Lecture Notes

Modelling with
partial differential equations

Anton Arnold
TU Wien, WS 2011/12

TU Wien, WS 2013/14
TU Wien, WS 2015/16
TU Wien, WS 2017/18
TU Wien, WS 2019,/20
TU Wien, WS 2021 /22
TU Wien, WS 2023/24

January 25, 2024



(© Anton Arnold, 2023



Contents

1 Traffic flow models — hyperbolic conservation laws 5
1.1 Modelling . . . . .. . . )
1.2 Scalar hyperbolic conservation laws . . . . . . . . ... ... ... .. ... 9
1.3 Traffic light problem . . . . . . . ... ... o 19
1.4 Numerical methods . . . . . . . . . ... oo 21

1.4.1 Linear advection equation . . . . . .. . ... ... ... .. .... 21
1.4.2  Nonlinear conservation laws . . . . .. . ... ... ... ... ... 29

2 Fluid mechanics 33
2.1 Euler equations . . . . . . . . ... 33
2.2 Navier-Stokes equations . . . . . . . . ... 38

2.2.1 Helmholtz-Hodge decomposition . . . . . . . .. .. ... ... ... 46
2.22 Rotation . . . . . ..o 49
2.3 Vorticity models . . . . . . . ..o 50
2.3.1 Vector fields from sources and vortices . . . . . ... ... ... .. 50
2.3.2  The vorticity equation . . . . . . .. ... oL 23
2.3.3 Motion of point vortices in R? . . . . . . . .. ... ... ... ... 58
2.4 Boundary layers for Navier-Stokes equations . . . . . . .. ... ... ... 66

3 Theory of elasticity 73
3.1 Notation . . . . . . . . L 73
3.2 Hyperelastic materials . . . . . .. ... oo 74
3.3 Variational formulation . . . . . .. ..o 75
3.4 Linear elasticity . . . . . . . ..o 7

4 Diffusion filtering in image processing 81
4.1 Linear diffusion filter . . . . . . . . .. ... 81
4.2 Nonlinear diffusion filters . . . . . . . . . . . .. ... 83

4.2.1 The Perona-Malik model . . . . . .. ... ... ... ... .. 83
4.2.2 Regularized Perona-Malik model . . . . . .. .. ... .. .. ... 85
4.2.3 Anisotropic diffusion filter . . . . .. ..o 89
4.3 Edge sharpening, shock filter . . . . . . . .. ..o 91

5 Pattern formation / reaction-diffusion equations 95
5.1 Reaction-diffusion equations . . . . . . ... ..o 95
5.2 Turing mechanism . . . . . . . .. Lo 96
5.3 Pattern formation in a sample system . . . . . . ... 100



Contents

5.4 Animal coat color patterns . . . . . . .. ... 104
5.5 Pattern formation in 2-component mixtures / Cahn-Hilliard equation . . . 105
6 Problems with free boundary / thin-film equation 113
6.1 Derivation from Navier-Stokes equation . . . . . . . . . ... .. ... ... 113
6.2 Boundary conditions . . . . . ... ..o 117
6.3 Positivity of the solution . . . . . . ... ... ... 118
7 Collective behaviour - kinetic equations 123
7.1 microscopic ODE-models . . . . . . ... ... ... ... ... ....... 123
7.2 mesoscopic PDE-models . . . . .. ... o 125
8 Nonlinear waves — Solitons 129
8.1 Applications of KAV . . . . . . . .. 130
8.2 Schrédinger scattering problems for KAV . . . . . ... ... ... ... 133
8.3 inverse scattering problem . . . . . ... ..o 138
A Bibliography 145
B Slides 147



1 Tratfic flow models — hyperbolic
conservation laws

Aim of the lecture:
Introduction to several applied models involving differential equation: discussion of mod-

elling, and of analytic and numerical aspects.

1.1 Modelling

Prototypical question: How long should traffic light phases be so that, during the green
phase, the traffic jam in front of the traffic light dissolves?

simplifying model assumptions:

e single-track road without possibility to overtake

e 1o entry/exit points or junctions

e busy road: no description of individual vehicles, but instead vehicle density p(z,t)
(e.g. vehicles per km) at location x € R and time ¢ > 0

Number of vehicles in interval (a, b) at time ¢:

b

/p(a:,t)dx

a

e let v(z,t) be the speed of vehicles at (z, 1)
= vehicles passing = at time ¢: p(x,t)v(x,t) = J(x,t) ... flux density.
looking for: equation of motion for density p

Balance equation ¥(a, b):

b

b
% / pl ) = pla, ol 1) = plb olb 1) = - / a(ap;) (2, 8)dx
a inflow outflow a

vehicles in (a,b)



1 Traffic flow models — hyperbolic conservation laws

= Continuity equation
prt(pv)e. =0, z€RE>0 (1.1)

with initial condition (IC): p(x,0) = po(z), x € R.

looking for: (constitutive) equation for v; includes modelling information on traffic dy-
namics and driving behaviour

Suppose v = v(p) with
e v(p) monotonically decreasing (lower velocity for denser traffic)

e U(pmax) = 0 (above some maximal vehicle density or below some minimum distance
between vehicles, traffic stops)

e possibly: v(0) = vpax (maximum velocity on empty road)

1) Lighthill-Whitham-Richards (LWR) model (1955; simplest model, v(p) linear):

U(,O):vma)((l_ P )70Sp§pmax

Pmax
p _
= (1.1) becomes p; + {vmaxp (1 - )} =0,z eRt>0 (1.2)
Pmax T
2) Greenberg model:
. pmaX
U(lo) - Urefln 70 < p S Pmax
P _
= Pt — Vpef <pln p > =0 (1.3)

Drawback of Greenberg model: for density — 0 velocity v(p) is unbounded — this is
unrealistic.

