega)}^2 \quad , \quad t > 0.$$

Für t > 0 fest: $e(t) \in C^{\infty}(\overline{\Omega})$, $\int_{\Omega} e(x, t) dx = 0$ (wegen (4.10)) $\Rightarrow \exists x_0 \in \Omega$ mit $e(x_0, t) = 0$.

Laut Poincaré Ungleichung mit $C_2 = C_2(\Omega) > 0$:

$$||e(t)||_{L^2(\Omega)}^2 \le C_2 ||\nabla e(t)||_{L^2(\Omega)}^2 \quad \forall t > 0,$$

also

$$\begin{split} &\frac{\mathrm{d}}{\mathrm{d}t}\|e(t)\|_{L^{2}(\Omega)}^{2} \leq -2\nu C_{2}^{-1}\|e(t)\|_{L^{2}(\Omega)}^{2} \quad , t \geq 0. \\ &\Rightarrow \text{(mit Gronwall Lemma)} \quad \|e(t)\|_{L^{2}(\Omega)} \leq e^{-\nu C_{2}^{-1}t}\|f-\mu\|_{L^{2}(\Omega)} \quad , t \geq 0. \end{split} \tag{4.12}$$

Daraus folgt auch das Resultat für $||e(t)||_{L^p(\Omega)}$ mit $1 \le p < 2$, da $L^2(\Omega) \subset L^p(\Omega)$. Ergebnis für 2 folgt aus (4.11) und (4.12) durch Interpolation (Hölder Ungleichung).

<u>Referenzen</u>: [We] §1.2, 2.3-4

4.2.3 anisotrope Diffusionsfilter

• bisher nur skalare, also isotrope Diffusivität in $u_t = \operatorname{div}(\Phi(\nabla u))$; Fluss

$$j = -\Phi(\nabla u) = -g(|\nabla u|^2)\nabla u$$
 immer \parallel zu ∇u

• vgl. PM-Modell umgeschrieben in lokalen Koordinaten (ξ tangential, η orthogonal zu Niveaulinien ("level curves") von u):

$$u_t = g(|\nabla u|^2)u_{\xi\xi} + \Phi'(\nabla u)u_{\eta\eta}$$

 \bullet ein effizientes anisotropes Diffusionsmodell: Diffusionnurtangential zu Niveaulinien (d.h. || zu Kanten)

Bsp: mittlerer-Krümmungsfilter:

linearer Diffusionsfilter in lokalen Koordinaten:

$$u_t = u_{\xi\xi} + u_{\eta\eta}$$

anisotropes Analogon (mit Diffusion nur tangential zu Niveaulinien):

$$\begin{cases} u_t = u_{\xi\xi} &, t > 0 \\ u(x,0) = f(x) & \end{cases}$$
 (4.13)

D.i. nichtlineare degenerierte parabolische Gleichung; in lokalen Koordinaten lautet die Diffusionsmatrix $A=\begin{pmatrix}1&0\\0&0\end{pmatrix}$.

Rücktransformation auf $x = (x_1, x_2)$ -Koordinaten liefert (mittlere-) Krümmungsgleichung ("mean curvature equation"):

$$u_{t} = \frac{(\nabla^{\perp} u)^{\top} \cdot \frac{\partial^{2} u}{\partial x^{2}} \cdot \nabla^{\perp} u}{|\nabla u|^{2}} = \frac{u_{x_{2}}^{2} u_{x_{1}x_{1}} - 2u_{x_{1}} u_{x_{2}} u_{x_{1}x_{2}} + u_{x_{1}}^{2} u_{x_{2}x_{2}}}{u_{x_{1}}^{2} + u_{x_{2}}^{2}} \qquad \text{(vgl. mit (4.7))}$$

$$= |\nabla u| \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right). \tag{4.14}$$

 $\kappa(x,t) := \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right) \ldots$ (mittlere) Krümmung der Niveaulinie von $u(\cdot,t)$ durch x.

Satz 4.5. Sei f beschränkt, gleichmäßig stetig auf \mathbb{R}^2 . \Rightarrow

(4.14) hat eindeutige Viskositätslösung u(x,t) auf $\mathbb{R}^2 \times [0,\infty)$. Sie erfüllt ein Max/Min-Prinzip:

$$\inf_{\mathbb{R}^2} f \le u(x,t) \le \sup_{\mathbb{R}^2} f.$$

Lösung ist L^{∞} -stabil, d.h. für 2 Lösungen $u_{1,2}(t)$ mit ABen $f_{1,2}$ gilt:

$$||u_1(t) - u_2(t)||_{L^{\infty}(\mathbb{R}^2)} \le ||f_1 - f_2||_{L^{\infty}(\mathbb{R}^2)} \qquad \forall t \ge 0$$

Bem: vage Motivation der Viskositätslösung: Da (4.13) degeneriert parabolisch, betrachte $u_t = u_{\xi\xi} + \varepsilon \Delta u$, $\varepsilon \to 0$ (präziser Begriff sehr technisch).

Umformulierung von (4.14) als Transportgleichung:

$$u_t + \kappa(x,t)n(x,t) \cdot \nabla u = 0; \tag{4.15}$$

mit

$$n(x,t) := -\frac{\nabla u(x,t)}{|\nabla u(x,t)|}$$
 ... Einheitsnormalvektor auf Niveaulinie von $u(\cdot,t)$

(nichtlinear, da κ , n von u abhängen!)

Lösung von (4.15) mit Charakteristiken-Methode:

u = const entlang der Charakteristiken, gegeben durch $\dot{x} = \kappa(x,t)n(x,t)$.

Ergebnis:

- \bullet Bewegungsgeschwindigkeit der Niveaulinien proportional zur lokalen Krümmung; in Richtung von fallendem u
- Glättung durch Angleichung der Krümmung jeder Niveaulinie:
 Jede Niveaulinie verändert sich asymptotisch zu einem Kreis und kollabiert in endlicher Zeit in einem Punkt.
- (4.15) kann Kontrast *nicht* verstärken:

<u>Referenzen</u>: [We] §1.2.3, 1.4-5, [Ma]§10

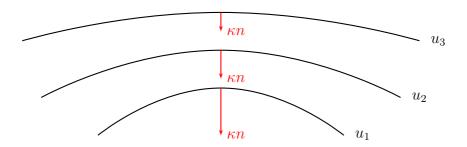


Abbildung 4.2: Niveaulinien von u (zu einer festen Zeit t mit $u_1 < u_2 < u_3$); sie bewegen sich auseinander.

4.3 Kantenschärfung, Schock Filter

entgegengesetzte Prozesse:

- Glättung, Weichzeichnung ("blur")
- Schärfung, Hartzeichnung ("deblur")

1D-Situation:



Ziel: finde eine PDGl für Bildschärfung als "Zeit"-Evolutionsprozess

Beispiel 4.6. Sei $f(x) = \cos(x)$.

Konklusion:

- Bewegungsrichtung der 1D-"Niveaupunkte" u(x,t) von sign $[u_x(x,t)u_{xx}(x,t)]$ abhängig.
- $\bullet\,$ für $u_x(x,t)=0$ oder $u_{xx}(x,t)=0$: keine Bewegung gewünscht

89

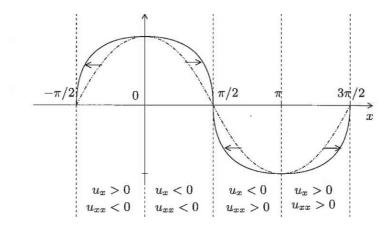


Abbildung 4.3: gewünschte Kantenschärfung in 1D, [AK]

Modellvorschlag (in 1D): "Schock Filter" von Osher & Rudin:

$$\begin{cases} u_t = -\operatorname{sign}(u_x u_{xx}) u_x = -|u_x| \operatorname{sign}(u_{xx}), x \in \mathbb{R}, t > 0 \\ u(x, 0) = f(x) \end{cases}$$
(4.16)

D.i. Transportgleichung mit Geschwindigkeit ± 1 , z.B. im Gebiet mit $u_x(x,t) > 0$, $u_{xx}(x,t) > 0$: $u_t + u_x = 0$. Insgesamt ist die Gleichung aber voll nichtlinear.

Vorstudie eines vereinfachten Modells:

Bei obigem Beispiel ändern sich die lokale Konvexität/Konkavität der Lösung nämlich nicht.

$$\begin{cases} u_t = -|u_x| \operatorname{sign}(f_{xx}), x \in \mathbb{R}, t > 0 \\ u(x, 0) = f(x) := \cos(x) \end{cases}$$
 (4.17)

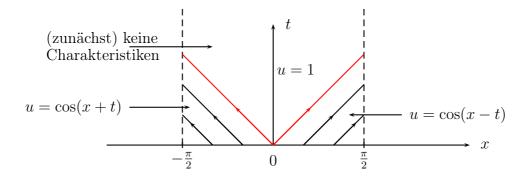
1. Fall: betrachte (4.17) auf $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times \mathbb{R}^+$

$$\rightarrow \text{sign}(f_{xx}) = -1 \quad \Rightarrow \quad u_t = |u_x|$$
 (D.i. eine Hamilton-Jacobi Gleichung.)

Lösung mit Charakteristikenmethode:

$$u(x,t) = \begin{cases} \cos(x+t) & , & -\frac{\pi}{2} < x < -t \\ 1 & , & t \ge |x| \\ \cos(x-t) & , & t < x < \frac{\pi}{2} \end{cases}$$

Das ist eine *Verdünnungswelle*, analog zu §1.2; schwache Lösung nur eindeutig, wenn Stetigkeit verlangt wird.



2. Fall: betrachte (4.17) auf $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \times \mathbb{R}^+$

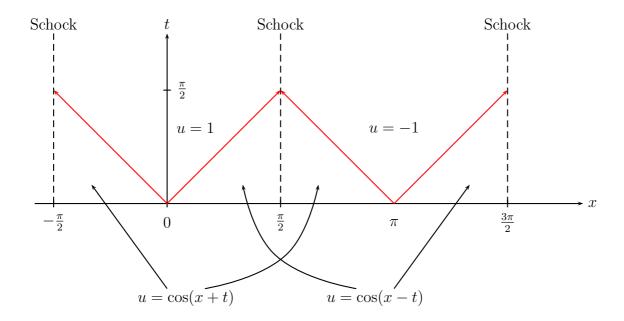
$$\rightarrow \operatorname{sign}(f_{xx}) = 1 \quad \Rightarrow \quad u_t = -|u_x|$$

analoge Verdünnungswelle:

$$u(x,t) = \begin{cases} \cos(x+t) &, & \frac{\pi}{2} < x < \pi - t \\ -1 &, & t \ge |x - \pi| \\ \cos(x - t) &, & t + \pi < x < \frac{3\pi}{2} \end{cases}$$

Gesamte Lösung von (4.17) durch periodische Fortsetzung;

hat Schocks an $x = (2k+1)\frac{\pi}{2}, k \in \mathbb{Z}$:



Für $t \geq \frac{\pi}{2}$: $u(x,t) = (-1)^k$ für $(2k-1)\frac{\pi}{2} < x < (2k+1)\frac{\pi}{2}$. \Rightarrow (4.17) schärft die Kanten bis zu perfekter Stufenfunktion (in endlicher Zeit!) mit Sprüngen, wo $f_{xx} = 0$. Informationsgewinn (da Schärfung) scheinbar möglich, da Einschränkung auf $u \in \{-1, 1\}$.

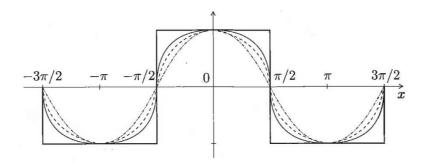


Abbildung 4.4: $u(\cdot,t)$ für $t=0,\ldots,\frac{\pi}{2}$

Verallgemeinerung des "Schock Filters" (4.16):

$$\begin{cases} u_t = -|u_x| F(u_{xx}), x \in \mathbb{R}, t > 0 \\ u(x,0) = f(x) \end{cases}$$
(4.18)

mit $F \in \text{Lip}(\mathbb{R})$ und F(0) = 0; sign(s)F(s) > 0, $\forall s \neq 0$.

z.B. mit F(s) = s:

$$u_t = -|u_x|u_{xx} = -(u_{xx}\operatorname{sign}(u_x))u_x, \quad x \in \mathbb{R}, t > 0.$$
 (4.19)

D.i. Transportgleichung mit lokaler Ausbreitungsgeschwindigkeit $c(x,t) = \text{sign}(u_x)u_{xx}$.

Kantenpositionen x_0 seien definiert als Maxima von $u_x^2 \Rightarrow u_{xx}(x_0) = 0$, u_{xx} ändert an x_0 Vorzeichen.

- \Rightarrow Vorzeichenwechsel von c(x) ist "Detektor" für Kanten (und Extrema von u).
- (4.19) ist schlecht gestellt (rückwärts parabolisch!), funktioniert aber numerisch sehr gut (Grund noch unklar).

Vermutung 4.7 (Osher-Rudin, 1990). Sei $f \in C(\mathbb{R})$. \Rightarrow (4.18) hat eindeutige Lösung mit Sprüngen (für t > 0) nur an Wendepunkten von f(x). Die Totalvariation von u(.,) ist konstant in t, ebenso Positionen und Werte der lokalen Extrema.

2D-Verallgemeinerung:

$$u_t = -|\nabla u|F(\Delta u), \quad x \in \mathbb{R}^2, \ t > 0;$$

z.B. mit F(s) := sign(s).

<u>Referenzen</u>: [AK] §3.3.3, [Ma]§10

5 Musterbildung/Reaktions-Diffusionsgleichungen

Beispiele für Musterbildungsprozesse:

- in chemischen Reaktionen, z.B. Spiralwellen
- 2-Phasen-Gemische von Flüssigkeiten, z.B. "fingering" in Öl-Wasser-Strömung in porösem Medium
- in Biologie: Blätterstrukturen, Tierfelle ("animal coat"), ...

in Biologie: nur "Rezept" für Musterbildungsprozess ist genetisch "gespeichert"; aber *nicht* das eigentliche Muster.

<u>Ziel:</u> (nichtlineare) mathematische Modelle (z.B. parabolische PDGl's), die "solche" Muster hervorbringen \rightarrow als möglicher Mechanismus zur Musterbildung.

5.1 Reaktions-Diffusionsgleichungen

Herleitung:

c(x,t) ... (skalare) Dichtefunktion einer Substanz; $x \in \mathbb{R}^3$

J(c, x, t) ... Flussfunktion

f(c, x, t) ... Produktionsrate der Substanz

Bilanzgleichung im Gebiet $\Omega \subset \mathbb{R}^3$:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} c(x,t) \mathrm{d}x = -\int_{\partial \Omega} J \cdot \nu \mathrm{d}s + \int_{\Omega} f(c,x,t) \mathrm{d}x$$

$$\stackrel{\mathrm{Div.}}{=} \int_{\Omega} (-\operatorname{div} J + f) \mathrm{d}x$$

 Ω beliebig \Rightarrow

$$c_t + \operatorname{div} J = f(c, x, t) \tag{5.1}$$

klassische Diffusion: $J = -D\nabla c$; hier nur D = const.

Verallgemeinerung auf mehrere interagierende Spezies oder Chemikalien $c_i(x,t)$; $i=1,\ldots,m$.

Produktions-/Reaktionsrate hier nur $f = f(c) \in \mathbb{R}^m$ (nichtlinear!):

$$c_t = f(c) + D\Delta c. (5.2)$$

hier: $0 \le D = \text{konstante Diagonal matrix}$; also keine Kreuz-Diffusion.

Referenzen: [Mu] §9.2

5.2 Turing Mechanismus

sei m=2; $c=(u,v)^{\top}$, nach geeigneter Skalierung (Orts-Skalenparameter $\gamma>0, d>0$):

$$\begin{cases} u_t = \gamma f(u, v) + \Delta u \\ v_t = \gamma g(u, v) + d\Delta v \end{cases}$$
(5.3)

Turing Mechanismus:

1. Sei $(u_0, v_0)^{\top} \in \mathbb{R}^2$ ein räumlich homogener, asymptotisch stabiler Stationärpunkt von

$$u_t = \gamma f(u, v), v_t = \gamma g(u, v). \tag{5.4}$$

- 2. Für geeignete f, g und $1 \neq d$ gilt: (5.3) ist an $(u_0, v_0)^{\top}$ linear instabil, obwohl Diffusion "normalerweise" stabilisiert.
- \Rightarrow Aus kleinen Störungen des homogenem Stationärzustandes können in der Zeitevolution räumlich inhomogene Muster entstehen: "reguläres" (aber typischerweise nicht perfekt periodisches) Muster als Stationärzustände $u_{\infty}(x) = \lim_{t \to \infty} u(x,t)$ bzw. $v_{\infty}(x) = \lim_{t \to \infty} v(x,t)$. Diese sind *nicht* eindeutig!

Betrachte (5.3) auf $\Omega \subset \mathbb{R}^2$ mit RB:

$$\frac{\partial u}{\partial \nu} = \frac{\partial v}{\partial \nu} = 0, \quad x \in \partial \Omega,$$

d.h. 0-Fluss-RB um selbstorganisierte Muster (ohne RB-Effekt!) zu ermöglichen.

AB: u(x, 0), v(x, 0) geg.

Definition 5.1 (linearisierte asymptotische Stabilität). Für ein automomes, dynamisches System y' = F(y) heißt $y_0 \in \mathbb{R}^m$ ein linearisiert asymptotisch stabiler Stationärpunkt, falls $F(y_0) = 0$ und für alle Eigenwerte von $\frac{\partial F}{\partial y}(y_0)$ gilt: $\text{Re}(\lambda_i) < 0$. Falls es einen Eigenwert mit $\text{Re}(\lambda_i) > 0$ gibt, heißt y_0 linearisiert instabiler Stationärpunkt.

Der Fall $\text{Re}(\lambda_i) = 0$ wird hier nicht erfasst, da er keine Stabilitätsaussage über das nichtlineare System zulässt.

Bedingung für Diffusions-getriebene Instabilität:

Lemma 5.2. $(u_0, v_0)^{\top} \in \mathbb{R}^2$ ist linear asymptotisch stabiler Stationärpunkt von $(5.4) \Leftrightarrow$

$$f(u_0, v_0) = g(u_0, v_0) = 0,$$

$$f_u + g_v \big|_{u_0, v_0} < 0,$$

$$f_u g_v - f_v g_u \big|_{u_0, v_0} > 0.$$
(5.5)

Beweis. Linearisierung von GDGl. (5.4):

$$w := \begin{pmatrix} u - u_0 \\ v - v_0 \end{pmatrix};$$

für |w| klein gilt:

$$w_t \approx \gamma A w, \quad A = \begin{pmatrix} f_u & f_v \\ g_u & g_v \end{pmatrix}_{u_0, v_0} \in \mathbb{R}^{2 \times 2}.$$

w=0 ist linear asymptotisch stabil $\Leftrightarrow \operatorname{Re} \lambda_{1,2}(A) < 0 \Leftrightarrow$

Bedingungen:

$$\operatorname{tr} A = \lambda_1 + \lambda_2 = f_u + g_v \big|_{u_0, v_0} < 0,$$

$$\det A = \lambda_1 \lambda_2 = f_u g_v - f_v g_u \big|_{u_0, v_0} > 0.$$

Satz 5.3 (notwendige Bedingung für Instabilität). Es gelte (5.5). Sei $(u_0, v_0)^{\top} \in \mathbb{R}^2$ linear instabiler Stationärpunkt von (5.3) \Rightarrow

$$df_u + g_v\big|_{u_0, v_0} > 0,$$

$$(df_u + g_v)^2 - 4d(f_u g_v - f_v g_u)\big|_{u_0, v_0} > 0.$$
(5.6)

(Aus 1. Bedingung und mittlerer Bedingung von (5.5) folgt: $d \neq 1, f_u g_v < 0$)

Beweis. Schritt 1: Lösungsformel für linearisierte RD-Gleichungen mittels Eigenfunktionsentwicklung:

Linearisierung von (5.3) um Stationärzustand (mit $w(x,t) \in \mathbb{R}^2$):

$$\begin{cases} w_t = \gamma A w + D \Delta w &, \quad D = \begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix}. \\ \text{RB: } \frac{\partial w_{1,2}}{\partial \nu} = 0, \quad x \in \partial \Omega, \\ \text{AB: } w(x,0) \text{ ist "kleine" Störung von } (u_0, v_0)^\top. \end{cases}$$

$$(5.7)$$

Betrachte zuerst das skalare Eigenwertproblem (=Helmholtz Gleichung), $z(x) \in \mathbb{R}$:

$$\begin{cases}
-\Delta z = \mu^2 z &, \quad \Omega \dots \text{beschränktes Gebiet} \\
\frac{\partial z}{\partial \nu} = 0 &, \quad \partial \Omega
\end{cases}$$
(5.8)

 $\mu_n^2 \in \mathbb{R}_0^+, n \in \mathbb{N}_0$... diskrete Eigenwerte von $-\Delta$ (wachsend), μ ... "Wellenzahlen"; $\frac{1}{\mu}$ proportional zur Wellenlänge

 $z_n(x)$, $n \in \mathbb{N}_0$... (skalare) Eigenfunktionen; bilden ON-Basis von $L^2(\Omega)$ (wegen 'Èntwicklungssatz' für selbsadjungierte kompakte Operatoren).

Speziell gilt: $\mu_0 = 0$, $z_0 \equiv |\Omega|^{-1/2}$. Diese x-homogene Mode ist laut VS (5.5) asymptotisch stabil.

Lösungsansatz für System von 2 parabolischen Gleichungen (5.7): basierend auf Eigenfunktionsentwicklung für (5.8):

$$w(x,t) = \sum_{n=0}^{\infty} c_n e^{\lambda_n t} z_n(x), \tag{5.9}$$

Hauptfrage: Wann existieren λ_n mit Re $\lambda_n > 0$?

Berechnung der $\lambda_n \in \mathbb{C}$, $c_n \in \mathbb{C}^2$; $n \in \mathbb{N}_0$ durch Einsetzen in (5.7) und Vergleich der Koeffizierten von z_n :

$$\lambda_n z_n c_n = \gamma z_n A c_n + \Delta z_n D c_n \stackrel{(5.8)}{=} z_n (\gamma A - \mu_n^2 D) c_n \qquad \forall n \in \mathbb{N}_0$$

Das ist ein homogenes lineares Gleichungssystem für c_n . Seine Lösungsbedingung (da $z_n \neq 0$):

$$0 = \det(\lambda_n I - \gamma A + \mu_n^2 D) = \lambda_n^2 + l(\mu_n^2) \lambda_n + h(\mu_n^2) = 0, \qquad \text{(quadratische Gl. für } \lambda_n) \quad (5.10)$$
$$l(\mu^2) := \mu^2 (1+d) - \gamma (f_u + g_v) \in \mathbb{R},$$
$$h(\mu^2) := d\mu^4 - \gamma (d f_u + g_v) \mu^2 + \gamma^2 \det A \in \mathbb{R}.$$

Seien $\lambda_n^j \in \mathbb{C}, j=1,2$ Lösungen von (5.10), also Eigenwerte von $\gamma A - \mu_n^2 D$, und $c_n^j \in \mathbb{C}^2$ zugehörige Eigenvektoren. (Wir nehmen hier an, dass $\gamma A - \mu_n^2 D$ diagonalisierbar ist $\forall n \in \mathbb{N}_0^{-1}$.)

$$\Rightarrow c_n^j e^{\lambda_n^j t} z_n(x) \text{ löst } (5.7).$$

 $\lambda_n^{1,2}$ bzw. $c_n^{1,2}$ sind konjugiert komplex oder beide reell, da $\gamma A - \mu_n^2 D$ reell.

$$\Rightarrow w(x,t) = \sum_{n=0}^{\infty} \left[\alpha_n c_n^1 e^{\lambda_n^1 t} + \beta_n c_n^2 e^{\lambda_n^2 t} \right] z_n(x), \tag{5.11}$$

und die Koeffizienten α_n , $\beta_n \in \mathbb{C}$ sind durch Fourierentwicklung der AB $w(\cdot, 0) \in L^2(\Omega; \mathbb{R}^2)$ eindeutig bestimmt.

¹Daraus folgt auch die Vollständigkeit der Eigenfunktionen $c_n^j z_n$ von (5.7); aus dem "Entwickungssatz" würde es nicht folgen, da (5.7) nicht symmetrisch ist.

Schritt 2: Beweis der 2 Ungleichungen (5.6):

Homogener Stationärzustand (u_0, v_0) von (5.3) ist linear asymptotisch stabil \Leftrightarrow beide Lösungen von (5.10) erfüllen: Re $\lambda_n^{1,2} < 0 \ \forall n \in \mathbb{N}_0$.

Es gilt jedenfalls

$$l(\mu^2) = \underbrace{\mu^2(1+d)}_{\geq 0} \underbrace{-\gamma}_{<0} \underbrace{(\underbrace{f_u + g_v}_{<0 \text{ lt. (5.5)}})} > 0 \quad \forall \mu.$$

Falls λ_n doppelter Eigenwert $\stackrel{(5.10)}{\Rightarrow} \lambda_n = -l(\mu_n^2)/2 < 0$, also asymptotisch stabile Mode.

Stationärzustand (u_0, v_0) ist linear $instabil \Leftrightarrow \exists n \in \mathbb{N}, \exists j \in \{1, 2\} \text{ mit Re } \lambda_n^j > 0.$ (Bem.: n = 0 ist asymptotisch stabile Mode.)

Das passiert genau für $h(\mu_n^2) < 0$ in (5.10) für ein $n \in \mathbb{N}$; da aus (5.10) folgt:

$$2\lambda_n^{1,2} = \underbrace{-l(\mu_n^2)}_{<0} \pm \sqrt{l^2(\mu_n^2) - 4h(\mu_n^2)},$$
(5.12)

und $\lambda_n^1 > 0 \iff h(\mu_n^2) < 0.$

$$h(\mu^2) = \underbrace{d\mu^4}_{\geq 0} - \gamma (d f_u + g_v) \mu^2 + \underbrace{\gamma^2 \det A}_{> 0 \text{ lt. (5.5)}}$$
(5.13)

 $\Rightarrow h(\mu^2) < 0$ nur für $d f_u + g_v > 0$ möglich (= Bedingung 1).

Da
$$f_u + g_v < 0$$
 (lt. (5.5)) $\Rightarrow d \neq 1, f_u g_v < 0$.

Minimum von $h(\mu^2)$ als Funktion von μ^2 :

$$h_{\min} = \gamma^2 \left(\underbrace{\det A}_{>0} - \underbrace{\frac{(d f_u + g_v)^2}{4d}}_{>0} \right), \quad \mu_{\min}^2 = \gamma \frac{d f_u + g_v}{2d} \stackrel{\text{Bed.1}}{>} 0$$

 \Rightarrow Bedingung für $h(\mu^2)<0$ für ein $\mu\neq 0$:

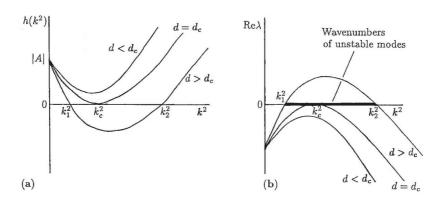
$$\frac{(d f_u + g_v)^2}{4d} > \det A > 0, \quad (= \text{Bedingung } 2).$$

also für $0 < d \ll 1$ oder $d \gg 1$.

Bemerkung 5.4. $h(\mu^2) < 0 \quad \Leftrightarrow \quad \underline{\mu}^2 < \mu^2 < \overline{\mu}^2$ (evtl. leere Menge, <u>abhängig von d</u>, γ) mit

$$\underline{\mu}^{2}, \overline{\mu}^{2} = \gamma \frac{d f_{u} + g_{v} \mp \sqrt{(d f_{u} + g_{v})^{2} - 4d \det A}}{2d}$$
(5.14)

(=Nullstellen von (5.13)).



Obige Bedingungen sind notwendig, aber nicht hinreichend, da μ_{\min}^2 ist i.A. kein Eigenwert ist.

Bemerkung 5.5 (hinreichende Bedingung für Instabilität). Genau für die diskreten Eigenwerte $\mu_n^2 \in (\underline{\mu}^2, \overline{\mu}^2)$ (falls existent!) gilt Re $\lambda_n^1 > 0$ (instabile Moden! Folgt aus (5.12)).

Das asymptotische Verhalten von w (für t groß) ist dann laut (5.11):

$$w(x,t) \sim \sum_{\mu \le \mu_n \le \overline{\mu}} \alpha_n c_n^1 e^{\lambda_n^1 t} z_n(x)$$

Summe nur über diskrete Eigenwerte von (5.8) (evtl. leere Menge) \Rightarrow nur endlich viele Wellenzahlen μ_n (des "Musters") sind instabil. Mode mit maximalem λ_n ist dominant.

<u>Idee:</u> linear instabile Eigenfunktionen werden durch nichtlineare Effekte beschränkt \Rightarrow räumlich inhomogene Stationärzustände entstehen (Beweis existiert nur für Spezialfälle)

Java-Demo für Brusselator: http://crossgroup.caltech.edu/Patterns/Demo4_5.html (läuft auf Internet Explorer 11; nicht auf Firefox)

Skalenparameter γ ($\sqrt{\gamma}$ proportional zu typischer Längenskala) taucht nur in den Intervallgrenzen (5.14) für instabiles μ -Intervall auf: je größer γ , desto mehr instabile (Muster-) Moden.

Bemerkung 5.6. Sei $\Omega = \mathbb{R}^2 \Rightarrow$ Helmholtz Gleichung (5.8) hat kontinuierliches Spektrum $\mu^2 \geq 0$.

Für alle Moden mit $\mu^2 \in (\underline{\mu}^2, \overline{\mu}^2)$ ist (5.9) linear instabil.

 \Rightarrow räumliches Muster entsteht; mit Wellenzahl μ zu maximalem $\lambda^1_\mu.$

<u>Referenzen</u>: [Mu] §14.2-3; [EGK] §16.2.12

5.3 Musterbildung in einem Beispiel-System

Beispiel für (5.3), zunächst in 1D:

$$\begin{cases} u_t = \gamma f(u, v) + u_{xx} := \gamma (a - u + u^2 v) + u_{xx} \\ v_t = \gamma g(u, v) + dv_{xx} := \gamma (b - u^2 v) + dv_{xx} \end{cases}$$
(5.15)

$$t > 0, x \in (0, p); a, b, d > 0$$

Schnakenberg-System: Modell für biochemische Reaktion zwischen 2 Substanzen mit Dichten u(x,t), v(x,t) und 3-Molekül-Reaktion (d.h. z.B. zusätzliche Enzym-Reaktion in System-Dynamik).

Musterbildung ist aber von genauer Form von f, g unabhängig.

homogener, positiver Stationärzustand:

$$u_0 = a + b, v_0 = \frac{b}{(a+b)^2}$$
, $b > 0, a+b > 0$;

an (u_0, v_0) :

$$f_u = \frac{b-a}{a+b}$$
, $f_v = (a+b)^2 > 0$, $g_u = \frac{-2b}{a+b}$, $g_v = -(a+b)^2 < 0$.

Folgerung aus (5.6): $f_u g_v < 0 \Rightarrow b > a$.

Bedingungen (5.5), (5.6) für lineare ODE-Stabilität bzw. lineare PDE-Instabilität:

$$\begin{cases}
f_u + g_v < 0 & \Rightarrow 0 < b - a < (a+b)^3, \\
\det A = f_u g_v - f_v g_u = (a+b)^2 > 0 & \checkmark \\
d f_u + g_v > 0 & \Rightarrow d(b-a) > (a+b)^3 \\
(d f_u + g_v)^2 - 4d(f_u g_v - f_v g_u) > 0 & \Rightarrow [d(b-a) - (a+b)^3]^2 > 4d(a+b)^4
\end{cases} (5.16)$$

Diese Ungleichungen für (a, b, d) definieren Instabilitätsgebiet ("Turing Raum").

Eigenwertproblem (5.8) auf $\Omega = (0, p)$:

$$z_{xx} + \mu^2 z = 0$$
, $z_x(0) = z_x(p) = 0$

$$\Rightarrow \mu_n = \frac{n\pi}{p}, z_n(x) = \cos\frac{n\pi x}{p}, n \in \mathbb{N}_0$$

Seien (a, b, d) im Turing Raum, definiert durch (5.16).

 \Rightarrow aus (5.14): Band instabiler Wellenzahlen $= (\mu, \overline{\mu}) = (\sqrt{\gamma} \underline{\sigma}, \sqrt{\gamma} \overline{\sigma})$ mit

$$\underline{\sigma}^2, \overline{\sigma}^2 := \frac{d(b-a) - (a+b)^3 \mp \sqrt{[d(b-a) - (a+b)^3]^2 - 4d(a+b)^4}}{2d(a+b)}$$
 (5.17)

 \Rightarrow Alle diskreten Moden mit $\mu_n = \frac{n\pi}{p} \in (\underline{\mu}, \overline{\mu})$ sind linear instabil.

asymptotisches Verhalten (für t groß) von $w(x,t) \approx (u(x,t) - u_0, v(x,t) - v_0)$ aus (5.15):

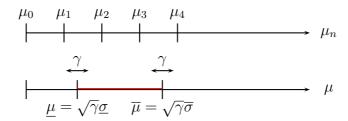
$$w(x,t) \sim \sum_{n=\underline{n}}^{\overline{n}} \alpha_n \underbrace{c_n}_{\in \mathbb{C}^2} e^{\lambda_n^1 t} \cos \frac{n\pi x}{p},$$
 (5.18)

 λ_n^1 ... positive Lösung der quadratischen Gleichung (5.10).

 $\underline{n}, \overline{n}$ so gewählt, dass die entsprechenden Wellenzahlen im Band $(\underline{\mu}, \overline{\mu})$ liegen.

Einfluss des Skalenparameters $\gamma > 0$:

typische Längenskala / Systemgröße $\propto \sqrt{\gamma}$:



Instabiles Intervall $(\underline{\mu}, \overline{\mu})$ durch γ verschiebbar. Abhängig von γ sind $0, 1, \dots$ Moden linear instabil:

- Für $\gamma < \gamma_c = \left(\frac{\mu_1}{\bar{\sigma}}\right)^2$: alle Moden linear asymptotisch stabil $\Rightarrow (u_0, v_0)$ ist stabil \Rightarrow kein "Muster" möglich.
- Bifurkation bei $\gamma = \gamma_c$ (kritischer Wert)
- Für $\gamma > \gamma_c$ mit $\underline{\mu} < \mu_1 < \overline{\mu} < \mu_2 \Rightarrow$ nur Mode 1 ist linear instabil:

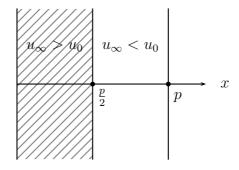
$$u(x,t) \sim u_0 + ce^{\lambda_1^1 t} \cos \frac{\pi x}{p}, \text{Re } \lambda_1^1 > 0.$$

(gilt im "linearen Bereich")

Exponentielles Wachstum von u wird durch nichtlineare Effekte beschränkt.

Hypothese: $u_{\infty}(x) \approx u_0 + \tilde{c} \cos \frac{\pi x}{p}$

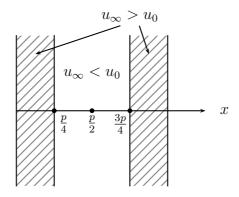
erwartetes 1D-Muster (für $\tilde{c} > 0$):



• Falls $\mu_1 < \underline{\mu} < \mu_2 < \overline{\mu} < \mu_3 \Rightarrow$ nur Mode 2 ist linear instabil:

$$u(x,t) \sim u_0 + ce^{\lambda_2^1 t} \cos \frac{2\pi x}{p}, \operatorname{Re} \lambda_2^1 > 0.$$

erwartetes 1D-Muster:



Analog für noch größere Systeme. Also: Systemgröße und Geometrie (in 2D) entscheidend für mögliche Muster

2D-Fall:

Eigenwertproblem (5.8) auf $\Omega = (0, p) \times (0, q)$:

$$\Delta z + \mu^2 z = 0 \quad , \quad \frac{\partial z}{\partial \nu} = 0 \text{ auf } \partial \Omega$$

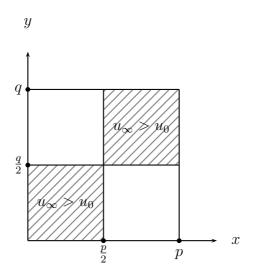
$$\Rightarrow \mu_{n,m}^2 = \pi^2 \left(\frac{n^2}{p^2} + \frac{m^2}{q^2} \right), z_{n,m}(x,y) = \cos \frac{n\pi x}{p} \cos \frac{m\pi y}{q}; n, m \in \mathbb{N}_0$$

Alle diskreten Moden $z_{n,m}(x,y)$ mit $\mu_{n,m}\in(\underline{\mu},\overline{\mu})$ (aus (5.17)) sind instabil.

asymptotisches Verhalten:

$$w(x, y, t) \sim \sum_{n,m} \alpha_{n,m} \underbrace{c_{n,m}}_{\in \mathbb{C}^2} e^{\lambda_{n,m}^1 t} \cos \frac{n\pi x}{p} \cos \frac{m\pi y}{q}$$
 (Summe über instabile Moden)

erwartetes 2D-Muster, Mode (1, 1):



Referenzen: [Mu] §14.4

5.4 Tierfellmuster

Erklärungsansatz: Fellmuster ("coat color pattern") entsprechen einem bio-chemischen "Vormuster", das während der Schwangerschaft angelegt wird.

"experimentelles" Reaktions-Diffusionsmodell:

$$\begin{cases} u_t = \gamma f(u, v) + \Delta u \\ v_t = \gamma g(u, v) + d\Delta v \end{cases}$$
 (5.19)

$$f(u,v) := a - u - h(u,v), g(u,v) := \alpha(b-v) - h(u,v),$$

$$h(u,v) := \frac{\rho uv}{1 + u + Ku^2}$$
 (eher "erfundene" Funktion)

Parameter $a, b, \alpha, \rho, K > 0; d > 1$

Skalenparameter $\sqrt{\gamma}$ proportional zur typischen Langenskala.

Gebiet Ω für Tierbein, -schwanz: Oberfläche von Zylinder (bzw. Pyramidenstumpf)

Eigenwertproblem (5.8) auf Ω mit $0 < x < s, 0 < \theta < 2\pi$ liefert (mit peridischen RBen in θ ; r = Radius):

$$\mu_{n,m}^2 = \frac{n^2}{r^2} + \frac{m^2 \pi^2}{s^2}, z_{n,m}(\theta, x) = \cos n\theta \cos \frac{m\pi x}{s}; n, m \in \mathbb{N}_0$$

und

$$z_{-n,m}(\theta,x) = \sin n\theta \cos \frac{m\pi x}{s}; n \in \mathbb{N}, m \in \mathbb{N}_0$$

Alle diskreten Moden $z_{n,m}$ mit $\mu_{n,m} \in (\mu, \overline{\mu})$ sind instabil.

Effekte:

aus numerischen Simulationen mit FEM; Lösung von (5.19) für " $t \to \infty$ " (bis zu Stationärzustand).

- lange, dünne Zylinder $(0 < r \ll 1)$: alle Umfangsmoden $n \ge 1$ liegen außerhalb des Instabilitätsbandes $(\mu, \overline{\mu}) \Rightarrow$ nur Querstreifen (mit n = 0)
- je breiter der Zylinder, desto höhere Umfangsmoden möglich

Konklusion:

• Effekte werden qualitativ richtig beschrieben.

• Ob Modell (5.19) deren Evolution richtig beschreibt, ist (noch) unklar. Der qualitative Einfluss der Längenskala auf die möglichen Muster ist von der Gleichung aber "recht unabhängig".

Referenzen: [Mu] §15.1

5.5 Musterbildung in 2-Komponenten Mischungen / Cahn-Hilliard Gleichung

<u>Anwendung</u>: Phasenseparation (bei dominanter Diffussion) in binären Flüssigkeitsmischungen (z.B. (flüssige) metallische Legierungen, Emulsionen: Essig-Öl, Ouzo-Wasser-Mikroemulsion).