(1.2), (1.3) are conservation laws, as the total number of vehicles is conserved. Formal
integration of (1.1) leads to:

S [ etetde == [ ipte ot plds = o.

(1.2), (1.3) are hyperbolic equations:

Definition 1.1. The system of equations

ur+ 0 f(u) = 0, z€eRE>0

u(z,0) = wuo(z), zekR (1.4)



1.1 Modelling

with f : R™ — R™ is called hyperbolic if f'(u) € R™*™ is diagonalizable and has only
real eigenvalues (Yu € R™).

A function u : R x [0,00) — R™ is called classical solution if u € C*(R x (0, 00))NC(R x
[0,00)) and (1.4) holds pointwise.

Simplification of the LWR model:

Transform (1.2) into non-dimensionalized form:
Let L and 7 be typical length and time scales such that L/T = vyax.

scaled variables:

1 max 1
ax |:Umaxp (1 - - )] - _axs Umax p_(l - u) _(1 + u)
pmax L 2 2
—— —
=p
— _pmaxax u_2
2r 7\ 2
u2
:>ut+<7> =0, reRt>0 (1.5)

u(x,()) = uO('x)7 LS Ra
with ug = 1 — 2p0/ pmax, omitting the index “s”.
(1.5) is called inviscid Burgers’ equation.

p=0 & u=1;9=vpa ... empty road
P =Pmax <& u=—1;v=0..traffic jam

Example 1.2.
1, x <0
u(z)=¢1l—2, 0<z<1
0, x>1

Method of characteristics for u; + uu, = 0:

dt_1 dz du_

P PR R



1 Traffic flow models — hyperbolic conservation laws

with t(0) = 0, 2(0) = xg, u(0) = up(zg) = s = t.
= u(t) = up(xo) (const.) along the characteristic z(t) = ug(xo)t + xg, t >0

= solution for x € R, t < 1:

0

Figure 1.1: characteristics: no trajectories (= paths of movement) of vehicles, but propa-
gation of density values p(x,t)

Solution for ¢ = 1 is discontinuous in x = 1 (a shock is created). This is the case as well
for a (slightly) smoothed IC with ug € C*(R): a classical solution exists only for a finite
time in this case. O

Questions:
e 1 solution for ¢t > 17

e Which solution concept?

References: [Ji] §1,3; [LV] §1-3.



1.2 Scalar hyperbolic conservation laws

: i x
5 1
Figure 1.2: Solution (1.6)
1.2 Scalar hyperbolic conservation laws
Consider the hyperbolic conservation law
u+ fu), = 0 , zeRt>0 (1.7)

w(z,0) = wp(z) , xR

with f: R — R.
We generally assume that f”(u) >0 Vu € R (“genuine nonlinearity”)

Motivation of a weak solution: Multiply (1.7) with

® € Cy(R?) := {® € C'(R?) | @ has compact support },

integrate over R, x R/ :

0=

0\8

/(ut + f(u),)Pdzdt

= —]O/(uq)t + f(u)®,)dzdt — /u(m,O)CI)(x,O)dx

R R

For the last two integrals only “u integrable” is needed.



1 Traffic flow models — hyperbolic conservation laws

Definition 1.3. Let Li, > u: R x RT — R with f(u) € L. u is called weak solution
of (1.7) of
//(u@t + f(u)®,)dzdt = —/udx)@(z,())dx Vo € Cj(R?). (1.8)
0 R R

Every classical solution is a weak solution; the converse is not true in general.

another weak formulation:

Integrate (1.7) over (a,b) x (s,t) for arbitrary a,b € R;s,t > 0:

b b t t

/u(x,t)dx—/u(x,s)dx:—/f(u(b,T))dT—i—/f(u(a,r))dT. (1.9)

a a S

One can show: each weak solution (as in Def. 1.3) satisfies (1.9).

Consider now conservation laws with discontinuous initial data; these appear e.g. in Ex.
1.2 at t = 1. Due to translation invariance of (1.7) in x and ¢ we can assume that this
discontinuity is situated in (0, 0).

Definition 1.4. Fquation (1.7) with IC

uy o, <0
Ug(x) = 1.10
o(a) {u o (110

with u;, u, € R 1s called Riemann problem.

Let u(x,t) be a solution of (1.7), (1.10).
= u(azx, at) also is a solution Va > 0.
indicates: u depends only on & = z/t, i.e. u = a(§).

Determination of @(€):

= 3 possibilities:
e W(£) =0 = u(&) = const.

e u is discontinuous along £ = z/t, i.e., Ad/(§).