 $0 \le c_{1,2}(x,t) \le 1$... lokale Konzentration der 2 Komponenten

Herleitung der Cahn-Hilliard Gleichung:

$$\partial_t c_i + \operatorname{div} J_i = 0$$
; $i = 1, 2$

Annahmen: System isotherm, isobar, inkompressibel

$$\Rightarrow c_1 + c_2 = 1, \quad \partial_t (c_1 + c_2) = 0, \quad J_1 + J_2 = 0$$
wähle $c := c_1 - c_2 \in [-1, 1], \quad J := J_1 - J_2$

$$\Rightarrow c_t + \operatorname{div} J = 0, \quad \Omega \subset \mathbb{R}^d. \tag{5.20}$$

phenomenologische Herleitung des Flusses $J=-L\nabla\mu$:

$$L \geq 0$$
 ... (const.) Mobilität
 μ ... chemisches "Potential" (z.B. $\mu = c$ bei Diffussion);
definiert als Ableitung eines Potentials (bzw. Variationsableitung der
freien Energie); $\nabla \mu$ ist $Triebkraft$ für Evolution

• freie Energie für Mischung (= nötige Energie zur "Generierung" eines Systems mit def. Temperatur T, das im Gleichgewicht mit Umgebung ist.)

$$E(c) := \int_{\Omega} \left[f(c) + \frac{\gamma}{2} |\nabla c|^2 \right] dx \in \mathbb{R}, \quad \gamma > 0 \text{ const.}$$

 $\frac{\gamma}{2} \; |\nabla c|^2 \; \ldots \;$ Energie der Phasengrenze zwischen $c=\pm 1;$ "bestraft" Phasenübergänge

 $f: \mathbb{R} \to \mathbb{R}$, gegebene Funktion, bistabil (d.h. mit 2 Minima), z.B. $f(c) = \alpha(c^2 - a^2)^2$; $\alpha, a > 0$.

- System will E(c) minimieren
- μ ist Variationsableitung vom (nicht-konvexen) Funktional E (vgl. Gâteaux Ableitung):

$$\delta E \underbrace{(c, v)}_{(*)} := \lim_{\varepsilon \to 0} \frac{E(c + \varepsilon v) - E(c)}{\varepsilon}$$

$$= \lim_{\varepsilon \to 0} \int_{\Omega} \frac{f(c + \varepsilon v) - f(c)}{\varepsilon} + \frac{\gamma}{2} \frac{|\nabla(c + \varepsilon v)|^2 - |\nabla c|^2}{\varepsilon} dx$$

$$\stackrel{\text{part. Int.}}{=} \int_{\Omega} f'(c)v - \gamma \Delta c \, v \, dx$$

(*): an der Stelle c; in der Richtung $v \in C_0^1(\Omega)$

$$\Rightarrow \mu(c) = \underbrace{\delta E(c)}_{\text{als lin. Funktional}} = -\gamma \Delta c + f'(c) \quad \dots \quad \text{Riesz-Repräsentant auf } L^2(\Omega) \quad (5.21)$$

in (5.20) einsetzen \Rightarrow Cahn-Hilliard Gleichung:

$$c_t = L \Delta(-\gamma \Delta c + f'(c)), \quad \Omega \quad \text{(semilinear, 4. Ordnung)}$$
 (5.22)

- mögliche RBen:
 - a) periodische RB
 - b) $\frac{\partial c}{\partial \nu} = 0$, $J \cdot \nu = -L \frac{\partial}{\partial \nu} \left(-\gamma \Delta c + f'(c) \right) = 0$, d.h. verschwindender Fluss durch Rand
- Idee der Evolution:

konst. Lösungen c mit f''(c) < 0 können instabil sein (da Diffusionsterm $L \operatorname{div}(f''(c)\nabla c)$ auftritt; ist für kleine Variationen dominant) \longrightarrow Musterbildung (Vergröberung für $t \nearrow 0$; es entstehen "Körner" fast nur aus einer Substanz)

Satz 5.7. Sei c klassische Lösg. der Cahn-Hilliard Gl. in $\Omega := (0, l)^d$ mit period. oder 0-Fluss-RBen. \Rightarrow

1.
$$\frac{d}{dt} \int_{\Omega} c \, dx = 0$$

 $(\Rightarrow \int_{\Omega} c_i \, dx = konst, da \int c_1 + c_2 \, dx = \int 1 \, dx = konst)$

2.
$$\frac{d}{dt}E(c(t)) \leq 0$$
 (freie Energie ist Lyapunov-Funktional)

Beweis.

1.
$$\frac{\mathrm{d}}{\mathrm{dt}} \int_{\Omega} c \, \mathrm{d}x = L \int_{\Omega} \Delta(-\gamma \Delta c + f'(c)) \, \mathrm{d}x$$

$$\stackrel{\mathrm{Div.Satz}}{=} L \int_{\partial \Omega} \nu \cdot \nabla(-\gamma \Delta c + f'(c)) \, \mathrm{d}s \stackrel{\mathrm{RB}}{=} 0$$

2.

$$\frac{\mathrm{d}}{\mathrm{dt}} \int_{\Omega} \left(\frac{\gamma}{2} |\nabla c|^{2} + f(c) \right) dx = \int_{\Omega} \gamma \nabla c \cdot \nabla c_{t} + f'(c)c_{t} dx$$

$$\stackrel{\text{part. Int.}}{=} \int_{\Omega} \left[-\gamma \Delta c + f'(c) \right] c_{t} dx$$

$$= L \int_{\Omega} \left[-\gamma \Delta c + f'(c) \right] \Delta \left[-\gamma \Delta c + f'(c) \right] dx$$

$$\stackrel{\text{part. Int.}}{=} -L \int_{\Omega} |\nabla \left[-\gamma \Delta c + f'(c) \right]|^{2} dx \leq 0$$

Bemerkung: Gilt auch für schwache Lösung.

Satz 5.8 ([EF], Th. 2.1). Sei $\Omega = (0, l)$, f Doppelmuldenpotential mit $f(c) = \gamma_2 c^4 + \gamma_1 c^3 + \gamma_0 c^2$, $c_0 \in H_E^2(\Omega) := \{ y \in H^2(\Omega) \mid y_x(0) = y_x(l) = 0 \}$. Für die Cahn-Hilliard Gleichung (5.22) mit Randbedingung (b) gilt:

(i) $\forall T > 0 \exists ! Lsg. c \in L^2((0,T); H^4(\Omega)) mit c_t \in L^2((0,T); L^2(\Omega))$.

(ii) Ist $c_0 \in H^6(\Omega) \cap H_E^2(\Omega)$ und $\frac{\partial^2}{\partial x^2} c_0 \in H_E^2(\Omega)$, dann ist die Lösung c klassisch.

linearisierte Instabilität:

Alle Konst. $c=c_m\in\mathbb{R}$ lösen Cahn-Hilliard Gleichung (5.22) (homogene Stationärlösg.). Störung $c=c_m+u,\,u$ klein mit $\int_\Omega u\;\mathrm{d}x=0$ (Massenerhaltung); sei z.B. L=1.

Linearisierung um c_m :

$$u_{t} = c_{t} = \Delta \left[-\gamma \Delta u + f'(c) - f'(c_{m}) \right]$$

$$\approx \Delta \left[-\gamma \Delta u + f''(c_{m})(c - c_{m}) \right]$$

$$= -\Delta \left[\gamma \Delta u - f''(c_{m}) u \right]$$
(5.23)

Eigenfunktionen des Operators $u \mapsto -\Delta(\gamma \Delta u - f''(c_m)u)$ auf $\Omega = (0, l)^d$ mit period. RBen:

$$\varphi_{k}(x) = e^{i k \cdot x}, \quad k \in K := \frac{2\pi}{l} \mathbb{Z}^{d} \setminus \{0\} \quad (\text{da } \int u \, dx = 0),$$

$$\lambda_{k} = |k|^{2} \left(-\gamma |k|^{2} - f''(c_{m})\right)$$

$$= -\gamma \left(|k|^{2} + \frac{f''(c_{m})}{2\gamma}\right)^{2} + \frac{f''(c_{m})^{2}}{4\gamma} \in \mathbb{R}$$
(5.24)

Bemerkung: $\{\varphi_k\}_{k\in K}$... Basis von $\{L^2(\Omega)\mid \text{periodische RB}, \int f\mathrm{d}x=0\}$

 \Rightarrow Lösg. von (5.23) als Linearkombination:

$$u(x,t) = \sum_{k \in K} \alpha_k e^{\lambda_k t} e^{i k \cdot x}$$

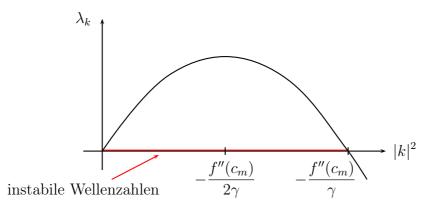
- $u \equiv 0$ ist instabil, falls ein EW $\lambda_k > 0$; nur möglich für $f''(c_m) < 0$. Sei also $f''(c_m) < 0$.
- aus (5.24): instabilste Mode für größten EW, also

$$\left[|k|^2 + \underbrace{\frac{f''(c_m)}{2\gamma}}_{\leq 0}\right]^2 \longrightarrow min$$

Lösg. sei k_0 .

→ instabilste Wellenlänge:

$$l_0 := \frac{2\pi}{|k_0|} \approx 2\pi \sqrt{-\frac{2\gamma}{f''(c_m)}}$$
 (da k diskret).



• Wellenzahlen $|k|^2 > -\frac{f''(c_m)}{\gamma}$ sind (linearisiert) stabil.

 \longrightarrow Gebiet mit $l=\frac{2\pi}{|k|}<2\pi\sqrt{-\frac{\gamma}{f''(c_m)}}$ erlaubt keine Instabilität, d.h. keine Musterbildung.

Langzeitverhalten:

Satz 5.9 ([EF], Th. 2.1). VS von Satz 5.8: Sei $\frac{1}{l} \int c_0 dx =: M$, und c sei die eindeutige Lösg. der Cahn-Hilliard Gl. mit RB (b) \Rightarrow

(1) $c(t) \stackrel{t\to\infty}{\longrightarrow} c_{\infty}$ in $L^2(\Omega)$ mit c_{∞} ist <u>eine</u> Lösg. des Stationärproblems:

$$\begin{cases}
 \gamma c_{\infty}'' = f'(c_{\infty}) - \alpha, & 0 < x < l, \\
 c_{\infty}'(0) = c_{\infty}'(l) = 0, \\
 \int c_{\infty} dx = \int c_{0} dx,
\end{cases} (5.25)$$

und zu bestimmender Integrationskonstante $\alpha \in \mathbb{R}$.

- (2) Lösg. von (5.25) ist äquivalent zum Auffinden von kritischen Punkten von E(c) in $H^1(\Omega) \cap L^1(\Omega)$ unter der Nebenbedingung $\mathcal{G}(c) := \int_{\Omega} c \, dx \stackrel{!}{=} Ml$. (Laut Variations-rechnung erfüllt c_{∞} dann: $\delta E(c) + \lambda \, \delta \mathcal{G}(c) \stackrel{(5.21)}{=} \underbrace{-\gamma \Delta c + f'(c)}_{=\mu(c)} + \lambda = 0$, mit $\delta \mathcal{G}(c) = 1$ und dem Lagrange Multiplicator $\lambda \in \mathbb{R}$.)
- (3) $c(t) \xrightarrow{t \to \infty} M$ (= konst) in $L^2(\Omega)$ (also keine Phasentrennung), falls eine der 3 folgenden Bedingungen erfüllt ist:
 - a) $\gamma > \frac{l^2}{\pi^2}$ und $||c_0||_2$ klein genug;
 - b) |M| qroß (da dann Lösq. von (5.25) eindeutig);
 - c) $\int (f(c_0(x)) f_m) dx + \frac{\gamma}{2} ||c_0'||_{L^2}^2$ klein genug und $f(c_0(x)) > f_m \quad \forall x \in (0, l)$, wobei $f_m := f(c_m)$ ein lokales Minimum von f ist, und $|c_m M|$ klein genug.

Bemerkung 5.10.

- (1) Lösung von (5.25) i.A. nicht eindeutig; $c_{\infty} \equiv M$ ist immer eine der Lösungen.
- (2) Stationärproblem von Cahn-Hilliard Gl. (5.22):

$$(-\gamma c_{xx} + f'(c))_{xx} = 0, \quad 0 < x < l \quad \text{mit} \quad c_x(0) = c_x(l) = 0$$

 $(-\gamma c_{xx} + f'(c))_x \Big|_{x=0,l} = 0$

2 mal integrieren liefert (5.25).

(3) zu Stationärproblem (5.25): Für M=0 und $f(c):=\frac{c^4}{4}-\frac{c^2}{2}$ hat (5.25) genau $2N_0+1$ Lösungen, wobei $N_0=\lfloor\frac{4}{\pi l\sqrt{\gamma}}\rfloor$... Gaußklammer. Eine Lösg. ist $c_\infty\equiv 0$. Ist c(x) Lösg. $\Rightarrow -c(x)$ ist Lösg.

Beweis. von Satz 5.9 (3c):

aus $E(c(t)) \searrow$:

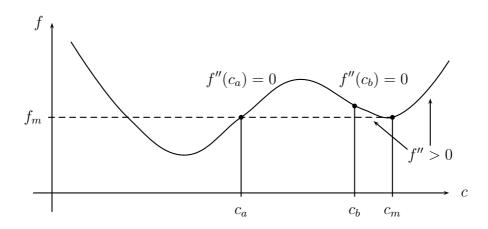
$$E(c) = \int_{0}^{l} f(c(x)) dx + \frac{\gamma}{2} \|c'\|_{L^{2}}^{2} \le E(c_{0})$$

Sobolev Einbettung + Poincaré Ungleichung (für $c-M \in H^1(\Omega), \ \int_0^l (c-M) \mathrm{d}x = 0) \ \Rightarrow$

$$\int_{0}^{l} f(c) dx + \frac{C\gamma}{2} \|c - M\|_{L^{\infty}}^{2} \le E(c) \le \int_{0}^{l} f(c_{0}) dx + \frac{\gamma}{2} \|c'_{0}\|_{L^{2}}^{2} - \int_{0}^{l} f(c_{0}) dx + \frac{\gamma}{2} \|c'_{0}\|_{L^{2}}^{2}$$

$$\Rightarrow \min \frac{1}{2} ||c - c_m||_{L^{\infty}}^2 \le ||c - M||_{L^{\infty}}^2 + |c_m - M|^2$$
:

$$\int_{0}^{l} (f(c) - f_{m}) dx + \frac{C\gamma}{4} \|c - c_{m}\|_{L^{\infty}}^{2} \leq \int_{0}^{l} \underbrace{(f(c_{0}) - f_{m})}_{>0 \text{ lt. VS}} dx + \frac{C\gamma}{2} |c_{m} - M|^{2} + \frac{\gamma}{2} \|c_{0}'\|_{L^{2}}^{2} =: \varepsilon$$
(5.26)



lt. VS ε "klein genug".

Sei nun
$$c_0$$
 so, dass $\varepsilon < \frac{C\gamma}{8} (c_m - c_b)^2$ und $\int_0^t f(c_0) - f_m \, \mathrm{d}x \ge 0$

 $\underline{\text{Beh.}}$:

$$||c(t) - c_m||_{L^{\infty}} < c_m - c_b \quad \forall t \ge 0.$$
 (5.27)

Bew.: Aus (5.26) für t = 0, also $c = c_0$:

$$\|c_0 - c_m\|_{L^{\infty}}^2 \le \frac{4}{C\gamma} \varepsilon < \frac{1}{2} (c_m - c_b)^2 < (c_m - c_b)^2;$$

c stetig in $t \Rightarrow (5.27)$ gilt auf maximalem Intervall $[0, t^*)$. Sei $t^* < \infty$ und

$$||c(t^*) - c_m||_{L^{\infty}} \ge c_m - c_b. \tag{5.28}$$

Aus (5.27): Für $t \in [0, t^*)$: $c(x, t) \in (c_b, 2c_m - c_b)$; f ist dort konvex

$$\Rightarrow$$
 $f(c(x,t)) > f_m \quad \forall x \in (0,l), \quad t \in [0,t^*)$

$$\Rightarrow \int_{0}^{l} f(c(t)) - f_m \, dx \ge 0 \quad \text{auf} \quad [0, t^*)$$

$$\Rightarrow$$
 (aus (5.26)) $\frac{C\gamma}{4} \|c(t) - c_m\|_{L^{\infty}}^2 \le \varepsilon < \frac{C\gamma}{8} (c_m - c_b)^2$

$$\Rightarrow$$
 $\|c(t) - c_m\|_{L^{\infty}} < \frac{1}{\sqrt{2}} (c_m - c_b)$ auf $[0, t^*)$... Widerspruch zu (5.28).

Also gilt $(5.27) \forall t \geq 0$.

Aus (5.27): $f''(c(x,t)) \ge 0 \quad \forall x \in (0,l), \quad t \ge 0$

$$c_t = (-\gamma c_{xx} + f'(c))_{xx} \quad | \cdot (c - M), \quad \int_0^l dx$$

$$\Rightarrow \frac{1}{2} \frac{\mathrm{d}}{\mathrm{dt}} \|c - M\|_{L^{2}}^{2} + \gamma \|c_{xx}\|_{L^{2}}^{2} \stackrel{\text{part. Int.}}{=} - \int_{0}^{l} \underbrace{f''(c)}_{>0} (c_{x})^{2} \, \mathrm{d}x \le 0.$$

Mit 2x Poincaré Ungleichung (wegen $\int_0^l (c-M) \, \mathrm{d}x = 0$) und mit $c_x(0) = 0$ gilt:

$$\begin{aligned} & \|c - M\|_{L^2} & \leq & C_p \|c_x\|_{L^2} \leq \frac{C_p l}{\sqrt{2}} \|c_{xx}\|_{L^2}. \\ \Rightarrow & \frac{\mathrm{d}}{\mathrm{d}t} \|c - M\|_{L^2}^2 \leq & -\frac{4\gamma}{C_p^2 l^2} \|c - M\|_{L^2}^2 \\ \Rightarrow & \|c(t) - M\|_{L^2} \leq & \mathrm{e}^{-\frac{2\gamma}{C_p^2 l^2} t} \|c_0 - M\|_{L^2}, \quad t \geq 0 \end{aligned}$$

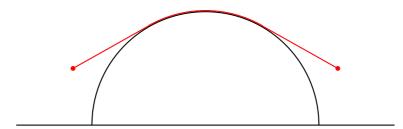
Bemerkung: In Satz 5.9 (3) ist $f'' \ge 0$ essentiell, während für die linearisierte Instabilität $\overline{f''(c_m)} < 0$ notwendig war.

Referenzen: [EGK] §6.2.13, [EF], [TE]

6 Probleme mit freiem Rand / Dünnfilm Gleichung

Beispiele:

- Strömung in porösem Medium $(u_t = \Delta u^{\alpha}, \alpha > 1)$; $\partial(\text{supp } u(t))$ ist freier Rand: zeit-, lösungsabhängig
- Schmelz-, Erstarrungsphänomene ("Stefan-Problem"): Interface zw. flüssiger und fester Phase ist freier Rand
- ullet Hindernisproblem für elastische Membran o VL "Variationsrechnung"



• Evolution (bzw. Strömung) von dünnen (benetzenden) Flüssigkeitsfilmen auf flacher Oberfläche; freier Rand = $\partial(\text{supp }h(t))$

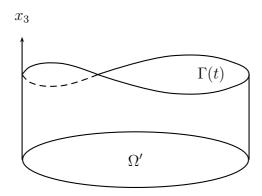
6.1 Herleitung aus Navier-Stokes Gleichung

NS-Gleichung für homogene, inkompressible Strömung:

$$\varrho_0 \left[u_t + (u \cdot \nabla)u \right] + \nabla p = \mu \Delta u
\operatorname{div} u = 0$$
(6.1)

im Gebiet

$$\Omega(t) = \left\{ (x', x_3) = (x_1, x_2, x_3) \in \mathbb{R}^3 \mid x' \in \Omega', \ 0 < x_3 < \underbrace{h(x', t)}_{\text{glatt, pos.}} \right\}; \ \Omega' \subset \mathbb{R}^2 \dots \text{beschr. Gebiet}$$



- auf festem Rand $((x', x_3) \text{ mit } x' \in \partial \Omega' \text{ oder } x_3 = 0)$: Haft-RB u = 0.
- ges: RB an freier Oberfläche $\Gamma(t) = \{(x', h(x', t)) \mid x' \in \Omega'\}$. Partikeltrajektorie: $(x'(t), x_3(t))$ mit Tangentialvektor $u(x'(t), x_3(t))$.

Idee: freier Rand bewegt sich mit Flüssigkeit mit:

$$\frac{\mathrm{d}}{\mathrm{d}t} x'(t) = (u_1, u_2)(x'(t), h(x'(t), t), t) \dots \text{ projezierte Trajektorie,}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} h(x'(t), t) = u_3(x'(t), h(x'(t), t), t)$$

 \Rightarrow kinematische RB auf $\Gamma(t)$:

$$u_3 = \partial_t h + u_1 \partial_{x_1} h + u_2 \partial_{x_2} h \tag{6.2}$$

• Kräftegleichgewicht an Oberfläche zwischen Spannung und Kapillarkräften:

$$T\nu \stackrel{!}{=} \gamma \kappa \nu$$
 ... Oberflächenspannung (wirkt in Normalenrichtung) (6.3)

Also: Tangentialkomponenten von $T\nu$ verschwinden:

$$(T\nu)_{tang} = 0; \quad (T\nu)_{norm} = \gamma\kappa$$
 (6.4)

Spannungstensor $T = 2 \mu D - p I$ (da div u = 0) Deformationstensor $2 D = \nabla \otimes u + (\nabla \otimes u)^T$

 γ ... const (~ Kapilaritätszahl)

$$\kappa = \operatorname{div}_{x'} \left(\frac{\nabla_{x'} h}{\sqrt{1 + |\nabla_{x'} h|^2}} \right) \dots \text{ mittlere Krümmung}$$

Skalierung:

L ... typische Längenskala (horizontal)

H ... typische Höhe des Films

V ... typische Geschwindigkeitsskala (horizontal)

$$x_i = L\,\hat{x}_i\,; \quad i = 1, 2\,; \quad x_3 = H\,\hat{x}_3\,; \quad h = H\,\hat{h} \quad \text{mit} \quad \varepsilon := \frac{H}{L} \ll 1$$
 $u_i = V\,\hat{u}_i\,; \quad i = 1, 2\,; \quad u_3 = \varepsilon\,V\,\hat{u}_3\,; \quad t = \frac{L}{V}\,\hat{t}; \quad p = \frac{\varepsilon\gamma}{L}\,\hat{p}; \quad V := \frac{\varepsilon^3\gamma}{\mu}$
 $Re := \frac{\varrho_0\,L\,V}{\mu} \quad \dots \quad \text{Reynoldszahl}$

Die Skalierungen von u_i , t, p ergeben sich natürlich; die Wahl von V liefert (später) das "richtige" Gleichgewicht zwischen Druckterm und Viskosität.

Skalierte NS-Gleichung (Notation '^' für skalierte Variable wird nun wieder weggelassen):

$$\varepsilon^{2} \operatorname{Re} \left[\partial_{t} u_{i} + (u \cdot \nabla) u_{i} \right] + \frac{\partial_{x_{i}} p}{\partial_{x_{3}} p} = \left(\varepsilon^{2} \partial_{x_{1}}^{2} + \varepsilon^{2} \partial_{x_{2}}^{2} + \frac{\partial_{x_{3}}^{2}}{\partial_{x_{3}}} \right) u_{i}; \quad i = 1, 2$$

$$\varepsilon^{2} \operatorname{Re} \left[\partial_{t} u_{3} + (u \cdot \nabla) u_{3} \right] + \varepsilon^{-2} \frac{\partial_{x_{3}} p}{\partial_{x_{3}} p} = \left(\varepsilon^{2} \partial_{x_{1}}^{2} + \varepsilon^{2} \partial_{x_{2}}^{2} + \partial_{x_{3}}^{2} \right) u_{3}$$

$$\operatorname{div} u = 0$$

$$(6.5)$$

Annahmen: $\varepsilon^2 Re \ll 1$, $\varepsilon \ll 1$

 \Rightarrow dominante ε -Ordnung in (6.5), (6.6) (\rightarrow "Lubrikations-Approximation"):

$$\partial_{x_3}^2 u_i = \partial_{x_i} p ; \quad i = 1, 2$$

$$\partial_{x_3} p = 0 \quad (\text{also } p = p(x', t))$$

$$(6.7)$$

Lösungen von (6.7) mit RBen $u_i(x_3=0)=0$, $\partial_{x_3}u_i(x_3=h)=0$ (siehe (6.9) unten); i=1,2:

$$u_{i}(x,t) = \partial_{x_{i}} p(x',t) \left[\frac{x_{3}^{2}}{2} - h(x',t) x_{3} \right]; \quad i = 1,2$$
(vgl. Poiseuille-Strömung) (6.8)

<u>Auf freiem Rand</u> $x_3 = h(x', t)$ (mit $\partial_{x_i} h = O(\varepsilon)$):

$$\nu = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + O(\varepsilon) , \quad \kappa = \varepsilon \Delta h + O(\varepsilon^2) .$$

Betrachte (6.3) (unskaliert !) für spezielles ν :

$$T\begin{pmatrix} 0\\0\\1 \end{pmatrix} = \mu \begin{pmatrix} \frac{\partial \mathbf{u}_1}{\partial x_3} + \frac{\partial \mathbf{u}_3}{\partial x_1}\\ \frac{\partial \mathbf{u}_2}{\partial x_3} + \frac{\partial \mathbf{u}_3}{\partial x_2}\\ 2\frac{\partial \mathbf{u}_3}{\partial x_3} \end{pmatrix} - \begin{pmatrix} 0\\0\\p \end{pmatrix}$$

Größenordnungen obiger Einzelterme nach Skalierung: $O(\varepsilon^2)$, $O(\varepsilon^4)$; $O(\varepsilon^3)$, $O(\varepsilon)$

Dominante ε -Ordnung der tangentialen Komponente (also x_1, x_2) in Bilanz (6.4) an $x_3 = h(x')$ ist $O(\varepsilon^2)$:

$$\partial_{x_3} u_i(h(x')) = 0; \quad i = 1, 2.$$
 (6.9)

Dominante ε -Ordnung der normalen Komponente (also x_3) in (6.4) ist $O(\varepsilon)$:

$$-p = \Delta h$$
 (in skalierten Variablen) (6.10)

• Integriere div u = 0 in x_3 :

$$0 = \int_{0}^{h(x_1, x_2, t)} (\partial_{x_1} u_1 + \partial_{x_2} u_2) dx_3 + u_3(x', h(x', t), t) - \underbrace{u_3(x', 0, t)}_{=0};$$

aus kinematische RB (6.2) an $x_3 = h(x')$:

$$\partial_t h = u_3 - u_1 \partial_{x_1} h - u_2 \partial_{x_2} h$$

$$= - \int_0^{h(x_1, x_2, t)} (\partial_{x_1} u_1 + \partial_{x_2} u_2) \, dx_3 - u_1 \, \partial_{x_1} h - u_2 \, \partial_{x_2} h$$

$$= - \operatorname{div}_{x'} \left(\int_0^{h(x_1, x_2, t)} \left(u_1 \atop u_2 \right) dx_3 \right) \stackrel{(6.8)}{=} - \operatorname{div}_{x'} \left(-\nabla_{x'} p(x', t) \frac{h^3}{3} \right)$$
Elussfunktion

Mit (6.10):

$$h_t = -\operatorname{div}\left(\frac{h^3}{3}\nabla\Delta h\right)$$
 ... $D\ddot{u}nnfilm\ Gleichung\ f\ddot{u}r\ h(x_1, x_2, t),$ (6.11)
(quasilin., 4. Ordnung)

- Evolution getrieben durch Oberflächenspannung, gebremst durch Viskosität
- Während Navier-Stokes die gesamte Strömung innerhalb vom Film/Tropfen beschreibt, beschreibt (6.11) nur die Zeitentwicklung seiner Form (basierend auf der zugrunde liegenden Flüssigkeitsströmung).
- Anwendungen: Bewegung eines Wassertropfens, (Öl-) Schmierungen, (Farb-) Beschichtungsprozesse

<u>Referenzen</u>: [EGK] §7.10-11, [My]

6.2 Randbedingungen

allgemeinere Dünnfilm Gleichungen:

$$\begin{cases} h_t = -\operatorname{div}(h^n \nabla \Delta h), & x \in \mathbb{R}^d; \quad 0 < n \le 3 \\ h(\cdot, 0) = h_0 \ge 0 \end{cases}$$
(6.12)

(6.12) gilt auf $\{h > 0\}$.

ges: RBen auf dem freien Rand $\partial \{h > 0\}$.

Achtung: In §6.1 war die Flüssigkeitsoberfläche der freie Rand, nun ist es die Berandung des Flüssigkeitsfilms.

- (6.12) ist parabolische Gl. 4. Ordnung mit freiem Rand $\rightarrow 3$ RBen an jedem $x \in \partial \{h > 0\}$ benötigt:
- 1) h = 0 auf $\partial \{h > 0\}$
- 2) Kontaktwinkel θ der Flüssigkeit am Schnittpunkt zwischen Flüssigkeit, fester Unterlage, Luft \rightarrow ergibt sich aus den 3 Oberflächenspannungen zwischen jeweils 2 Materialien (Young-Dupré Gesetz)
 - a) $\theta \neq 0$ (z.B. Wassertropfen auf Plastik)
 - b) $\theta = 0$ (z.B. Wassertropfen auf sehr sauberem Glas, benetzend), $h_x = 0$ auf $\partial \{h > 0\}$

3) Ausbreitungsgeschwindigkeit der Kontaktlinie:

Zuerst Spezialfall n = 1, d = 1 mit RB 2b); also

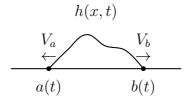
$$h_t + (h h_{xxx})_x = 0.$$

Formal ist $V := h_{xxx}$ auf $\partial \{h > 0\}$ die Ausbreitungsgeschw. des freien Randes (vgl. lineare Transportgleichung \rightarrow hyperberbolisch). Vor- und Rückbewegung der Kontaktlinie möglich.

Formulierung als freies Randwertproblem:

$$\begin{cases} h_t + (h h_{xxx})_x = 0 &, \text{ in } \{h > 0\} \\ h = h_x = 0 &, \text{ auf } \partial\{h > 0\} \\ V = h_{xxx} &, \text{ auf } \partial\{h > 0\} \\ h(\cdot, 0) = h_0 \end{cases}$$

Das ist ein gekoppeltes Evolutionssystem für $h(x,t)\big|_{\{h>0\}}$, a(t), b(t).



Herleitung von $V = h_{xxx}$ für glatte Lösungen:

oBdA sei (einziger) freier Rand zu t=0 an x=0. Koordinatentransformation

$$y:=x-\int\limits_0^tV(\tau)\;\mathrm{d} au\;\Rightarrow\;$$
 Problem mit festem Rand für $\tilde{h}(y,t):=h(x,t)$:

$$\begin{cases} \tilde{h}_t - \tilde{h}_y V(t) + (\tilde{h} \, \tilde{h}_{yyy})_y = 0 &, & \text{in } (0, \infty)^2 \\ \tilde{h} = \tilde{h}_y = 0 &, & y = 0 \quad t > 0 \\ \tilde{h}(\cdot, 0) = h_0 & \end{cases}$$
(6.13)

 ∂_y in (6.13):

$$\Rightarrow 0 = \tilde{h}_{yt} - \tilde{h}_{yy} V + (\tilde{h} \, \tilde{h}_{yyy})_{yy}$$
$$= \tilde{h}_{yt} - \tilde{h}_{yy} V + \tilde{h}_{yy} \, \tilde{h}_{yyy} + 2 \, \tilde{h}_{y} \, \partial_{y}^{4} \, \tilde{h} + \tilde{h} \, \partial_{y}^{5} \, \tilde{h}$$

An
$$y=0$$
 gilt mit (6.14): $\tilde{h}_{yy}(0,t)\left[V(t)-\tilde{h}_{yyy}(0,t)\right]=0$ Falls $\tilde{h}_{yy}(0,t)\neq 0$, dann gilt $V=h_{xxx}$.

Verallgemeinerung auf $d \in \mathbb{N}$, n > 0 (Bew: [GR] §9):

$$V(x_0) = \lim_{\substack{x \to x_0 \\ x \in \text{supp}(h(\cdot,t))}} h^{n-1} \frac{\partial}{\partial \nu} \Delta h(x,t) , \quad x_0 \in \partial \{h > 0\}$$

<u>Referenzen</u>: [Kn] §1.1, §2.12

6.3 Positivität der Lösung

Parabolische Gleichungen 4. Ordnung haben i.A. kein Maximumsprinzip (\rightarrow Übung). Degeneriertheit von (6.12) "verhindert" aber h < 0.

• technisches Hilfsmittel: Integralabschätzungen

• Multipliziere (6.12) mit Δh ; Integration über $\mathbb{R}^d \times (0,T)$ liefert formal

$$-\frac{1}{2} \int_{0}^{T} \partial_{t} \|\nabla h\|^{2} dt = \int_{0}^{T} \int_{\mathbb{R}^{d}} h^{n} |\nabla \Delta h|^{2} dx dt$$

und damit die Energieabschätzung:

$$\underbrace{\frac{1}{2} \int_{\mathbb{R}^{d}} |\nabla h|^{2} (T) dx}_{\text{Energie der linearisierten Oberflächenspannung}} + \underbrace{\int_{0}^{T} \int_{\mathbb{R}^{d}} h^{n} |\nabla \Delta h|^{2} dx dt}_{\text{Energiedissipation durch Viskosität}} = \frac{1}{2} \int_{\mathbb{R}^{d}} |\nabla h|^{2} (0) dx \tag{6.15}$$

 \Rightarrow Energie \searrow (falls $\|\nabla h(0)\|_{L^2} < \infty$)

• "Entropie" $\int_{\mathbb{R}^d} G(h) dx$ definiert mit:

$$G(s) := \int\limits_A^s g(r) \, \mathrm{d}r \,, \quad g(s) := \int\limits_A^s |r|^{-n} \, \mathrm{d}r \,, \qquad (A > 0; \, \mathrm{groß \,\, genug})$$

Entropie ≥ 0 (siehe (6.20)).

• Multipliziere (6.12) mit G'(h) = g(h); Integration über $\mathbb{R}^d \times (0,T)$ liefert formal

$$\int_{\mathbb{R}^d} \int_0^T \underbrace{h_t G'(h)}_{=\partial_t G(h)} dt dx = \int_0^T \int_{\mathbb{R}^d} (h^n \nabla \Delta h) \cdot \underbrace{\nabla g(h)}_{=h^{-n} \nabla h} dx dt$$

und damit die Entropieabschätzung:

$$\int_{\mathbb{R}^d} G(h(T)) \, dx + \int_0^T \int_{\mathbb{R}^d} (\Delta h)^2 \, dx \, dt = \int_{\mathbb{R}^d} G(h(0)) \, dx \,. \tag{6.16}$$

 \Rightarrow Entropie \searrow (falls $\int G(h(0)) dx < \infty$)

Problem: Obige Rechnungen sind nur für "glatte Lösungen" zulässig!

Für das folgende rigorose Resultat betrachte mit 1 < n < 4:

$$\begin{cases} h_t = -(h^n h_{xxx})_x & ; \quad x \in \Omega = (-a, a) , \quad t > 0 \\ h_x = h_{xxx} = 0 & ; \quad x = \pm a \\ h(., 0) = h_0 \in H^1(-a, a) \end{cases}$$
(6.17)

Satz 6.1.

- a) \exists "schwache Lösung" $h \in C([-a, a] \times [0, \infty))$ (Details in [BF] §3); (Bem: i.A. keine Eindeutigkeit, da schwache Formulierung "zu wenige" RBen hat. Thema größtenteils noch ungeklärt.)
- b) Sei zusätzlich $n \ge 2$, $h_0 \ge 0$ und $\int_{\Omega} |\ln h_0| dx < \infty$ (falls n = 2) bzw. $\int_{\Omega} h_0^{2-n} dx < \infty$ (falls 2 < n < 4) $(\rightarrow \int_{\Omega} G(h_0) dx < \infty)$.
 - \Rightarrow Lösung aus (a) erfüllt $h(x,t) \ge 0$.

Beweisidee:

a) nicht degenerierte Approximationsprobleme:

$$\begin{cases}
\partial_t h_{\varepsilon} = -\left(\left[\left|h_{\varepsilon}\right|^n + \varepsilon\right] \partial_x^3 h_{\varepsilon}\right)_x &, \quad \Omega \times (0, \infty) \\
\partial_x h_{\varepsilon} = \partial_x^3 h_{\varepsilon} = 0 &, \quad x = \pm a \\
h_{\varepsilon}(\cdot, 0) = h_{0\varepsilon} \in C^{4,\alpha}(\Omega) & \text{(H\"{o}lder stetig)}
\end{cases}$$
(6.18)

mit $h_{0\varepsilon} \ge h_0$, $h_{0\varepsilon} \stackrel{\varepsilon \to 0}{\longrightarrow} h_0$ in $H^1(\Omega)$, $\partial_x h_{0\varepsilon} = \partial_x^3 h_{0\varepsilon} = 0$ auf $x = \pm a$.

 \Rightarrow (6.18) hat eindeutige klassische Lösung h_{ε} ; Teilfolge erfüllt $h_{\varepsilon} \to h$ glm. in $[-a, a] \times [0, T] \, \forall T > 0$ (mittels a-priori Abschätzungen, Kompaktheit; Details in [BF] §2-3). Vorzeichen von h_{ε} kann wechseln!

b) Schritt 1: Herleitung der 2 Integralabschätzungen für h_{ε} ist rigoros.

Analog zu (6.15):

$$\frac{1}{2} \int_{\Omega} \left| \partial_x h_{\varepsilon} \right|^2 (T) \, \mathrm{d}x + \int_{0}^{T} \int_{\Omega} \left(\left| h_{\varepsilon} \right|^n + \varepsilon \right) \left| \partial_x^3 h_{\varepsilon} \right|^2 \, \mathrm{d}x \, \mathrm{d}t = \frac{1}{2} \int_{\Omega} \left| \partial_x h_{\varepsilon} \right|^2 (0) \, \mathrm{d}x$$

$$\Rightarrow \int_{\Omega} |h_{\varepsilon,x}|^2 (T) dx \leq \int_{\Omega} |h_{0\varepsilon,x}|^2 dx \leq 2 \int_{\Omega} |h_{0,x}|^2 dx \quad \forall \varepsilon \leq \varepsilon_1 \quad (\text{da } H^1\text{-Konvergenz})$$
(6.19)

(6.18) ist in Divergenzform $\Rightarrow \int_{\Omega} h_{\varepsilon}(T) dx = \int_{\Omega} h_{0\varepsilon} dx$

⇒ mit Sobolev-Einbettung, Poincaré, (6.19):

$$|h_{\varepsilon}(x,t)| \leq C \|h_{\varepsilon}(t)\|_{H^1} \leq C + C \|\partial_x h_{\varepsilon}(t)\|_{L^2} \leq A \quad \forall x \in \Omega, \quad \forall t > 0, \quad \forall \varepsilon \leq \varepsilon_1.$$

Analog zu (6.16):

mit
$$g_{\varepsilon}(s) := -\int_{s}^{A} \frac{\mathrm{d}r}{|r|^{n} + \varepsilon} \le 0$$
, $G_{\varepsilon}(s) := -\int_{s}^{A} g_{\varepsilon}(r) \,\mathrm{d}r \ge 0$ (für $s \le A$) (6.20)

$$\int_{\Omega} G_{\varepsilon}(h_{\varepsilon}(T)) dx + \int_{0}^{T} \int_{\Omega} \left| \partial_{x}^{2} h_{\varepsilon} \right|^{2} dx dt = \int_{\Omega} G_{\varepsilon}(h_{0\varepsilon}) dx$$

$$\leq \int_{\Omega} G(h_{0\varepsilon}) dx \xrightarrow{h_{0\varepsilon}^{G(s)} \succeq h_{0}} \int_{\Omega} G(h_{0}) dx < \infty \qquad (6.21)$$

Schritt 2: zz: $h(x,t) \ge 0$.

Annahme: Sei $h(x_0, t_0) < 0$

 \Rightarrow (wegen glm. Konvergenz der h_{ε}) $\exists \delta > 0, \, \varepsilon_0 > 0$ mit

$$h_{\varepsilon}(x, t_0) < -\delta$$
 für $|x - x_0| < \delta$, $x \in \Omega$, $\varepsilon < \varepsilon_0$.