10



1.2 Scalar hyperbolic conservation laws

o f(u()=¢ = a(&) = (f)"1¢); I inverse of f’ (on f'(R)) because f” > 0 on R
(by assumption).

We consider 3 ICs corresponding to these possibilities:

Case 1, w; = u,: u(x,t) =u, = Ve eRt>0.

Case 2, u; > u,:

Consider Ex. 1.2 starting at ¢ = 1: vehicle density for £ > 0 greater than for x < 0.
= greater (positive) speed for z < 0 than for x > 0.

= We expect a shock curve, i.e., discontinuity of the solution at x = ¥(t).

Lemma 1.5. The function

w o, T <st
u(z,t) == 1.11
(x1) {u R (1.11)

is a weak solution of (1.7), (1.10) if and only if the shock speed s satisfies the Rankine-
Hugoniot (RH) condition:

s = () = 1) = ), (112)

Uy — Uy

(In this case it is even the unique “entropy solution”, see Theorem 1.13.)

Proof. Let ® € C}(R?). u =const, except on x = st. =

00 0 st e’}
//uq)tdxdt:/ /uCIDtdx—l—/u(IDtdx d¢
0 R 0 oo st
e’} st
= / (8t / udPdx — su(st — 0,t)D(st, t)
0 —00

+ 0, / udPdx + su(st + 0,t)P(st, t)) dt

st
e’}

=— /u(x,O)CI)(x,O)dx — s(u; — ur)/é(st,t)dt.

R 0

11



1 Traffic flow models — hyperbolic conservation laws

- e st
//f VD, dwdt ™ 0/(—4 F(uw),®dx + f(u(st —0,t))®(st, )

0

- /f(U)x<I>d:c — f(u(st+0,t))<1>(st,t))dt

o0

0

Hence

7/(1@% + f(u)®,)dzdt = _/Uo(m)@(x,O)dx7

R

follows if and only if (1.12) holds. |

Remark 1.6. Weak solutions of (1.7), (1.10) are not unique! Additionally to (1.11) there
are more, e.g. consisting of 3 shocks (see exercises; cf. also Theorem 1.13).

Generalised Rankine-Hugoniot condition for uw not piecewise continuous and s not con-
stant:

S(t) _ w/@) _ f(ul(t? B f(ur(t)) (1'13)

w(t) = ur(t)

with () = lim u(z,t), u.(t) = lim wu(z,t
t) =t (1), e lt) =l ().

Example 1.7. Let f(u) = u?/2,u; = 0,u, = —1.

N 1u? — u? 1
S = — [ —
2 U — Uy 2
Characteristics see Figure 1.3 [

Case 3, u; < u,: (1.11) is here still one weak solution:

12



1.2 Scalar hyperbolic conservation laws

Tr = st t

moderate

density, traffic jam
moderate

(pos.) speed

AN :

w =0, = Pmax/2,V = Umax/2 U = —1, pr = Prmax, v =0

Figure 1.3: left end of traffic jam at x = st. Characteristics are not vehicle trajectories.

t
T = st

0

1
Characteristics of (1.7) for f(u) = u*/2,u; = 0,u, = 1,5 = 3

Solution is “instable” because characteristics begin in the shock curve. “Newly generated”
information, which is not contained in ug, is transported away from the shock.

Further weak solution of (1.7), (1.10):

u; ,ox < fl(u)t
wple,t) = 3 ()1 (3) . Pt <a < (114
U, , x> f(u)t

13



1 Traffic flow models — hyperbolic conservation laws

z = f(w)t z = f'(u)t

Characteristics of rarefaction wave uy for f(u) = u?/2,u; = 0,u, =1, (f')71(¢) = &
ug(z,t) = 7 for 0 <o <.

7 even infinitely many weak solutions!
Solution concept is so weak that uniqueness was lost.

Question: which is the “correct” or physically relevant solution?

2 possibilities: first approach with entropy conditions:

Definition 1.8. A weak solution v : R x Rt — R of (1.7), (1.10) satisfies Oleinik’s
entropy condition if, along every curve of discontinuity x = 1(t), the following holds:

F) = F@) _ o fu(t) = F(v)
v T (1.15)

Vit € RT, Vo between w(t) and u,(t).

Rem: Solutions without discontinuities satisfy (1.15) trivially. (1.15) is also used for non-
convex f.

14



1.2 Scalar hyperbolic conservation laws

f(u)
S~ =
f } } u
Uy v Uuj
RH-condition (1.13) implies
D) — f(p) (1.15) _
o(v) == Ju) = J(v) > Y =s R ) = Jlur) = o(uy) Vv between u; and u,..

Uy — v Uy — Uy

~———
A in v, since f/'>0
Due to the monotony of o(v), o is maximal at v = u, if w; < w, and minimal if w; > w,.
= w > u, (for [ >0)

In Case 3 (u < u,), the shock-solution (1.11) does not satisfy the entropy condition. For
ug from (1.14), the entropy condition is trivial because uy is continuous.

For v — w, in (1.15): Propagation velocity of characteristics satisfies the Lax entropy
condition:

flw) — flur)

Uy — Uy

> f'(u,), since [ > 0.

fi(w) >

Interpretation: Characteristics have to run into the shock from the left and right sides
and stop there, i.e., the “mathematical entropy”, or “information”; or range of w(.,t) de-
creases with time (cf. second law of thermodynamics; physical entropy | = - mathematical
entropy| increases there).