Für diese x gilt:

$$G_{\varepsilon}(h_{\varepsilon}(x,t_0)) = -\int_{h_{\varepsilon}(x,t_0)}^{A} \underbrace{g_{\varepsilon}(r)}_{\leq 0} dr \geq -\int_{-\delta}^{0} g_{\varepsilon}(r) dr \xrightarrow{\varepsilon \to 0} -\int_{-\delta}^{0} g(r) dr \stackrel{n \geq 2}{=} +\infty$$

$$\Rightarrow \lim_{\varepsilon \to 0} \int_{\Omega} G_{\varepsilon}(h_{\varepsilon}(t_0)) \, dx = \infty \qquad \text{(Widerspruch zu (6.21))}$$

Bem:

- 1) Diskrete Analoga der Energie- und Entropieabschätzungen wichtig für numerische Schemata \Rightarrow num. Lösg. ≥ 0 , (wahrscheinlich) Eindeutigkeit (letztes Thema aber noch ungeklärt).
- 2) Filmriss (d.h. $h(x_0, t_0) = 0$) für $n < \frac{1}{2}$ möglich (rigoros bewiesen) \rightarrow kein Max-Prinzip!
- 3) h>0 (also Verhinderung von Filmriss) ist von technologischer Bedeutung: Ölschmierung, kontinuierliche Deckung von Lacken.

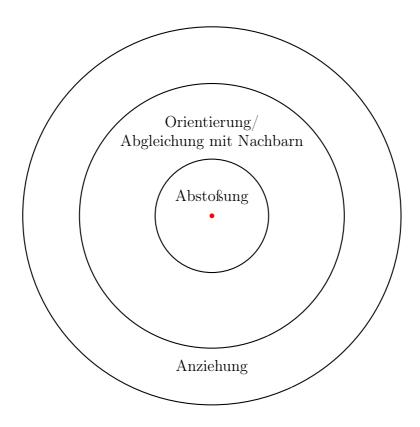
Referenzen: [Be] §3, [BG] §2, [BF] §3, 4

7 kollektives Verhalten - kinetische Gleichungen

Anwendungen: Viele selbst-bewegende Objekte ähnlicher Form und Größe (Insekten, Fische, Vögel, Fußgänger, viele Roboter) zeigen oft komplexes Globalverhalten – trotz simpler individueller Interaktionsregeln.

Die Modelle hier basieren auf detaillierten Beobachtungen der individuellen Interaktionen (viel fundierter als bei den meisten Anwendungen von Turing-Instabilitäten).

Bei den Interaktionen gibt es oft 3 typische Distanzen um ein Zentralobjekt:



7.1 mikroskopische ODE-Modelle

Modell 1 (2006)

 $x_i \in \mathbb{R}^d; \ i=1,...,N$ Positionen der N Objekte $v_i \in \mathbb{R}^d$ deren Geschwindigkeiten

Evolution in Newton'scher Form:

$$\frac{\mathrm{d}x_{i}}{\mathrm{d}t} = v_{i}$$

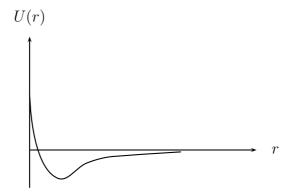
$$\frac{\mathrm{d}v_{i}}{\mathrm{d}t} = (\underbrace{\alpha}_{\text{Selbstantrieb}} \underbrace{-\beta|v_{i}|^{2}}_{\text{Reibung}})v_{i} - \underbrace{\frac{1}{N} \sum_{j \neq i} \nabla U(|x_{i} - x_{j}|)}_{\text{Anziehung/Abstoßung}}$$
(7.1)

 \rightarrow asymptotische Geschwindigkeit = $\sqrt{\alpha/\beta}$

typische Paarpotentiale (vgl. Morse-, Lennard-Jones Potentiale in Atomphysik):

$$U(r) = -C_A e^{-r/l_A} + C_R e^{-r/l_R} ,$$

mit $C_R > C_A > 0$, $l_A > l_R > 0$, $\frac{l_A^2}{l_R^2} > \frac{C_R}{C_A}$.



Mögliche Langzeiteffekte im Modell (7.1): Schwarmbildung (Rotation); Herdenbildung (Translation; $\forall i: v_i = \hat{v} \in \mathbb{R}^d, |\hat{v}| = \sqrt{\alpha/\beta}$)

Cucker-Smale Modell (2007)

$$\frac{\mathrm{d}x_i}{\mathrm{d}t} = v_i$$

$$\frac{\mathrm{d}v_i}{\mathrm{d}t} = \sum_{j=1}^{N} a(|x_i - x_j|) (v_j - v_i) ,$$
Orientierung (7.2)

mit $a(r) = \frac{1}{(1+r^2)^{\gamma}}; \, \gamma \geq 0$... Kommunikationsrate

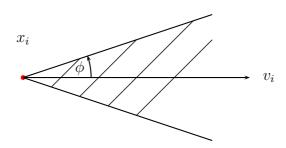
Mögliche Langzeiteffekte im Modell (7.2): Abgleich der Geschwindigkeiten, Herdenbildung für $\gamma < \frac{1}{2}$:

Satz 7.1 (Herdenbildung; [CS]). Sei d = 3, $\gamma < \frac{1}{2}$. $\Rightarrow \exists \hat{X} \in \mathbb{R}^{3N \times 3N}$: $\mathbb{R}^{3N \times 3N} \ni X(t) := (x_i(t) - x_j(t))_{1 \le i,j \le N} \xrightarrow{t \to \infty} \hat{X}$ (Konvergenz aller Paarabstände); $\exists \hat{v} \in \mathbb{R}^3$: $v_i(t) \xrightarrow{t \to \infty} \hat{v} \ \forall i$.

Modellverbesserung (z.B. für Vögel): Geschwindigkeitsabgleich nur im Sichtfeld:

Ersetze in (7.2) Summe durch $\sum_{j \in \sigma_i(t)}$... Sichtfeld um eigenen Geschwindigkeitsvektor, mit

$$\sigma_i(t) := \left\{ l \neq i \mid \frac{(x_l - x_i) \cdot v_i}{|x_l - x_i| |v_i|} \ge \cos \phi \right\} \quad \text{für ein } \phi \in (0, \pi) \ .$$



7.2 mesoskopische PDE-Modelle

Für $N \gg 1$ ist es oft praktischer nicht jeden "Punkt" einzeln zu betrachten, sondern nur gemittelte Modelle.

Für $x, v \in \mathbb{R}^d$ betrachte den x - v-Phasenraum mit Wahrscheinlichkeitsdichte f(x, v, t); also $f \geq 0$, $\int \int f(x, v, t) dx dv = 1 \,\forall t$. f(x, v) soll für $|x|, |v| \to \infty$ "genügend" schnell abklingen.

Evolution von f gemäß der kinetischen Gleichung:

$$f_t + v \cdot \nabla_x f + \operatorname{div}_v[(\alpha - \beta |v|^2)vf] - \operatorname{div}_v[(\nabla_x U(|x|) *_x \rho)f] = 0, \quad t \ge 0, \quad (7.3)$$
$$f(x, v, 0) = f^0(x, v) \ge 0,$$

mit $\rho(x,t) := \int_{\mathbb{R}^d} f(x,v,t) \, \mathrm{d}v \ge 0$... Ortsdichte (das ist eine Randdichte und $\int \rho \, \mathrm{d}x = 1$).

Das ist eine quadratisch nichtlineare Fokker-Planck-artige Gleichung (vgl. Plasmaphysik: für Ionen-Dynamik unter elektrostatischer Kraft).

Charakteristiken für den zweiten und dritten Term von (7.3): $\dot{X} = V$, $\dot{V} = (\alpha - \beta |V|^2)V$, vgl. (7.1)

v-Integration von (7.3) liefert die Kontinuitätsgleichung:

$$\rho_t + \operatorname{div}_x j = 0, \tag{7.4}$$

mit dem Fluss $j(x,t) := \int_{\mathbb{R}^d} v f(x,v,t) dv$.

Gesamtenergie:

$$\mathcal{E}(t) := \frac{1}{2} \iint f(x, v, t) |v|^2 dx dv + \frac{1}{2} \iint U(|x - y|) \rho(x, t) \rho(y, t) dx dy =: E_{kin} + E_{pot}.$$

Lemma 7.2.

$$\mathcal{E}(t) \le \max{\{\mathcal{E}(0), C + \frac{\alpha}{2\beta}\}},$$

mit $C := \frac{1}{2} \sup |U|$. (Das impliziert $E_{pot} \leq C$, da $\int \rho dx = 1$.)

Beweis. Für die kinetische Energie vom zweiten Term von (7.3) gilt:

$$-\frac{1}{2} \int \int v \cdot \nabla_x f|v|^2 dx dv = -\frac{1}{2} \int \int \operatorname{div}_x(v|v|^2 f) dx dv = 0.$$

Für die kinetische Energie vom vierten Term von (7.3) gilt mit 2x partieller Integration und (7.4):

$$\frac{1}{2} \int \int |v|^2 \operatorname{div}_v [(\nabla_x U(|x|) * \rho) f] \, dx dv = -\int \int v \cdot (\nabla_x U(|x|) * \rho) f \, dx dv$$

$$= \int (U(|x|) * \rho) \operatorname{div}_x \Big(\int v f \, dv \Big) dx = -\int (U(|x|) * \rho) \rho_t \, dx$$

Der letzte Term hebt sich mit der Zeitableitung der potentiellen Energie weg:

$$\frac{dE_{pot}}{dt} = \frac{1}{2} \int \int U(|x-y|) \left[\rho_t(x)\rho(y) + \rho(x)\rho_t(y) \right] dxdy = \int \int U(|x-y|)\rho(y)\rho_t(x)dydx$$

Mit $\iint f \, dx dv = 1$ folgt dann insgesamt:

$$\frac{\mathrm{d}\mathcal{E}}{\mathrm{d}t} = \iint f[\alpha - \beta |v|^2] |v|^2 \,\mathrm{d}x \,\mathrm{d}v \stackrel{\text{H\"older}}{\leq} \alpha \iint f|v|^2 \,\mathrm{d}x \,\mathrm{d}v - \beta \Big(\iint_{=\sqrt{f}(\sqrt{f}|v|^2)} \,\mathrm{d}x \,\mathrm{d}v \Big)^2 \leq 0 ;$$

wobei die letzte Ungleichung für $\iint f|v|^2\mathrm{d}x\mathrm{d}v\geq \frac{\alpha}{\beta}$ gilt.

Also:
$$\frac{d\mathcal{E}}{dt} \leq 0$$
 für $\mathcal{E} \geq C + \frac{\alpha}{2\beta}$, da dann $E_{kin} = \mathcal{E} - E_{pot} \geq C + \frac{\alpha}{2\beta} - C = \frac{\alpha}{2\beta}$ gilt.

Diese a-priori Abschätzung an die Energie ist ein wichtiger Input für die globale Lösbarkeit von (7.3).

Zusammenhang mit ODE-Modell (7.1):

(7.3) kann als "selbst-konsistenter" Limes von (7.1) rigoros hergeleitet werden (vgl. diskrete Wirbelmodelle). Umgekehrt kann (7.1) als numerische Methode (Partikelmethode) für (7.3) betrachtet werden; wird auch verwendet.

Definition 7.3. $\mathcal{M}(\mathbb{R})$... signierte Radon Maße mit endlicher Masse (d.h. dürfen auch negativ sein; innen regulär und lokal endlich); können mit $C_0(\mathbb{R})'$ identifiziert werden (C_0 ... stetige Funktionen mit kompaktem Träger).

 $\mathcal{P}^1(\mathbb{R}) \subset \mathcal{M}(\mathbb{R})$... die Teilmenge der Wahrscheinlichkeitsmaße (also $\mu \geq 0$, $\int d\mu = 1$).

Sei (x_i^0, v_i^0) die AB von (7.1).

$$f_N^0 := \sum_{j=1}^N m_j \delta_{(x_j^0, v_j^0)} \in \mathcal{P}^1(\mathbb{R}^{2d}) , \qquad (7.5)$$

mit $m_j = \frac{1}{N}$ sei das zugehörige empirische Maß im x-v-Phasenraum. Idee:

$$f_N^0 \xrightarrow{N \to \infty} f^0$$
 (schwach * als Maß, Predualraum is $C_0(\mathbb{R}^{2d})$). (7.6)

Satz 7.4 (Von Newton zu Fokker-Planck; "selbst-konsistenter" Limes; vgl. [BH, Ne, Do] für Vlasov Gleichung). Sei $U \in C_b^2(\mathbb{R}_0^+)$ mit U'(0) = 0.

- a) [N fest] Sei $(x_i, v_i) \in C([0, T); \mathbb{R}^{2d})$; i = 1, ..., N Lösung des Partikelsystems (7.1) für ein T > 0.
 - \Rightarrow Das Wahrscheinlichkeitsmaß

$$f_N(t) := \sum_{j=1}^N m_j \delta_{(x_j(t), v_j(t))} \in \mathcal{P}^1(\mathbb{R}^{2d}) , \qquad (7.7)$$

 $mit \sum_{j=1}^{N} m_j = 1$ (z.B. $m_j = \frac{1}{N}$) erfüllt $f_N \in C([0,T); \mathcal{P}^1(\mathbb{R}^{2d}))$ (schwach *) und löst (7.3) mit AB (7.5).

b) $[N \to \infty]$ Sei $f^0 \ge 0$ mit $|\mathcal{E}[f^0]| < \infty$. Eine Approximationsfolge $\{f_N^0\}_{N \in \mathbb{N}}$ (von empirischen Maßen) der AB erfülle (7.6), und $\mathcal{E}[f_N^0]$ sei gleichmäßig beschränkt.

 $\Rightarrow f_N \ von \ (7.7) \ erf \ddot{u}llt \ \forall T > 0: f_N \stackrel{N \to \infty}{\longrightarrow} f \ in \ C([0,T]; \mathcal{P}^1(\mathbb{R}^{2d})) \ (schwach \ ^*), \ wobei f \ die \ eindeutige \ L\"{o}sung \ von \ (7.3) \ ist.$

Beweis-Idee. (nur Teil a)

Schritt 1:

Sei das "Kraftfeld" E(x,t) [:= $-\nabla_x U * \rho$] gegeben.

Annahmen: Sei $E \in C(\mathbb{R}^d \times [0,T])$ lokal Lipschitz in x (glm. in $t \in [0,T]$).

$$f_t + v \cdot \nabla_x f + \operatorname{div}_v[(\alpha - \beta |v|^2)vf] + \underbrace{E(x,t) \cdot \nabla_v f}_{=\operatorname{div}_v(Ef)} = 0 , \quad t \ge 0$$

$$(7.8)$$

ist lineare hyperbolische Gleichung; zugehörige charakterische Gleichungen:

$$\frac{\mathrm{d}X}{\mathrm{d}t} = V$$

$$\frac{\mathrm{d}V}{\mathrm{d}t} = E(X,t) + (\alpha - \beta |V|^2)V$$
(7.9)

⇒ Das durch den Fluss von (7.9) transportierte Maß löst (7.8) (in einem schwachen Sinn).

Schritt 2:

Für die Ortsdichte (eigentlich ein Maß)

$$\rho_N(t) := \int_{\mathbb{R}^d} f_N \, dv - \sum_{j=1}^N m_j \delta_{x_j(t)} \in \mathcal{P}^1(\mathbb{R}^d)$$

gilt

$$\left(\nabla_x U(|.|) * \rho_N\right)(x) = \sum_{j=1}^N m_j \nabla U(|x - x_j|) \in C_b^1(\mathbb{R}^d).$$

Der nichtlineare Term $(\nabla_x U(|x|) * \rho) f$ von (7.3) ist also auch für empirische Maße f_N wohldefiniert, und die Koeffizientenfunktion $\nabla_x U(|x|) * \rho_N$ erfüllt die Voraussetzungen von Schritt 1.

Referenzen: [CS], [BH, Ne, Do]

8 nichtlineare Wellen – Solitonen

(nur bis WS 2011/12)

• 1D Wellengleichung: $u_{tt} - c^2 u_{xx} = 0, x \in \mathbb{R}, t \in \mathbb{R}$ Lösung: wandernde Wellen u(x,t) = f(x-ct) + g(x+ct) mit konst. Geschwindigkeit, ändern Form nicht

lineare Gleichung \rightarrow Superpositionsprinzip

- Transportgleichung: $u_t + cu_x = 0$
 - \rightarrow Wellenausbreitung nur in eine Richtung
- dispersive Wellengleichung: $u_t + u_x + u_{xxx} = 0$ harmonische Wellenlösungen: $u(x,t) = e^{i(kx-\omega t)}$

$$\rightarrow$$
 Dispersions relation: $\omega(k) = k - k^3$

$$\omega$$
 . . . (Kreis)Frequenz

 $k \dots Wellenzahl$

$$c = \frac{\omega}{k} = 1 - k^2$$
 . . . Ausbreitungsgeschwindigkeit (Phasengeschwindigkeit)

 \Rightarrow Wellen mit unterschiedlicher Wellenzahl unterschiedlich schnell \rightarrow Welle "läuft auseinander" (*Dispersion*); Gestalt der Welle bleibt nicht erhalten

Superposition:
$$u(x,t) = \int_{\mathbb{R}} \underbrace{A(k)}_{\text{Fourier-Transformierte von } u(x,0)} e^{i(kx-\omega(k)t)} dk$$

- nicht-viskose Burgers Gleichung: u_t + uu_x = 0 entwickelt Unstetigkeiten ("Schocks"
 → hohe Wellenzahlen k in der Lösung) in endlicher Zeit.
 nichtlineare Gleichung → keine Superposition
- Korteweg de Vries (KdV) Gleichung: $u_t + uu_x + u_{xxx} = 0$ Variablentransformation $u \mapsto \alpha u, t \mapsto \beta t, x \mapsto \gamma x \ (\alpha, \beta, \gamma \in \mathbb{R} \setminus \{0\})$ liefert allgemeine Form der KdV:

$$u_t + \frac{\alpha\beta}{\gamma}uu_x + \frac{\beta}{\gamma^3}u_{xxx} = 0$$

Standard-Parameterwahl

$$u_t - 6uu_x + u_{xxx} = 0 (8.1)$$

Glatte Lösung existiert für $t \in \mathbb{R}$; "dispersive Regularisierung" der Burgers Gleichung. D.h. Wellenanteile mit großem |k| laufen schneller "weg". Dispersiver Term dämpft große Steigungen; Ballance mit Nichtlinearität.

(8.1) ist invariant unter folgender Transformationsgruppe:

$$G_l, l \in \mathbb{R} \setminus \{0\} : X = lx, T = l^3t, U = l^{-2}u$$

 \rightarrow suggeriert die Existenz von Ähnlichkeitslösungen

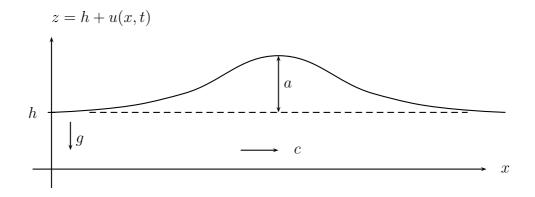
Referenzen: [DJ] §1

8.1 Anwendungen von KdV

Langwellige Wasserwellen in seichtem Kanal können (selten) Solitonen-Form haben, d.h. ändern Form nicht:

$$u(x,t) = a \operatorname{sech}^{2}[b(x-ct)],$$

$$b^{-2} = 4h^{2}(h+a)/3a, c^{2} = g(h+a)$$
(8.2)



u ... Wellenhöhe über Ruheniveau

 $a > 0 \dots Amplitude$

 $h \dots Wassertiefe$

c ... Ausbreitungsgeschwindigkeit (amplitudenabhängig!)

g ... Gravitationskonstante

 $sech = 1/\cosh \dots Sekans Hyperbolikus$

Annahme für "Flachwasserwellen": Wellenlänge ≫ Wassertiefe

Abbildung 8.1: Nachahmung von Russels Soliton

1834 von J.S. Russel in Schottland beobachtet (Fig. 8.1); ist Gravitationswelle mit konstantem Massetransport in x-Richtung.

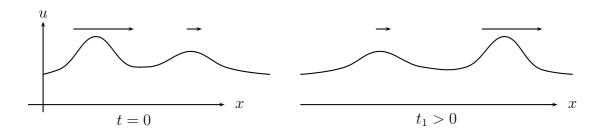
(8.2) erfüllt KdV (mit
$$\alpha\beta/\gamma = c/4b^2, \beta/\gamma^3 = 3bc/a$$
).

KdV kann für $\frac{a}{h} \ll 1$ aus 2D inkompressiblen, rotationsfreien, nicht-viskosen Strömungsgleichungen (über horizontaler Ebene mit freier Oberfläche) hergeleitet werden ([DJ] §1.2, [De] §9.3), oder aus 2D Euler Gleichung ([Jo] §3.2.1).

(8.2) ist Gravitationswelle, d.h. Massentransport.

weitere Anwendungen: (simples) Tsunami-Modell.