Second approach with entropy functions / viscosity solution:

Assumption: (1.7) is just an idealisation of the diffusion equation

u+ f(u)y = etyy, xE€R,E>0 (1.16)
with (small) € > 0. (1.16) has a unique smooth solution u°.
Convention: The limit function u := liné u® shall be the physically relevant solution,
e—

viscosity solution.
Aim: Find a condition (only) on weak solution u such that it represents this limit.

15



1 Traffic flow models — hyperbolic conservation laws

Definition 1.9. The pair of functions n € C*(R) and ¢ € CY(R) are called entropy and
(corresponding) entropy flux, if n” > 0 and if it holds for all classical solutions u of (1.7):

n(u) +v(u), =0, zeRt>0 (1.17)
Rem: This implies o' = f'n'.
Assumptions for the vanishing viscosity limit (VT > 0):

u® =28 u pointwise a.e. in R x (0,7),

w8 win LE (R x (0,T)),

||| Loe rx(0,7)) < comst. V0 < e < 1,

17" (u®)ug || 1 mxo,7)) < const. VO < e < 1.
Then (without proof): u solves (1.7).

Modification of the entropy equation (1.17) for discontinuous u:

Multiply (1.16) by 7'(u®); choose 1 such that ¢ = f'n:
N(u)e + Y (u)e = en'(u)ug, = e(n' (u)ug)e — en'”(u”)(ug)*;

multiply by ® € C3(R?),® > 0, integrate over R x (0, 00):

/ / [0 + Y(°),] s (118)

= —8// Ju, @ dxdt—s//n"(ug) (us)*® dadt
0 >0

>0
e—0

< el (u)ug |l L 0.0) | Pall Lo R0,y — 0 with T = T(®).
As ® > 0 is arbitrary, the limit u := lim u® satisfies:

= nu)+Y(u), <0 (for smooth solutions). (1.19)

For weak solutions the following holds (from inequality (1.18) after integration by parts
in z, t):

// W), + (u)D,] dedt > —/n(uo(:c))q)(x,O)dx ¥ € CL(R?), B > 0. (1.20)

R

Rem: For the (direct) limit € — 0 on the left hand side of (1.18) our assumptions are not
strong enough to obtain (1.19). One should therefore take the limit in the e—analogon of
(1.20). After reversing the integration by parts one can conclude (1.19).

16



1.2 Scalar hyperbolic conservation laws

Definition 1.10. Let u : R x Rt — R be a weak solution of (1.7). u is called entropy
solution if the inequality (1.20) holds ¥ strictly convex entropies n and their corresponding

entropy fluzes i .

Rem: 1) For shock waves, the entropy inequality (1.20) is equivalent to Oleinik’s entropy
condition (1.15) (see Th. II.1.1 in [LF]).

2) By [DeLellis-Otto-Westdieckenberg, 2003|, for this equivalence one strictly convex n
suffices in Definition 1.10.

3) The rarefaction wave uy is an entropy solution; it even satisfies the entropy equality
(1.17) a.e. (as ug is continuous, 3 weak derivative) resp. (1.20) with “="

4) Entropy solutions are in general not reversible in time: a shock Would become a rar-
efaction wave (and vice versa).

2
2

Example 1.11. Let f(u) = %,n(u) =u? = Y(u) = gu?’ (as ' = f'n'). Let ® €

C3(R?),® > 0.

For w; < u,, the shock wave (1.11) is no entropy solution, as we have for (1.11) (with
U+ Uy

5= ):

r 2

// u? O, + Zud @, | dedt
N~ 3

0 R

=n(u) —~
=t(u)
00 st ©
Tz / {@ / w?®dx — suid(st,t) + 0, / u?®dx + sui®(st, t)
0 — oo st

2 2
+ gu?q)(st, t) — §u§<1>(st, t)} dt

u; + Uy

—/%@%@mm— wﬂmﬁ/m%om

R SN—— 0

2 o
g /‘I) St t
0
_ /%@)mxwm+ m—m3/wﬁﬂ&
——’ ——
R =n(uo) 0 >0
> —/T](uo( )N)P@(z,0)dz & u > u,. n
R

Conclusion: (1.11) satisfies the entropy inequality (1.20) exactly for u; > u,.

17



1 Traffic flow models — hyperbolic conservation laws

Similarly to the example for u; < u, we have: Only the rarefaction wave us is an entropy
solution.

Summary:

Theorem 1.12. Let f € C*(R) with f” >0 on R.
(1) Let u; > u,:

u o, x<st with Sz:f(“l)‘f(“r)

U , x> 8t Uy — Uy

= u(x,t) = {
is a weak entropy solution of (1.7).

(2) Let w; < u,: ug from (1.14) is weak entropy solution of (1.7).

Theorem 1.13 (Kruzkov, 1970). Let f € C*(R),uo € L*(R) N L=(R).
= 3! weak entropy solution of (1.7).

Proof. difficult, [LF]|, [Wa]; for f uniformly convex see also §3.4.2 in [Ev]. |
w2
Summary for f(u) = X

(45 _> 077

u + uty =0

U + UUy = EUgy

| 3 1
A class. solution 3! class. solution for ¢t < t.

for all t>0 4 weak solutions

for t >t (satisfy RH-
jump conditions{;
but they are not unique

~+entropy condition
= unique
weak solution

e—0
us(z,t) u(z,t)

References: [Ji] §2, [LV] §3, [Ho| §5.

18



1.3 Traffic light problem

1.3 Traffic light problem

LWR-model for u = 1 — _2"_.

pmax

2
ut—i-(%) —0 , z€R

1C:

(z) = p>0 , x<0
POREI =1 ¢ 23>0

Ti=1—25/pmax € (—1,1)

(1.21)

Traffic light at = 0 turns red at t = 0; traffic light phase has duration w > 0.

Question: Does the traffic jam dissolve during the green phase [w, 2w)?

Step 1: Red phase (0 <t < w)

Solve (1.21) on (—o0,0) with boundary condition (BC) u(z = 0,t) = —1...

traffic light.
Solution from (1.11) for 0 < t < w:

u , X <st n "
u U, U-—
u(z,t)=¢ -1 , st<ax<0; 5= 12 == <0
1 , x>0

Step 2: Green phase (t > w)
Solve (1.21) on R with IC

u , T < Ssw
u(z,w)=¢ -1 , sw<x<0
1 , x>0

i.e. 2 Riemann problems:

a) Asu > —1: shock ¢(t) = st,s =

2
b) As —1 < 1: rarefaction wave, originating in (0,w)

= Solution for t > w:

u , T <st
(2,1) -1 |, st<ax<w-—t
u(x,t) =
2L w—t<r<t—w
t—w — —
1 , T>t—w

models red

19



1 Traffic flow models — hyperbolic conservation laws

w 2w
correct as long as st < w —tort < t; := = — (t1 < 2w as well as t; > 2w
s+1 u+1

possible).
Step 3: Green phase (t > t;)
At ¢t = t; shock and rarefaction wave interact.

Solve (1.21) on R with IC u(z,t;) and generalised RH-condition for shock starting from
(Stl, tl)I

, 1
s(t) = ¢'(t) = lu(¥(t) +0,1) + u(y(t) - 0,¢)]
1w
—§(m+u), t >t
i.e. linear ODE for ¢ (t) with IC ¢(t;) = st; = wg; 1
U
Solution:
V() =a(t —w) =Vt —wyJw(l —u?), t>t
(t) = u( ‘ ) \ w( ) 1
for o300
2 cases

a) u < 0 (high traffic density): = t; > 2w, only relevant for longer green phases.

t—o00

(t) — —oo = J shock Vt.

<

t—o00

It moves to —oo with speed ¢'(t) — u;

-1
hence reduction of shock speed from s = UT < 0 to w with |a| < |s].
w A+ u(t) WA+ u(t)
2 2
b) @ > 0 (low traffic density): = #; < 2w

% %: Jump distance u — u, (t) =5 0

Because ¢/ (t) =

W(t) =5 00, i.e., shock curve 1(t) moves in positive z-direction.

¥(tz) = 0 has unique solution t, = w/u?:

Traffic jam or disturbance behind traffic light completely dissolved.

Traffic disturbance (behind the traffic light) dissolves during green phase [w,2w) < ty <
2w, l.e. U > 1/\/§ or

— pmax 1
< po = 1 ——) = 0.146 ppax,
P = pPo 9 < \/5) P

20



1.4 Numerical methods

uUu=1u
uUu=1u
U="u T = st u=1

Figure 1.4: Shock curve for w > 0

independently of duration of green phase!
For p > pg: traffic jam or disturbance grows with t.

Summary:

® 0 > pmax/2: already one red phase disturbs traffic permanently, even if afterwards
traffic light stays green forever.

e (1 —1/v2)pmax — P < Pmax/2: traffic jam accumulates with time, but vanishes after
traffic light stays green.

e 5 < (1 = 1/v/2)pmax/2: influence of red phase (behind traffic light) vanishes before
end of green phase.

e current research of traffic modelling includes: stochastic models, interaction with (par-
tially) automatic vehicles

References: [Jii] §3

1.4 Numerical methods

1.4.1 Linear advection equation

e only finite difference methods, almost always explicit

21



1 Traffic flow models — hyperbolic conservation laws

e for linear advection equation (with a > 0):

u+au, =0, xR t>0
u(z,0) = up(x), xe€R.

For ug € Li..(R) the explicit weak solution is
u(z,t) = uo(z — at) .
e here: uniform mesh (z;,t,) with
xj=jh (je€Z) , t,=nk (neNy), h, k>0
Approximation u} ~ u(x;,t,)
Definition 1.14 (Difference quotients).

Dtv, = Yj+1 — Y5

=2 J ... forward difference

x 7] h
- Vj —Vj—1 .
D, v; = % ... backward difference
Vjt1 — VUj-1 .
DYy, = L ——2— ... central difference
2h
D2y, = Vitl — 2V + v
A

h2

1
We have DVuv; = é(DI + D_ )v; and by Taylor’s formula:
Dfv; =o'(x;) + O(h) (for v € C*(R))

D%v; = v'(z;) + O(h?) (for v € C*(R)).

second difference

(1.22)

(1.23)

Replacing derivatives in (1.22) by corresponding difference quotients gives finite difference

scheme.