Überlagerung von Solitonen:



schnelles, hohes Soliton "überholt" langsames, tiefes Soliton: kurze "Wechselwirkung" (mit Phasenverschiebung) aber *keine* Formänderung (Fig. 8.2).

 \rightarrow fast ein Superpositionsprinzip, obwohl nichtlineare Gleichung

Weitere vollständig integrable Systeme mit Soliton-Lösungen:

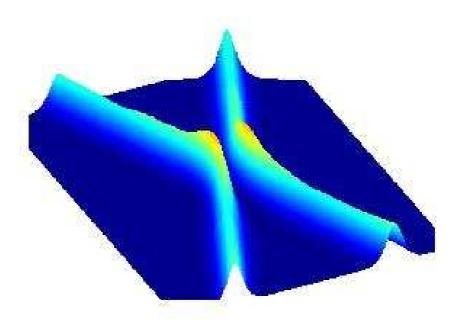


Abbildung 8.2: 2 interagierende Solitonen als Funktion von x, t: Die Wechselwirkung bewirkt eine örtliche Versetzung beider Solitonen.

• kubisch nichtlineare Schrödinger Gleichung

$$i\psi_t + \psi_{xx} \pm |\psi|^2 \psi = 0, x \in \mathbb{R}, t > 0$$

Anwendungen: nichtlineare Optik (dispersionsfreie Nachrichtenübertragung in Glasfaserkabeln), Bose-Einstein-Kondensat

• Sinus-Gordon Gleichung

$$\frac{1}{c^2}\psi_{tt} - \psi_{xx} + \sin\psi = 0$$

Anwendungen: Differentialgeometrie (für Flächen mit konstanter negativer Gauss Krümmung), Auslenkungen in einem Kristall mit Periodizität $\sin \psi$

<u>Referenzen</u>: [DJ] §1.2-4, §8.2, [TE]

8.2 Schrödinger Streuprobleme für KdV

Ziel: Lösung (bzw. Lösungskonstruktion) des AWPs

$$\begin{cases} u_t - 6uu_x + u_{xxx} = 0, & x \in \mathbb{R}, t > 0 \\ u(x, 0) = u_0(x), & x \in \mathbb{R} \end{cases}$$
(8.3)

Vorgangsweise: Transformation von (8.3) auf Familie von linearen Eigenwertproblemen (mit Parameter $t \ge 0$); $\psi \in \mathbb{C}$:

$$\left[-\frac{\partial^2}{\partial x^2} + u(x;t) \right] \psi(x;t) = \lambda(t)\psi(x;t).$$

D.i. stationäre Schrödinger Gleichung für (reelles) Potential u.

"Miura-Transformation"

$$u = v^2 + v_x \tag{8.4}$$

liefert aus (8.3):

$$(2v + \frac{\partial}{\partial x})\underbrace{(v_t - 6v^2v_x + v_{xxx})}_{\text{modifizierte KdV (mKdV)}} = 0.$$

Also: Wenn v mKdV löst, löst u KdV.

Lösung der Riccati Gleichung (8.4) (für t fest) mit Substitution

$$v = \psi_x/\psi \quad , \quad \psi(x;t) \neq 0 \tag{8.5}$$

$$\Rightarrow \psi_{xx} - u\psi = 0$$

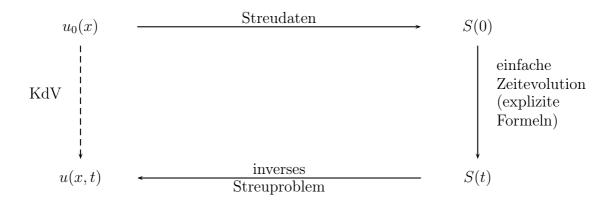
KdV ist Galilei-invariant, d.h. invariant unter Transformation $\tilde{x} = x + 6\lambda t$, $\tilde{u} = u - \lambda$ für $\lambda \in \mathbb{R}$. Einsetzen in (8.4), (8.5) liefert (t ist nur Parameter!)

$$\psi_{xx} + (\lambda - u)\psi = 0 \tag{8.6}$$

<u>Idee:</u> 1) Lösung des linearen EWPs (8.6) für $\psi(x;t), t \geq 0$.

2) (8.4), (8.5) liefern dann u(x,t).

Das klingt zunächst "komisch", da u ja gegebener Koeffizient in (8.6) ist. Wir brauchen aber die Streudaten S (d.h. Eigenwerte $\lambda(t)$, (verallgemeinerte) Eigenfunktionen $\psi(x;t)$) nur für t=0, d.h. $u_0(x)$:



Spektraltheorie von
$$L = -\frac{\partial^2}{\partial x^2} + u$$
:

u=u(x;t) sei beschränkt, glatt; klingt für $|x|\to\infty$ rasch ab, da Lösung von KdV. $t\ge 0\ldots$ Parameter im Operator L.

a) endlich viele Eigenwerte:

$$\lambda_n = -\kappa_n^2 < 0, \ \kappa_n > 0; \quad n = 1, 2, \dots, N$$

asymptotisches Verhalten der reellen Eigenfunktionen ("gebundene Zustände"):

$$\psi_n(x;t) \sim c_n(t)e^{-\kappa_n x}, x \to \infty,$$
 (8.7)

 $c_n(t)$ aus Normierung $\|\psi_n\|_{L^2(\mathbb{R})}=1, \ \psi_n(x;t)$ klingt auch für $x\to -\infty$ exponentiell ab.

b) kontinuierliches Spektrum:

 $\lambda=k^2>0$. Hier Diskussion für k>0; für k<0 analog:

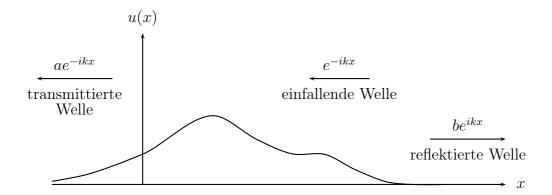
verallgemeinerte Eigenfunktionen ("Streuzustände"; $\not\in L^2$) oszillieren für $|x| \to \infty$:

$$\psi(x;t) \sim \begin{cases} e^{-ikx} + b(k;t)e^{ikx} &, \quad x \to \infty \\ a(k;t)e^{-ikx} &, \quad x \to -\infty \end{cases}$$
(8.8)

 $a \in \mathbb{C}$... Transmissionskoeffizient

 $b \in \mathbb{C}$...Reflexionskoeffizient

Es gilt: $|a|^2 + |b|^2 = 1$ (Impuls- bzw. Stromerhaltung im Streuprozess)



Bemerkung: (8.6) hat sogar $\forall k = \sqrt{\lambda} \in \mathbb{C}$ Lösungen der Form (8.8), außer in der oberen Halbebene für $k_n = i\kappa_n$; n = 1, ..., N.

Wenn u = u(x,t) KdV löst, dann haben die Streudaten von (8.6) eine einfache t-Abhängigkeit:

Satz 8.1. Sei u = u(x,t) Lösung von (8.3). \Rightarrow Die "gebundenen Zustände" erfüllen (für $n = 1, ..., N; t \ge 0$):

$$N = const \ in \ t;$$

$$\lambda_n(t) = \lambda_n(0);$$

$$c_n(t) = c_n(0)e^{4t\kappa_n^3}.$$
(8.9)

Beweis. Schritt 1: Ableiten von (8.6) nach x bzw. t:

$$\psi_{xxx} - u_x \psi + (\lambda - u)\psi_x = 0 \tag{8.10}$$

$$\psi_{xxt} + (\lambda_t - u_t)\psi + (\lambda - u)\psi_t = 0 \tag{8.11}$$

Definiere

$$R(x,t) := \psi_t + u_x \psi - 2(u+2\lambda)\psi_x$$

$$\Rightarrow \frac{\partial}{\partial x}(\psi_{x}R - \psi R_{x}) = \dots = \psi_{xx}(\psi_{t} + u_{x}\psi - 2u\psi_{x} - 4\lambda\psi_{x})$$

$$-\psi(\psi_{xxt} + u_{xxx}\psi - 3u_{x}\psi_{xx} - 2u\psi_{xxx} - 4\lambda\psi_{xxx})$$

$$[\psi_{xxx} \text{ und } \psi_{xxt} \text{ mit } (8.10), (8.11) \text{ eliminieren}]$$

$$= \psi_{xx}(\psi_{t} - 2u\psi_{x} - 4\lambda\psi_{x}) - \psi(u_{xxx}\psi - 4u_{x}\psi_{xx})$$

$$-\psi(u\psi_{t} - \lambda\psi_{t} - \lambda_{t}\psi + u_{t}\psi) + \psi(2u + 4\lambda)(u_{x}\psi - \lambda\psi_{x} + u\psi_{x})$$

$$\stackrel{(8.6)}{=} \psi^{2}(\lambda_{t} - u_{t} + 6uu_{x} - u_{xxx}) = \lambda_{t}\psi^{2}$$

$$= 0 \text{ mit KdV}$$

$$(8.12)$$

Bemerkung: (8.12) gilt auch für kontinuierliches Spektrum $\lambda > 0$.

Sei nun $\lambda = \lambda_n = -\kappa_n^2 < 0, \psi = \psi_n, R = R[u, \psi_n] =: R_n.$

 ψ_n, R_n klingen für $|x| \to \infty$ exponentiell ab.

 $\Rightarrow \int_{\mathbb{R}} dx$ -Integral von (8.12):

$$0 = \psi_{n,x} R_n - \psi_n R_{n,x} \Big|_{-\infty}^{\infty} = \lambda_{n,t} \int_{\mathbb{R}} \underbrace{\psi_n^2}_{\in \mathbb{R}} dx = \lambda_{n,t} \quad \checkmark$$

Schritt 2:

 \Rightarrow unbestimmtes x-Integral von (8.12) (d.h. $-\partial_x(\psi_{n,x}R_n-\psi_nR_{n,x})=0$, da $\lambda_{n,t}=0$) gibt:

$$\psi_n R_{n,x} - \psi_{n,x} R_n = g_n(t), \quad g_n(t) \dots \text{ beliebige Integrationskonstante}$$
 (8.13)

 ψ_n, R_n klingen für $|x| \to \infty$ ab $\Rightarrow g_n = 0 \quad \forall t \ge 0$.

unbestimmtes x-Integral von (8.13) (d.h. $\frac{\psi_n R_{n,x} - \psi_{n,x} R_n}{\psi_n^2} = \partial_x \frac{R_n}{\psi_n} = 0$:

$$\frac{R_n}{\psi_n} = h_n(t), \qquad h_n(t) \dots \text{ beliebige Integrationskonstante}$$
 (8.14)

Multipliziere mit ψ_n^2 , verwende (8.6):

$$R_n \psi_n = \left[\psi_t + u_x \psi - 2(u + 2\lambda) \psi_x \right] \psi = \frac{1}{2} (\psi_n^2)_t + (u \psi_n^2 - 2\psi_{n,x}^2 - 4\lambda \psi_n^2)_x = h_n(t) \psi_n^2$$

 $\int_{\mathbb{R}} dx$ -Integration:

$$0 = \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \left(\int_{\mathbb{R}} \psi_n^2 \mathrm{d}x \right) = h_n(t) \underbrace{\int_{\mathbb{R}} \psi_n^2 \mathrm{d}x}_{-1}$$

$$\Rightarrow h_n(t) = 0, \forall t > 0$$

(8.14), d.h. $R_n = 0$ liefert Evolution von $\psi_n(x;t)$:

$$\psi_{n,t} = -u_x \psi_n + 2(u + 2\lambda_n) \psi_{n,x}$$

verwende $u \xrightarrow{x \to \infty} 0$, ψ_n —Asymptotik (8.7):

$$\Rightarrow c'_n(t) - 4\kappa_n^3 c_n(t) = 0$$

$$\Rightarrow c_n(t) = c_n(0)e^{4t\kappa_n^3}$$
.

Satz 8.2. Sei u = u(x,t) Lösung von (8.3). \Rightarrow Die "Streuzustände" erfüllen ($\forall k > 0$):

$$a(k;t) = a(k;0), \quad b(k;t) = b(k;0)e^{8ik^3t}.$$
 (8.15)

Beweis. Sei $\lambda = k^2 > 0$ fest (d.h. konst. in t, da kontinuierliches Spektrum $(0, \infty)$ t–unabh.); ψ die zugehörige verallgemeinerte EF; $R = R[u, \psi]$. Integriere (8.12) in x (mit $\lambda_t = 0$):

$$\psi_x R - \psi R_x = g(t; k) \dots$$
 beliebige Integrationskonstante (8.16)

Laut (8.8): $\psi(x;t,k) \sim a(k;t)e^{-ikx}, x \to -\infty$

$$\Rightarrow R(x,t;k) \sim \psi_t - 4\lambda\psi_x \sim \left(\frac{\mathrm{d}a}{\mathrm{d}t} + 4ik^3a\right)e^{-ikx}, x \to -\infty$$

$$\Rightarrow \psi_x R - \psi R_x \stackrel{x \to -\infty}{\longrightarrow} 0 \quad \Rightarrow \quad g(t; k) = 0 \quad \forall t \ge 0$$

x-Integration von (8.16):

$$\frac{R}{\psi} = h(t;k)\dots$$
 beliebig; $R = h\psi$ (8.17)

 $x \to \infty$ —Asymptotik von ψ, R liefert:

$$\frac{\mathrm{d}a}{\mathrm{d}t} + 4ik^3 a = ha \tag{8.18}$$

analoges Verhalten für $x \to \infty$:

$$R(x,t;k) \sim \frac{\mathrm{d}b}{\mathrm{d}t}e^{ikx} + 4ik^3(e^{-ikx} - be^{ikx}) \stackrel{(8.17),(8.8)}{=} h(e^{-ikx} + be^{ikx}) \sim h\psi$$

Da $e^{\pm ikx}$ linear unabhängig (mit Koeffizientenvergleich):

$$\frac{\mathrm{d}b}{\mathrm{d}t} - 4ik^3b = hb, \quad h(t;k) = 4ik^3$$

$$\Rightarrow b(k;t) = b(k;0)e^{8ik^3t},$$

$$a(k;t) = a(k;0)$$
 (aus (8.18))

Bemerkung 8.3. In die Formeln (8.9), (8.15) geht die genaue Form von u(x,t) nicht ein. Sie liefern sehr viel a-priori Information für die KdV-Evolution ("ähnlich" wie Erhaltungsgröße der Evolution).

Referenzen: [De] §9.7, [DJ] §3.1-2,4.1-3, [Wh] §17.3

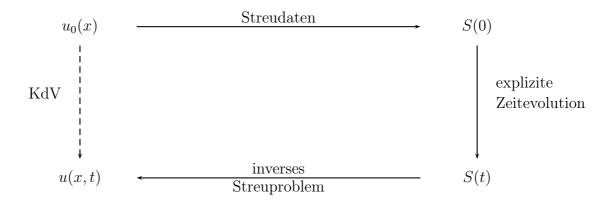
8.3 inverses Streuproblem

Ziel: Lösung des nichtlinearen AWPs

$$\begin{cases} u_t - 6uu_x + u_{xxx} = 0, & x \in \mathbb{R}, t > 0 \\ u(x, 0) = u_0(x), & x \in \mathbb{R} \end{cases}$$

in 3 Schritten:

- 1) <u>lineares</u> EW-Problem $\psi_{xx} + (\lambda u_0(x))\psi = 0, x \in \mathbb{R} \to \text{Streudaten } S(0)$
- 2) explizite Evolution der Streudaten S(t), $t \ge 0$ (laut Satz 8.1, 8.2)
- 3) inverses Streuproblem: Rekonstruktion von u(x,t) aus S(t) mit <u>linearer</u> Integralgleichung



inverses Streuproblem für t fest:

$$\psi_{xx} + (k^2 - u(x))\psi = 0 \quad , \quad x \in \mathbb{R}$$
 (8.19)

geg: Streudaten von (8.19) $S = S(t) := \{-\kappa_1^2, \dots, -\kappa_N^2; c_1, \dots, c_N; b(k), k \in \mathbb{R}\}$ (z.B. mit Satz 8.1, 8.2 aus S(0) erhalten)

ges: Potential u(x) = u(x;t)

Definiere für geeignet abklingenden Reflexionskoeffizienten b(k):

$$F(\xi) := \sum_{n=1}^{N} c_n^2 e^{-\kappa_n \xi} + \underbrace{\frac{1}{2\pi} \int_{\mathbb{R}} b(k) e^{ik\xi} dk}_{\text{inverse Fourier Trans.}}, \quad \xi \in \mathbb{R}$$
(8.20)

Satz 8.4 (inverses Streu-Theorem). Sei F schnell fallend. \Rightarrow

$$u(x) = -2\frac{\mathrm{d}}{\mathrm{d}x}K(x,x),$$

mit: K(x, z) ist die eindeutige Funktion auf \mathbb{R}^2 mit K(x, z) = 0 für z < x und erfüllt die lineare Fredholm Integralgleichung:

$$K(x,z) + F(x+z) + \int_{x}^{\infty} K(x,y)F(y+z)dy = 0$$
 , $-\infty < x < z$

("Gelfand-Levitan-Marchenko" (GLM)-Gleichung).

Beweis-Idee. Zuerst Diskussion des <u>direkten Streuproblems</u> (8.19); Herleitung der GLM-Gleichung:

<u>Fall 1:</u> $L := -\frac{\partial^2}{\partial x^2} + u(x)$ habe nur kontinuierliches Spektrum (z.B. für $u \ge 0$).

Wir suchen (für $k \in \mathbb{R}$ fest) Lösungen der Form ("Jost Lösungen")

$$\Phi_k(x) = e^{ikx} + \int_x^\infty K(x, z)e^{ikz} dz,$$
(8.21)

$$\Phi_{-k}(x) = e^{-ikx} + \int_{x}^{\infty} K(x, z)e^{-ikz} dz.$$
(8.22)

Falls K (geeignet) abklingt, gilt

$$\lim_{x \to \infty} \Phi_{\pm k}(x) = e^{\pm ikx}.$$

<u>Ziel:</u> Finde Gleichung für K durch Einsetzen von $\Phi_{\pm k}$ in (8.19):

aus (8.21):
$$\Phi_{kxx} = e^{ikx} \left[-k^2 - \frac{d}{dx} K(x, x) - ikK(x, x) - K_x(x, x) \right] + \int_x^\infty K_{xx} e^{ikz} dz$$

 $2\times$ partielle Integration in (8.21):

$$\Phi_k = e^{ikx} \left[1 + \frac{iK(x,x)}{k} - \frac{K_z(x,x)}{k^2} \right] - \frac{1}{k^2} \int_x^{\infty} K_{zz} e^{ikz} dz,$$

falls $K(x,z), K_z(x,z) \stackrel{z \to \infty}{\longrightarrow} 0$ (damit die Integrale existieren):

$$\Rightarrow 0 \stackrel{(8.19)}{=} \Phi_{kxx} + (k^2 - u)\Phi_k =$$

$$= -e^{ikx} \left[u + 2\frac{\mathrm{d}}{\mathrm{d}x} K(x, x) \right] + \int_x^\infty (K_{xx} - K_{zz} - u(x)K) e^{ikz} \mathrm{d}z$$

Das gilt, falls

$$K_{xx} - K_{zz} - u(x)K = 0$$
 , $z > x$, und
 $u(x) = -2\frac{\mathrm{d}}{\mathrm{d}x}K(x,x) = -2[K_x(x,x) + K_z(x,x)].$ (8.23)

nächstes Ziel: Gleichung für K, die nur die Streudaten enthält (aber nicht u).