1st idea: central scheme:

n+1 n n n
u; T —u” ul  —u
+1 —1 .
J . — g2 I n>0,j€7Z;
k 2h
or
ak
n+l _ ,n n _ ,n
Uy = Uy 2h(“j+1 ui_q)-

— explicit scheme with numerical stencil:
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1.4 Numerical methods

n+1

Jg—1 J J+1

Disadvantage: method is unstable, i.e., develops (artificial) oscillations (— Exercises).

2nd idea: implicit scheme:

n n+1 n+1

7‘1+1_u'

u

%:_a%h]_l’ ,TLZO,]GZ,
or
ak n+1 n+1 ak n+1 n

Disadvantage: in each time step a (tridiagonal) system of linear equations needs to be
solved.

Numerical stencil:

j—1 J Jj+1
. «  n+l
] n

3rd idea: Lax-Friedrichs scheme:
Approximation of t-derivative (first for u(z,t)):

1 1

z (u(x,H— k) — §[u(:ﬂ +h,t) +u(x — h,t)]) :
hence

uj+1 =5 (uly +uly) — o (Why—uly), n>0,j€Z (1.24)

Numerical stencil:
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1 Traffic flow models — hyperbolic conservation laws

n+1

Jg—1 J Jg+1

k
Advantage: (conditionally) stable (for ; small enough — Exercises)

Disadvantage: Solution is (strongly) smoothed out.

V schemes: exact solution (1.23) does not satisfy difference scheme. Hence:

Definition 1.15. Inserting the exzact solution into difference scheme U™ = H, U™ gives
local truncation error — as residuum.

Notation: U™ = {u}, j € Z}; the operator Hy is the propagator of the scheme for time
step size k.

Example: local truncation error for Lax-Friedrichs scheme (1.24):

—%( z,t+ k) — Hi(u(., t);2))
%( (4 8) = glate + ) + (e = 1.0))
+i [w(z + ht) — u(z — h,t)].

Leading factor % is important for the right order of the scheme; the global order is one
order less than the local order.

u(z,t+ k) is the exact solution at time ¢ + k; Hy(u(.,t); z) is the result of one numerical
step, starting with the exact solution at time t.

Taylor expansion in ¢, z around the continuously varying argument (z,t) for u smooth
enough:

1 1 1
3
+ o (uh+ O(h )
= + +1 k — h2 +O0(k*) + O i +O0(h*)  (1.25)
= Ut AUy 5 Ut k’ k .

=0
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1.4 Numerical methods

From (1.22):  uy = —aUy = a*Uyy -

Let 7= const (henceforth our standard assumption).

=  Ly(x,t) = g <a2 - (%) ) Uge(z,1) + O(R?) = O(k), (1.26)

hence
|Li(z,t)| < Ck Yk < ko
V(x,t), because C is determined by ||(0)zz || Lo (®)-
— “First order method (in k)”; numerical solution gets better for smaller £ > 0.

Definition 1.16. A method is consistent if | Ly(.,t)|| L1 ) — 0 for k — 0 (V fived t > 0).

2 approaches for better match between PDE and numerical scheme:
1. (different) scheme of higher order for the given PDE (see 6. idea);
2. same scheme (1.24) but modified PDE (depending on h and k!).

From (1.26): Lax-Friedrichs is even method of second order for the modified equation:

k(. [(h\’
ut—i-aux:—g il Uge T E€R,E>0. (1.27)

(. J
'

Here we are looking for those modified equations which, for the considered scheme, are
solved better than Equation (1.22). Modified equations are not uniquely determined.

(1.27) is an advection-diffusion equation if D > 0 (for D < 0 it would be backwards
parabolic and unstable!). Hence the following has to hold:

> (M) jalk . y
a® — z <0 & S < 1... stability condition | .

Hence: (max.) numerical speed of propagation % has to be > real speed of propagation
|al.

For k — 0 and # =const, (1.27) formally converges to u; + au, = 0 (cf. vanishing viscosity
limit in (1.16)).

The Lax-Friedrichs scheme for (1.22) hence implies artificial diffusion (with constant
D > 0) and thus prevents discontinuities and oscillations.

Stability means that error propagation remains bounded (for k£ — 0).
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1 Traffic flow models — hyperbolic conservation laws

Definition 1.17. For a given norm the numerical method Hy s called stable if VT :
3C > 0 and kg > 0 such that:

(K" <C Vnk<T,0<k<k

eg for [Hel| <1+ak = |[[(Ho)"]| <1+ ak)" < e < el

Definition 1.18. A method is convergent, if u? flin u(zj, ty) Vj, n.

Theorem 1.19 (Lax equivalence theorem; fundamental theorem of numerical analysis).
For linear consistent difference methods: stabil < convergent.

4th idea: Downwind scheme:

Aim: reduction of numerical diffusion (in comparison to Lax-Friedrichs schema)

ak
-

n—f—l

U;

=u; — ul g — u?) [for @ > 0, otherwise exchange (1.28), (1.29)]  (1.28)

Numerical stencil:
> n+ 1

characteristic,
a>0

exact solution (1.23): wave travelling to the right

Disadvantage: scheme not useful (unstable), because information is transported into the
wrong direction.