- $\Phi_{\pm k}(x)$ linear unabhängig \Rightarrow sind Fundamentallösungen von (8.19)
- verallgemeinerte Eigenfunktionen laut (8.8):

$$\psi(x;t) \sim \begin{cases} e^{-ikx} + b(k;t)e^{ikx} &, x \to \infty \\ a(k;t)e^{-ikx} &, x \to -\infty \end{cases}$$

⇒ Die spezielle Lösung mit

$$\psi_k(x) \sim e^{-ikx}$$
 für $x \to -\infty$, also $\psi_k(x) = \frac{1}{a_k} \psi(x)$

ist:

$$\psi_k(x) = \frac{1}{a(k)} \underbrace{\Phi_{-k}(x)}_{\sim e^{-ikx}} + \underbrace{\frac{b(k)}{a(k)}}_{a(k)} \underbrace{\Phi_k(x)}_{\sim e^{ikx}}$$
(8.24)

$$\Rightarrow a(k)\psi_k(x) \stackrel{(8.21),(8.22)}{=} e^{-ikx} + \int_x^\infty K(x,z)e^{-ikz} dz$$
$$+ b(k) \left[e^{ikx} + \int_x^\infty K(x,z)e^{ikz} dz \right] \quad \forall x \in \mathbb{R}; \ \forall k \in \mathbb{R} \text{ fest.}$$

inverse Fourier-Transformation $(k \to y)$ gibt an y > x:

$$\frac{1}{2\pi} \int_{\mathbb{R}} a(k)\psi_k(x)e^{iky} dk \qquad (8.25)$$

$$= \underbrace{\frac{1}{2\pi} \int_{\mathbb{R}} e^{ik(y-x)} dk}_{=\delta(y-x)=0 \text{ da } y > x} + \underbrace{\int_{x}^{\infty} K(x,z) \left[\frac{1}{2\pi} \int_{\mathbb{R}} e^{ik(y-z)} dk \right] dz}_{=\delta(y-z)} + \underbrace{\frac{1}{2\pi} \int_{\mathbb{R}} b(k)e^{ik(x+y)} dk}_{=:F(x+y) \text{ laut } (8.20)} + \underbrace{\int_{x}^{\infty} K(x,z) \left[\frac{1}{2\pi} \int_{\mathbb{R}} b(k)e^{ik(y+z)} dk \right] dz}_{=:F(x+y) \text{ laut } (8.20)} = K(x,y) + F(x+y) + \int_{x}^{\infty} K(x,z)F(y+z) dz,$$

da L kein diskretes Spektrum hat (laut Annahme).

Berechnung des Integrals (8.25) mit Residuensatz und komplexem Konturintegral:

$$\int_{\mathbb{D}} a(k)\psi_k(x)e^{iky}dk = 0, \quad \forall x, y \text{ fest}$$

da $a(k), b(k), \psi_k$ in oberer Halbebene analytisch sind (Details: [DJ], §3.3)

 $\Rightarrow K \text{ erfüllt (mit } y \leftrightarrow z)$:

$$K(x,z) + F(x+z) + \int_{x}^{\infty} K(x,y)F(y+z)dy = 0, \quad -\infty < x < z.$$
 (8.26)

inverses Streuproblem:

F aus Streudaten geg. $\Rightarrow K(x,z)$ aus Integralgleichung (8.26) berechenbar $\Rightarrow u$ aus (8.23).

<u>Fall 2:</u> L habe $N \geq 1$ Eigenwerte $\lambda_1, \ldots, \lambda_N$.

Es gilt: a(k), b(k) sind meromorph in oberer Halbebene mit N einfachen Polstellen an $k = i\kappa_n \ (\kappa_n > 0, \lambda_n = -\kappa_n^2)$

Berechnung des Integrals (8.25):

Mit

$$\psi_{i\kappa_n}(x) = c_{\kappa_n} \Phi_{i\kappa_n}(x) \quad (\text{vgl } (8.24))$$

$$\stackrel{(8.21)}{=} c_{\kappa_n} (e^{-\kappa_n x} + \int_{x}^{\infty} K(x, z) e^{-\kappa_n z} dz)$$

kann man zeigen (Details [DJ] §3.2-3):

$$\frac{1}{2\pi} \int_{\mathbb{R}} a(k)\psi_k(x)e^{iky} dk = -\sum_{n=1}^N c_{\kappa_n}\psi_{i\kappa_n}(x)e^{-\kappa_n y}$$
$$= -\sum_{n=1}^N c_{\kappa_n}^2 \left[e^{-\kappa_n(x+y)} + \int_x^\infty K(x,z)e^{-\kappa_n(y+z)} dx \right]$$

Einsetzen in (8.25) liefert wieder (8.26).

<u>Bem:</u> (8.26) impliziert (wie gewünscht) $K_{xx} - K_{zz} - u(x)K = 0, z > x$ für $u(x) := -2\frac{d}{dx}K(x,x)$ (siehe Übung).

Bemerkung 8.5. 1) Die Fredholm Integralgleichung (8.26) kann als Fixpunktiteration für $K \in C(\mathbb{R}^2)$ (oder $\in C^{\infty}(\mathbb{R}^2)$) geschrieben werden:

$$K \mapsto K^*(x,z) := -F(x+z) - \int_x^\infty K(x,y)F(y+z)dy.$$
 (8.27)

Abbildung (8.27) ist Lipschitz mit Konstante $||F||_{L^1(\mathbb{R})}$.

Sei $||F||_{L^1} < 1 \Rightarrow$ GLM-Gleichung hat eindeutige Lösung.

2) Spezialfall: Sei F separabel; d.h.

$$F(x+z) = \sum_{n=1}^{N} X_n(x) Z_n(z)$$
 , $N \in \mathbb{N}$ mit Z_n l.u.

(z.B. für $b \equiv 0$, d.h. reflexionsfreies Potential). \Rightarrow GLM-Gleichung wird

$$K(x,z) + \sum_{n=1}^{N} X_n(x) Z_n(z) + \sum_{n=1}^{N} Z_n(z) \int_{x}^{\infty} K(x,y) X_n(y) dy = 0$$

$$\Rightarrow$$
 Ansatz für Lösung: $K(x,z) = \sum_{n=1}^{N} L_n(x) Z_n(z)$

$$\Rightarrow L_n(x) + X_n(x) + \sum_{m=1}^{N} L_m(x) \underbrace{\int_{x}^{\infty} Z_m(y) X_n(y) dy}_{\text{=bekannt}} = 0; \quad n = 1, \dots, N$$

also: N lineare algebraische Gleichungen für N Unbekannte $L_n(x)$

3) Es gilt: Anzahl der gebundenen Zustände des Operators L (= N) = Anzahl der Solitonen, die eine Lösung für $t \to \infty$ entwickelt.

Beispiel 8.6 (Reflexionskoeffizient mit N=1 Pol). Streudaten seien gegeben als

1)
$$b(k) = -\frac{\beta}{\beta + ik}$$
 (für ein $0 < \beta = \text{const}$), also Pol an $k = i\beta$, d.h. ein EW $\lambda_1 = -\kappa_1^2 = -\beta^2$ von L .

2)
$$\psi_1(x) \sim \sqrt{\beta} e^{-\beta x}$$
 für $x \to \infty$; d.h. $c_1 = \sqrt{\beta}$

Ziel: berechne zugehöriges Potential u.

$$\to F(\xi) = \beta e^{-\beta \xi} - \frac{\beta}{2\pi} \int_{\mathbb{R}} \frac{e^{ik\xi}}{\beta + ik} dk = \dots = \beta e^{-\beta \xi} H(-\xi)$$

(mit Residuensatz; H ... Heaviside Funktion)

Aus GLM-Gleichung (8.26): K(x,z) = 0 für x + z > 0.

GLM für x+z<0 (da $F(y+z)\neq 0$ nur für y+z<0):

$$K(x,z) + \beta e^{-\beta(x+z)} + \beta \int_{x}^{-z} K(x,y)e^{-\beta(y+z)} dy = 0, \quad x < \min(z, -z).$$

(eindeutige) Lösung: $K = -\beta$, also

$$K(x,z) = \left\{ \begin{array}{cc} 0 & , & x+z>0 \\ -\beta & , & x+z<0 \end{array} \right\} = -\beta H(-x-z)$$

$$K(x,x) = -\beta H(-2x) = -\beta H(-x)$$

$$\Rightarrow u(x) = -2\frac{\mathrm{d}}{\mathrm{d}x}K(x,x) = -2\beta\delta(x).$$

Ferner: Anfangsprofil $u_0 = -2\beta\delta$ zerfällt in ein Soliton

$$u(x,t) \sim 2\beta^2 \operatorname{sech}^2 \left[\beta(x - 4\beta^2 t + \frac{\ln 2}{2\beta}) \right]$$

und eine dispersive Welle.

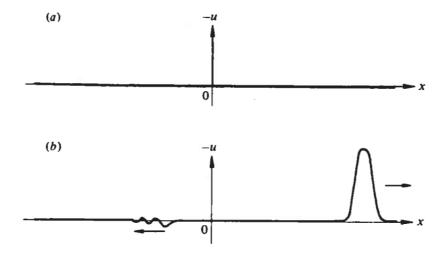


Abbildung 8.3: Anfangsbedingung $u_0 = -2\beta\delta$ (siehe (a)) zerfällt in ein Soliton und eine dispersive Welle (siehe (b)) [DJ].

<u>Bem:</u> inverse (Streu-)Probleme in vielen Anwendungen: z.B. Computertomographie, akustische Untersuchung der Bodengeologie

Referenzen: [De] §9.7, [DJ] §3.3, 4.4, [Wh] §17.3-5

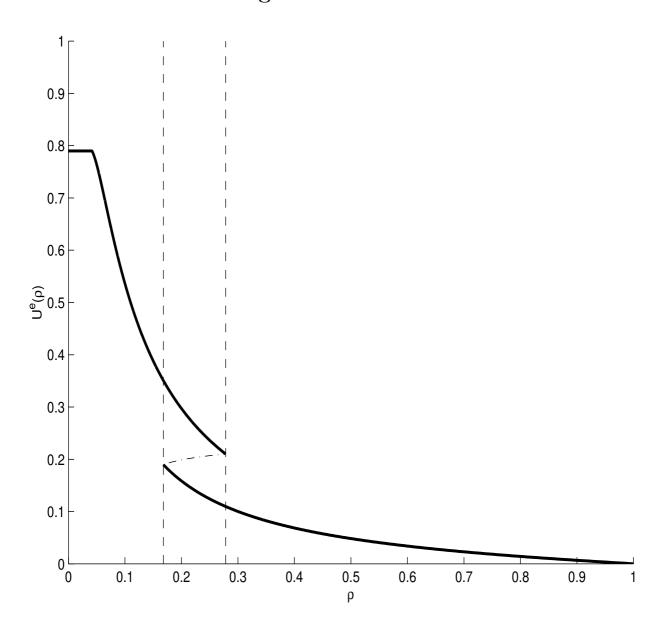
A Literaturverzeichnis

- [AK] G. Aubert, P. Kornprobst, Mathematical Problems in Image Processing, Springer, New York, 2006.
- [Be] **J. Becker**, Numerische Simulation der Bildung fluider Strukturen auf inhomogenen Oberflächen, Dissertation Universität Bonn, 2004.
- [BG] J. Becker, G. Grün, The thin-film equation: recent advances and some new perspectives, J. Phys.: Condens. Matter 17 (2005) S291-S307.
- [BF] **F. Bernis, A. Friedman**, Higher order nonlinear degenerate parabolic equations, J. Diff. Equ. 83 (1990) 179-206.
- [BH] W. Braun, K. Hepp, The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles, Comm. Math. Phys. 56 (1977) 125-146.
- [CLMC] F. Catté, P.L. Lions, J.M. Morel, T. Coll, Image Selective Smoothing and Edge Detection by Nonlinear Diffusion, SIAM J. Numer. Anal. 29 (1992) 182-193.
- [CM] **A.J. Chorin, J.E. Marsden**, A mathematical introduction to fluid mechanics, Springer, 1990.
- [CS] **F. Cucker, S. Smale**, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.
- [De] L. Debnath, Nonlinear Partial Differential Equations, Birkhäuser, 2005.
- [Do] **R.L. Dobrushin**, *Vlasov equations*, Functional Analysis and Its Applications, 1979.
- [DJ] P.G. Drazin, R.S. Johnson, Solitons: an introduction, Cambridge University Press, 1989
- [EGK] C. Eck, H. Garcke, P. Knabner, Mathematische Modellierung, Springer, 2008.
- [EF] C.M. Elliott, D.A. French, Numerical Studies of the Cahn-Hilliard Equation for Phase Separation, IMA J. of Appl. Math. 38 (1987) 97-128.
- [Ev] L.C. Evans, Partial Differential Equations, AMS, 1998.
- [GR] G. Grün, M. Rumpf, Nonnegativity preserving convergent schemes for the thin film equation, Numer. Math. 87 (2000) 113-152.
- [Ho] M. Holmes, Introduction to the Foundations of Applied Mathematics, Springer, 2009.

- [Jo] R.S. Johnson, A modern introduction to the mathematical theory of water waves, Cambridge University Press, 1997.
- [Jü] A. Jüngel, Modeling and Numerical Approximation of Traffic Flow Problems, Skript - Universität Mainz, 2002. http://asc.tuwien.ac.at/~juengel/scripts/trafficflow.pdf
- [Kn] **A. Knüpfer**, Classical solutions for a thin-film equation, Dissertation Universität Heidelberg, 2007.
- [LF] **P.G. LeFloch**, Hyperbolic Systems of Conservation Laws The Theory of Classical and Nonclassical Shock Waves, Birkhäuser, 2002.
- [LV] R.J. LeVeque, Numerical Methods for Conservation Laws, Birkhäuser, 1990.
- [MB] A.J. Majda, A.L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, 2002.
- [MP] C. Marchioro, M. Pulvirenti, Mathematical theory of incompressible nonviscous fluids, Springer, 1994.
- [Ma] **P.A. Markowich**, Applied Partial Differential Equations a visual approach, Springer, Berlin, 2007.
- [Mu] J.D. Murray, Mathematical Biology, Springer, Berlin, 1989.
- [My] **T.G. Myers**, Thin films with high surface tension. SIAM Review 40 (1998) 441-462.
- [Ne] **H. Neunzert**, The Vlasov equation as a limit of Hamiltonian classical mechanical systems of interacting particles. Trans. Fluid Dynamics, 1977.
- [Schö] J. Schöberl, Numerische Methoden in der Kontinuumsmechanik, Skript TU Wien, 2012. http://www.asc.tuwien.ac.at/~schoeberl/wiki/lva/nummech/nummech.pdf
- [TE] **L.N. Trefethen, K. Embree** (eds.), *The PDE coffee table book*, unpublished: https://people.maths.ox.ac.uk/trefethen/pdectb.html, 2001.
- [Wa] G. Warnecke, Analytische Methoden in der Theorie der Erhaltungsgleichungen, Teubner, Stuttgart, 1999.
- [We] J. Weickert, Anisotropic Diffusion in Image Processing, Dissertation 1996.
- [Wh] G.B. Whitham, Linear and nonlinear waves, John Wiley, New York, 1974.

B Folien

Verkehrsflussdiagramm: Geschwindigkeit als mehrwertige Funktion der Dichte



Mehrwertige Funktion $v(\rho)$ erlaubt mehrere stabile Verkehrszustände; auch Hysterese-Verhalten und "Stop-and-go" möglich. Aus [Günther-Klar-Materne-Wegner, SIAM J. Appl. Math. 2003].

Charakteristiken für Ampelbeispiel

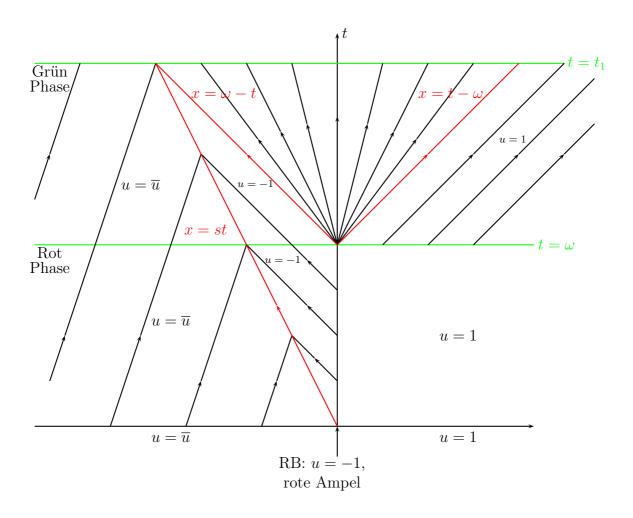


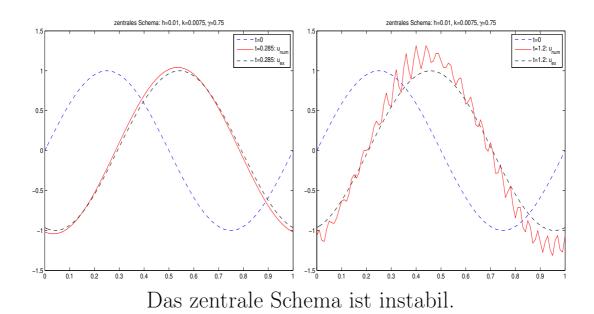
Abbildung B.1: Ampel: Rotphase, 1. Teil der Grünphase

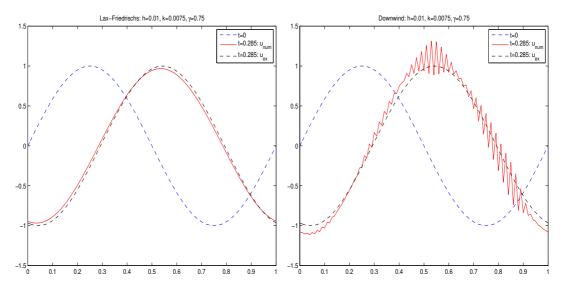
Numerische Methoden für lineare Advektionsgleichung (glatte Lösungen 1)

$$u_t + u_x = 0, \quad x \in \mathbb{R}, t > 0$$

$$u_0(x) = \sin(2\pi x)$$

num. Lösung auf [0,1] mit periodischen Randbedingungen.





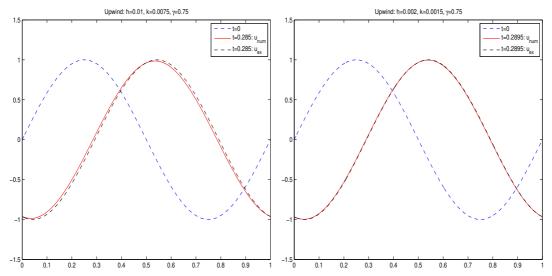
links: Lax-Friedrichs ist bedingt stabil (für $\gamma := \frac{|a|k}{h} \le 1$); rechts: das Downwind Schema ist instabil.

Numerische Methoden für lineare Advektionsgleichung (glatte Lösungen 2)

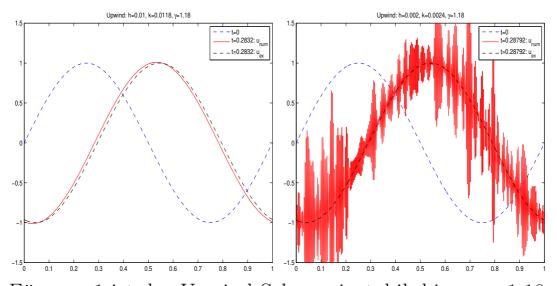
$$u_t + u_x = 0, \quad x \in \mathbb{R}, t > 0$$

$$u_0(x) = \sin(2\pi x)$$

num. Lösung auf [0, 1] mit periodischen Randbedingungen.



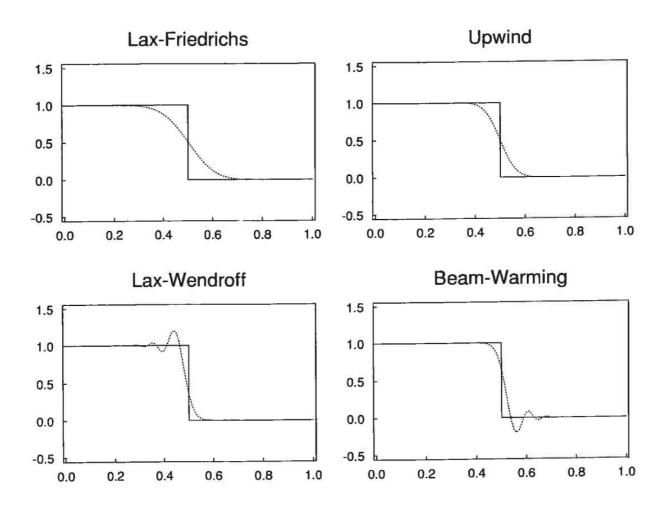
Das Upwind Schema ist bedingt stabil (für $0 \le \gamma := \frac{ak}{h} \le 1$); hier $\gamma = 0.75$.



Für $\gamma > 1$ ist das Upwind Schema instabil; hier $\gamma = 1.18$.