5th idea: Upwind scheme:

n n ak n n S
utl = — T(u] —u} ), n>0,j€Z  [fora> (] (1.29)

Numerical stencil:
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1.4 Numerical methods

n+1

n+1

~N

] n \\
J \j+1 AN

possible characteristics for 2 values of a < 0

Advantage: no oscillations; less artificial diffusion (smaller D) than Lax-Friedrichs.

local truncation error:

Ly(x,t) = % (u(a:, t+k)—u(zt)+ % (u(z,t) —u(z — h, t)))

aylor k h
Tayl % <a — E) Uge + O(h?) + O(K*) ... 1st order method (in k)

Modified equation of second order (with k/h = const):

k h
Uy + auy, = —% (a — E) Uy (1.30)
——— —
=D
ak
(1.30) well posed < D>0 < 0< W <1. (1.31)
This is an indicator for the stability of a numerical scheme, but no proof.

(1.31) is called Courant-Friedrichs-Levy (CFL) condition; here it is a stability condition

(cp. to the slope of characteristics in numerical stencil).
ak

typical value in practice: §* = 0.8
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1 Traffic flow models — hyperbolic conservation laws

6th idea: Lax-Wendroff scheme (for a € R):

Derivation via Taylor series:

2
u(z,t + k) =u(z,t) + ku(x,t) + %utt(a:, t) + O(K®);

use
_ _ 2
Up = —AUyg, Ut = A Ugy

and central and second difference approximations for w,, t.,:

= uj+1 =uj — ﬁa(uﬁl —uj_ )+ 2—}12a2(uj+1 —2uf +uj )
Numerical stencil:
n+1
® _ . n
j—1 Ji Jj+1

CFL condition: % < 1.

Lax-Wendroff is second order scheme. The modified equation of third order is

h? [k?
Ut + AU, = ECL (ﬁa2 — 1) gz - (132)

which is a dispersive equation; no numerical diffusion.

numerical solution for discontinuous data:

1, <0
e.g. up(zr) = 0 =0

Phenomena:

e 1st order schemes smooth the discontinuity.
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1.4 Numerical methods

e 2nd order schemes develop oscillations (cp. Gibbs phenomenon).

e All (discussed) schemes calculate the correct "shock" speed.

e Order of convergences is reduced from 1 to X resp. from 2 to % (consider L'-error,

2
not L*>-error)

Referenzen: [Ji] §4, [LV] §10.

1.4.2 Nonlinear conservation laws

Consider the example: Burgers’ equation or LWR-model:

wtuu, = 0, zeR,t>0
Ve 2 e (133
1st idea: modified upwind scheme
e.g. for uy > 0:
n+1 n k ne,n n .
U = Uy = (uf —uj_y),n €Ny, j €EZ (1.34)
1 ) <0
For u = ’ ] we have: v =ul =u?2 = ... Vj € Z
0, j>0 LT

= numerical solution converges to u(x,t) = ug(x) !
But this is not a weak solution of (1.33) or of u; + 1(u?), =0!

For other Riemann problems: numerical method gives moving shock wave, but with wrong
velocity!

= method useless.

Problem: scheme (1.34) discretizes (1.33), but not Burgers’ equation in conservation form:
1

u + = (u?)y = 0. See exercise: u; + 3(u?), = 0, (u?); + 2(u®), = 0 have different weak

2
solutions.

Definition 1.20. (a) A difference scheme of the form

u' ™ =" — Z[F(u

J J h ;’L—p’ e 7u?+q) - F(“’?—l—p? s 7u?_1+q)] (135)

with a numerical flux function F : RPT9H1 5 R s called conservative.

(b) A conservative scheme is called consistent (with uy + f(u), = 0), if F is locally
Lipschitz continuous and F(u,...,u) = f(u) Yu € R.
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1 Traffic flow models — hyperbolic conservation laws

simple case: p =0,qg =1

k
— u}‘“ = uj — g[F(u?, uiyg) — Fuf_y,ulb)] (1.36)
conservative scheme = discrete conservation of mass (due to telescopic sum in j) =
correct speed of (smoothed) shocks.

Interpretation of (1.36):
weak solution of u; + f(u), = 0 satisfies (see (1.9))

Tjt1/2 Tjt1/2
1
7 u(z, ty)de = 7 u(z, t,)dx

Tj—-1/2 Tj—-1/2

tnt1 tnt1

k
— %/f(u(xjﬂ/z,t))dt—%/f(u(%‘1/2vt))dt (1.37)

with cell centers ;.1 1= (j & 3)h.

1
2

tn—i—l

i3 Tj Ti+s

Interpret u! as approximation for cell average of u(z,t):

Tj+1/2
uj ~ Uy = 7 u(z, t,)dz
Tj1/2
and F'(u},u}, ;) as approximation of mean flow through ;.1 during (¢,,tn11):
tnst
Pl i) ~ % / Flu(a,,a,0)dt
tn

= scheme (1.36) follows from (1.37) .

Example 1.21. Upwind-scheme for Burgers’ equation:

uith =g - 7 {—(UV — 5 (] 1)21 , n=0,jeZ

for uj >0 Vn,j.