Numerische Methoden für unstetige Lösungen (1)

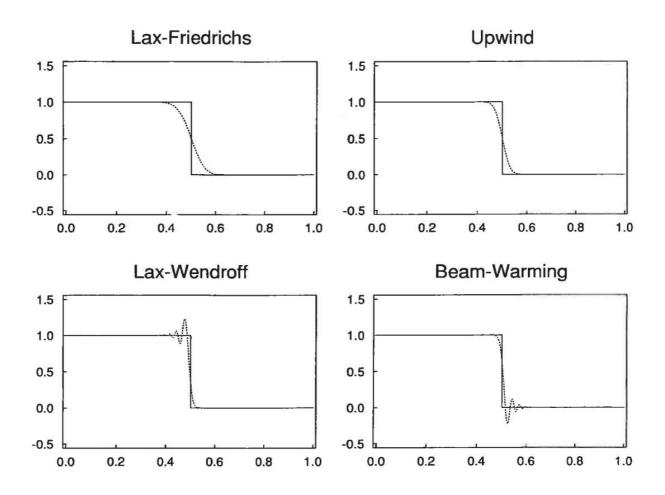
$$u_t + u_x = 0, \quad x \in \mathbb{R}, t > 0$$
$$u_0(x) = \begin{cases} 1, & x < 0 \\ 0, & x > 0 \end{cases}$$



exakte Lösung (—) an t=0.5 und numerische Lösung (···) mit $h=0.01,\,k/h=0.5$ (aus [LV])

Numerische Methoden für unstetige Lösungen (2)

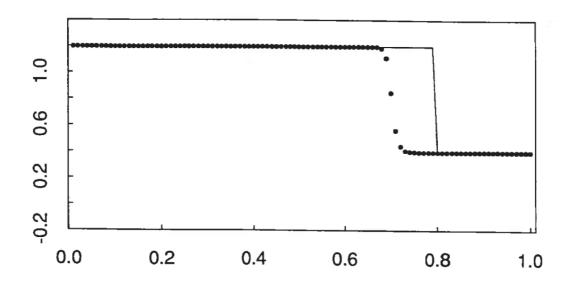
$$u_t + u_x = 0, \quad x \in \mathbb{R}, t > 0$$
$$u_0(x) = \begin{cases} 1, & x < 0 \\ 0, & x > 0 \end{cases}$$



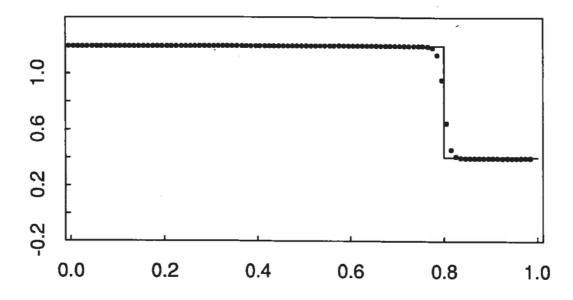
exakte Lösung (—) an t=0.5 und numerische Lösung (···) mit $h=0.0025,\,k/h=0.5$. Konvergenzordnung: 1/2 bzw. 2/3 [LV]

Riemann-Problem für Burgers Gleichung

$$u_t + u u_x = 0,$$
 $x \in \mathbb{R}, t > 0$
 $u_l = 1.2,$ $u_r = 0.4,$ \rightarrow Schockgeschwindigkeit $s = 0.8$



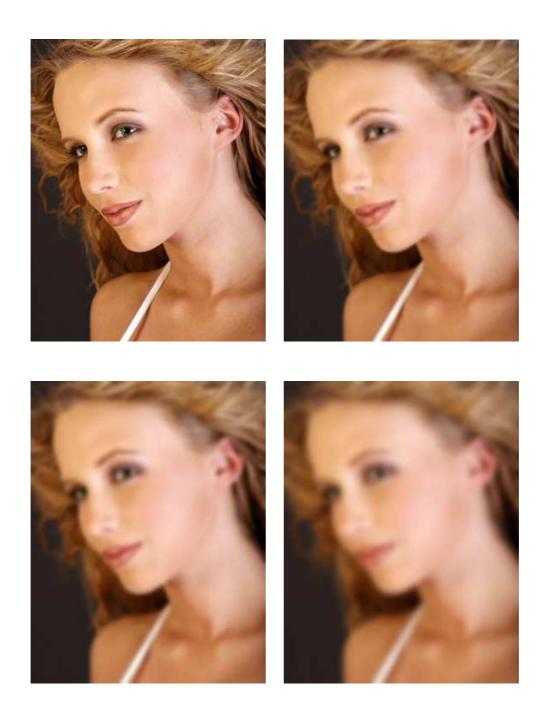
exakte Lösung (—) an t=1 und numerische Lösung (···) mit nicht-konservativem Schema: $u_j^{n+1}=u_j^n-\frac{k}{h}u_j^n\left(u_j^n-u_{j-1}^n\right)$



num. Lösung mit konservativem Upwind-Schema (aus [LV]):

$$u_j^{n+1} = u_j^n - \frac{k}{h} \left(\frac{1}{2} (u_j^n)^2 - \frac{1}{2} (u_{j-1}^n)^2 \right)$$

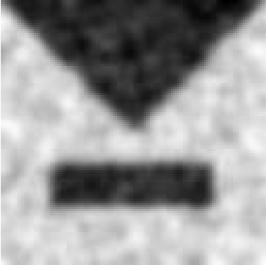
linearer Gauß'scher Diffusionsfilter



Originalbild f; Diffusionsfilterungen $K_{\sigma} * f$ mit wachsender "Breite" σ in (4.1) (erstellt mit Photoshop)

Diffusionsfilter (Dreieck und Rechteck)

verrauschtes Eingangsbild



gefiltert mit linearer Diffusion (+ automatische Stoppzeit)

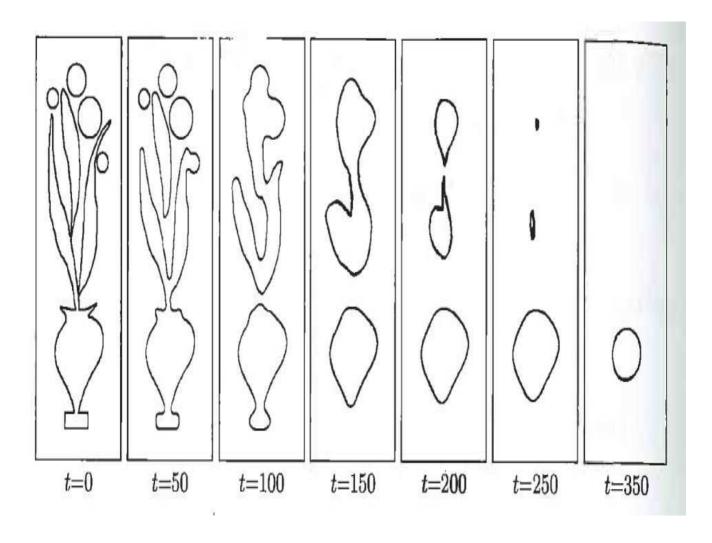
 $\begin{array}{c} {\it gefiltert\ mit\ isotroper\ nichtlinearer\ Diffusion}\\ {\it [Perona-Malik\ Gleichung]\ (+\ automatische}\\ {\it Stoppzeit)} \end{array}$

gefiltert mit anisotroper nichtlinearer Diffusion (+ automatische Stoppzeit)

von [Pavel Mrazek, Dissertation, Prag, 2001]

(mittlere-) Krümmungsgleichung

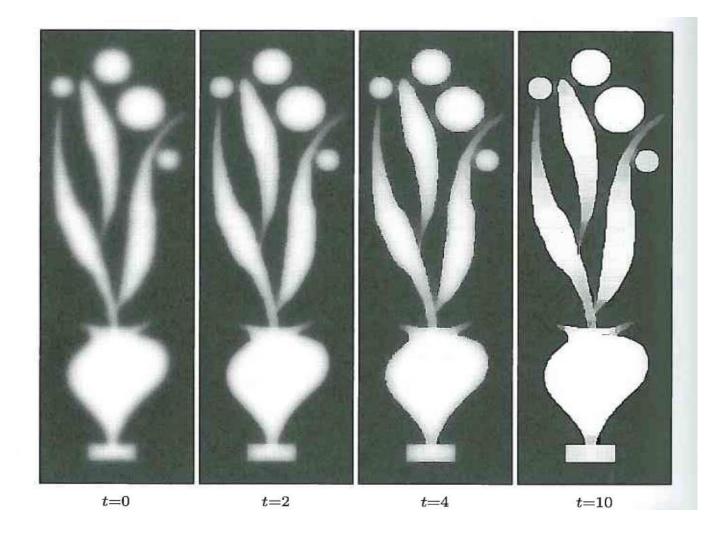
$$u_t = |\nabla u| \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)$$



Evolution von Kurven unter der (mittlere-) Krümmungsgleichung, [AK]. Alle geschlossenen Kurven werden asymptotisch kreisförmig und kollabieren in endlicher Zeit.

Schock Filter

$$u_t = -|\nabla u|\operatorname{sign}(\Delta u), \quad x \in \mathbb{R}^2, \ t > 0$$



Anfangsbedingung ist Gauß-geglättetes Originalbild. Bildrekonstruktion: Konvergenz (in endlicher Zeit) gegen eine Stufenfunktion (d.h. perfekt scharfes Bild), [AK].

Brusselator (Reaktions-Diffusionsgleichung)

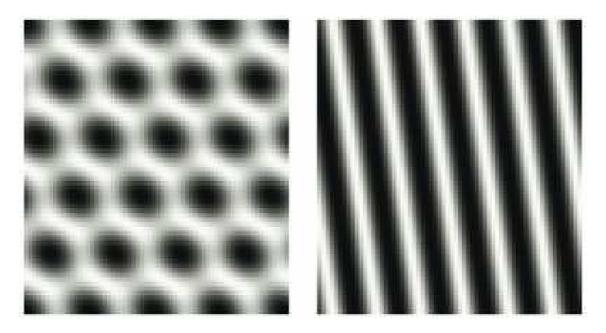
$$u_{t} = a - (b+1)u + u^{2}v + d_{1}\Delta u$$

$$v_{t} = bu - u^{2}v + d_{2}\Delta v$$
(B.1)

Modell für autokatalytische, oszillierende chemische Reaktion (d.h. ein Reaktionsprodukt ist auch Reaktionspartner); Gleichung für 2 Substanzen mit Dichten u(x,t), v(x,t)

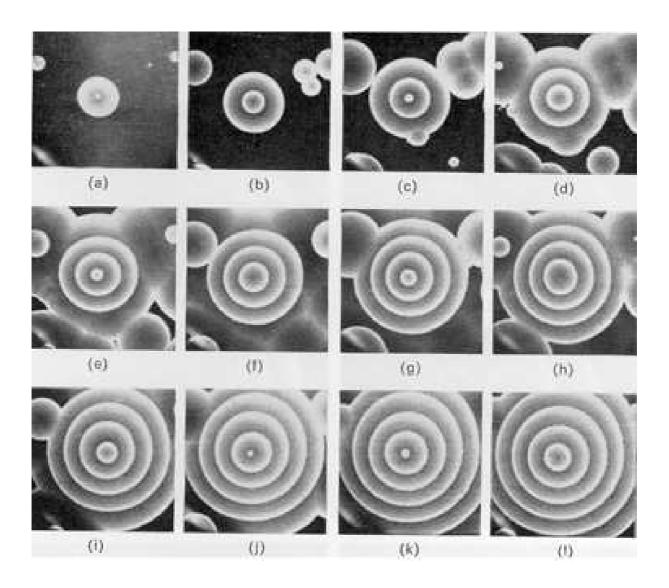
homogener Stationärzustand $(u_0, v_0) = (a, b/a);$ Turing Instabilität für $b > (1 + a\sqrt{\frac{d_1}{d_2}})^2 \dots (= 2. \text{ notw. Bed.})$

2 numerische Beispiele für räumlich inhomogene Stationärzustände $u_{\infty}(x) = \lim_{t \to \infty} u(x, t)$ (mit gleichen Parametern a, b); sind nicht eindeutig! stabil, aber nicht asymptotisch stabil.



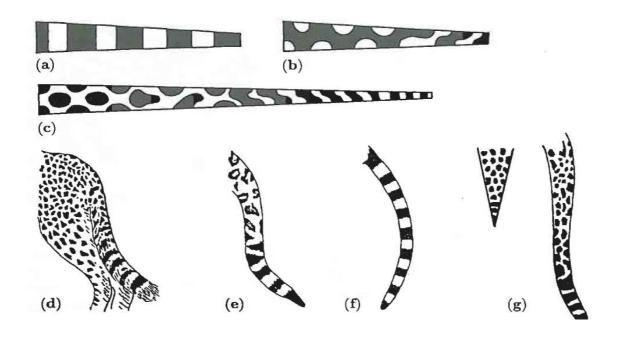
(B.1) ist translations-, rotationsinvariant (modulo RB)

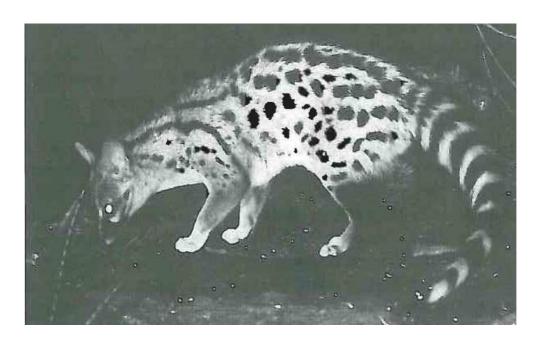
Musterbildung in chemischem Prozess (Experiment)



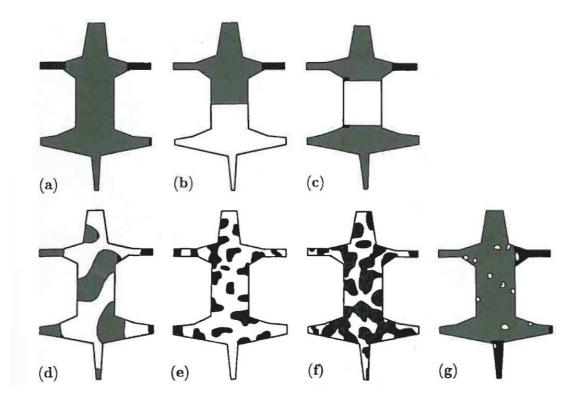
Evolution von Konzentrationswellen in chemischer Reaktion (Belousov-Zhabotinsky Reaktion)

Musterbildung mit Reaktions-Diffusionsgleichungen (1)

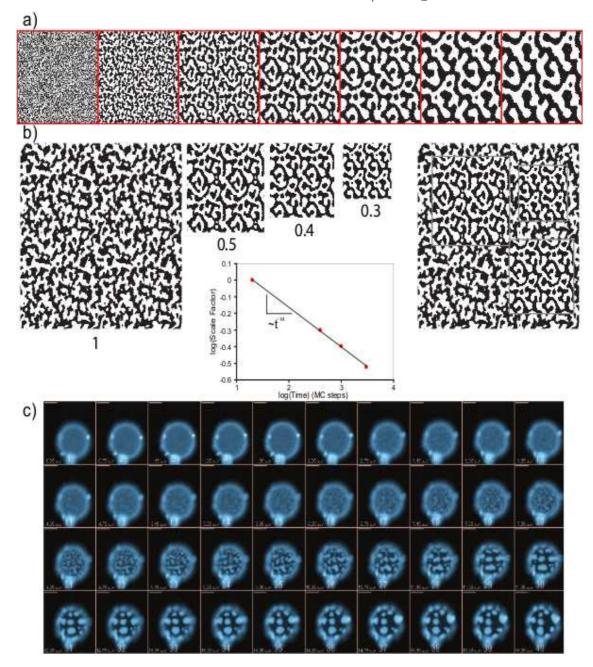




Musterbildung mit Reaktions-Diffusionsgleichungen (2)



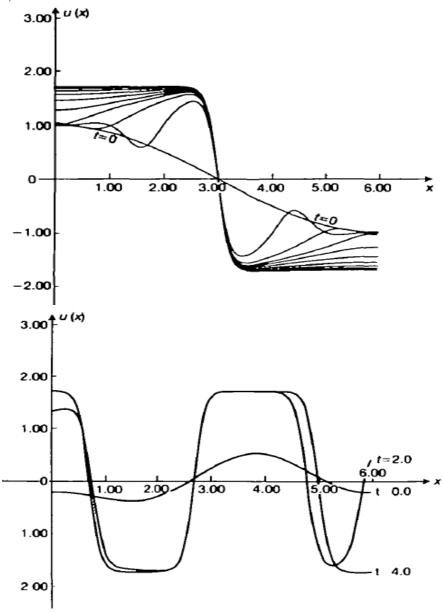
Cahn-Hilliard: Simulation / Experiment



- a) numerische Simulation (Monte Carlo) der Cahn-Hilliard Gleichung; $t=0,\ 20,\ 100,\ 400,\ 1000,\ 3000,\ 5000$
- b) Vergößerung von t = 20, 400, 1000, 3000 zeigt Skaleninvarianz.
- c) Film des Experiments (Fettbläschen) [T. Ursell, 2007]: http://www.youtube.com/watch?v=kDsFP67_ZSE&NR=1

Cahn-Hilliard: Simulation für $t \to \infty$

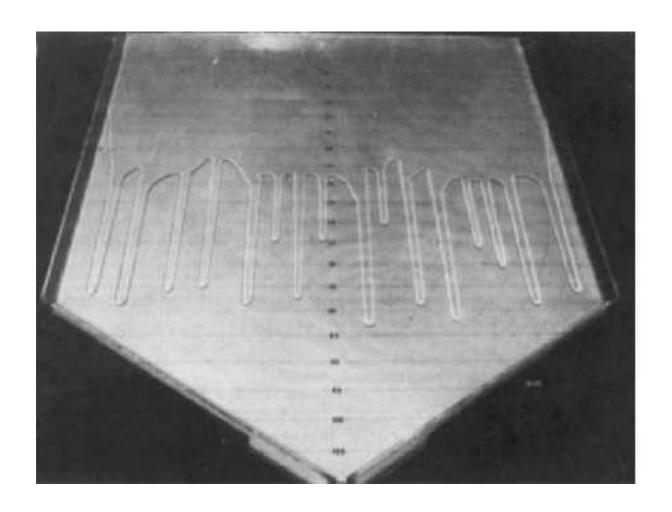
 $f(c) := c^4/12 - c^2/2;$ lokale Minima an $c_m = \pm \sqrt{3}$ $\gamma = 0.03, L = 6$



FEM-Simulation von Cahn-Hilliard Gleichung [EF]:

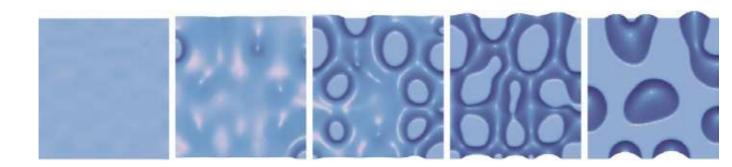
- \bullet Lösung konvergiert gegen c_{∞}
- c_{∞} fast stückweise konstant (Werte an $\pm \sqrt{3}$)
- \bullet noch unklar, ob c_{∞} Stationärzustand oder nur metastabil

dünne Filme: "fingering"–Instabilität der Front



[Huppert, Nature, 1982]

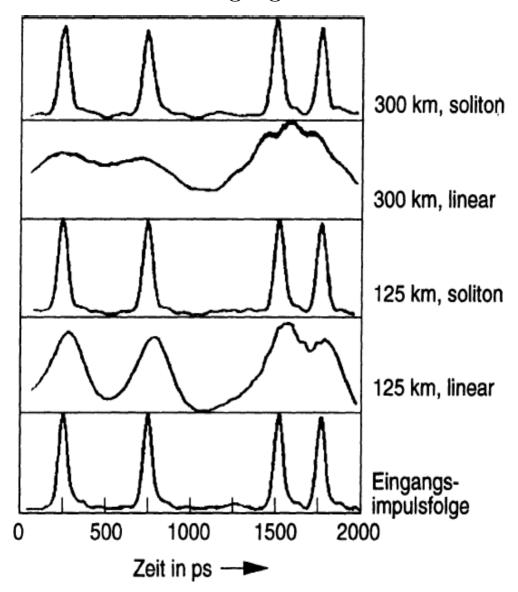
dünne Filme: Simulation



FEM-Simulation von (erweiterter) Dünnfilm Gleichung [BG]:

- AB: homogener Film mit kleiner Störung
- Film reißt
- Evolution zu wenigen großen Tröpfchen

Datenübertragung mit Solitonen



- praktischer Vergleich für Impulsübertragung bei 4 Gbit/s: Soliton vs. linear
- bei 300 km: Signal kann bei linearer Übertragung nicht erkannt werden
- bei Soliton-Übertragung aber fast unverändert
- praktische Anwendung erst in Vorbereitung