F(uj,uj—y) = ju3; first order scheme. O
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1.4 Numerical methods

Example 1.22. Lax-Friedrichs scheme:

k n n
%(f(uj—i-l) - f(uj—l))>

1
ujtt = 5 (uf oy Fujyy) —

J 2
h

F(uy t541) = ity — ga0) + 3 (7a5) + Flug),

First order scheme, conservative, consistent [l

Example 1.23. Lax-Wendroff scheme:

k
U?H = U? ~on (f(u?H) - f(U;L—1))

2

Qk—hg [f’(U?+1/2)(f(U?+1) - f(u;"”)) - f/(u?—l/Q)(f(u?) - f(U?—l))}

with u;?i% = (uf +ulyy)/2.

+

Scheme conservative, consistent, second order. [l

Convergence:

vague idea: numerical solution from Examples 1.21-1.23 converges to a weak solution of
ut + f(u), =0 (for h,k — 0).

Problem: weak solution is not unique in general!

Definition 1.24. Total variation of a function v : R — R:

N
TV(0) = sup Yy [v(&) —v(&-1)],
j=1
Supremum over all subdivisions —o0 =&y < & < ... <&y =0 of R .

For v € CY(R) : TV(v) = / |V (z)|dx
R
Necessary for TV (v) < oo : Flim, 1 v(2).

Theorem 1.25 (Lax-Wendroff). Let {w(z,t), | € N} be a sequence of numerical so-

lutions, calulated via a consistent and conservative method on a mesh sequence with

hy, K Zyg (u; is e.g. a constant extension of uy on the cells.)

Suppose there is a function u(x,t) such that:
(1) w 23w in LY(Q) VQ = (a,b) x (0,T),
(2) VT > 0:3R >0 with

TV(u(.,t)) <R YO<t<T, VIeN.
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1 Traffic flow models — hyperbolic conservation laws

= u(x,t) is weak solution of u; + f(u), =0
Proof. |LV] §12. |

Remark 1.26. Theorem 1.25 does not imply the convergence of the numerical approxi-
mation sequence u;; is also does not imply that « is the entropy solution.

Theorem 1.27. Additionally to the assumptions of Theorem 1.25 suppose: (n,v) €
C?*(R) x CY(R) with " > 0 is one entropy / entropy flux pair (see Def. 1.9). Let ¥ :
RPHatl — R be a numerical entropy fluz function, consistent with ¢ (i.e., ¥(u,...,u) =

Y(u) Yu € R) and
n(u?“) < n(uj) — 7 [\I/(u?_p, . 7U?+q) — \I/(u}‘_l_p, . ,u;‘_Hq)} Vi, n (1.38)
u(z,t) (from Theorem 1.25) satisfies the (weak) entropy inequality (1.20):

// W), + b(u)d,] dedt > —/n(uo(a:))CI)(x,O)dx Vo € CL(R?), B > 0. (1.39)

R

Hence, u is also entropy solution.
Proof. [LV] §12. |
Remark 1.28. 1. Compare (1.38) with entropy inequality (1.19):

2. By |DeLellis-Otto-Westdieckenberg, 2003|, already one strictly convex 7 is enough
for entropy solutions in Def. 1.10.

3. Condition (1.38) holds e.g. for the Godunov scheme, a special version of the upwind
method (details in [LV] §13, [Jii] §5).

References: [Ji] §4, [LV] §12.
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2 Fluid mechanics

2.1 Euler equations
Consider the flow of a fluid (=liquid or gas) in the domain Q C R?, d = 2, 3.

particle trajectory x(t; X), t > to

Q

particle X

) > 0... mass density

=
8
~

t)... velocity (vector) field
p(z,t) ... pressure

e here: description by Fuler coordinates, i.e., x is a fixed point of space, through which
different material points of the fluid flow.

e alternative description by Lagrange coordinates (mostly in §3): X € € is a fluid ma-
terial point (or particle), ¢ — x(t; X') with x(tp; X) = X its movement or trajectory.

Aim: derivation of the 3 Euler equations:

(a) conservation of mass:

consider (arbitrary) temporally fixed region R C €2 with smooth boundary OR and outer
normal vector v:

Balance equation:

(x,t)dr = — /pu -vdS

— |
dt
R OR
N 7 >
v VvV
total mass in R mass flow through
surface OR
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2 Fluid mechanics

divergence theorem = / pr +div(pu)de =0 VR C 2
R

= |pt+div(pu) =0,z € Q| ... continuity equation (2.1)

(b) conservation of momentum:

from Newton’s second law: mass X acceleration = force,

hence change of momentum is due to external /volume forces and surface forces
R C Q... arbitrary (fixed) domain

momentum of mass in R: / pudx

R

e external /volume forces: / of dz  (e.g. gravitation, electromagnetic)

R force density,
given vector field f

e surface forces on OR with outer normal v: stress vector T = 7(x,t,v)

normal component
(normal stress)

IR

tangential component
(shear stress)

One can show:
1. 7(x,—v) = —7(x,v) ... local equilibrium of stress (from Newton’s 3rd law)
2. 7 depends linearly on v, so 7(z,v) = T(x) - v;
matrix 7' ... stress tensor (from conservation of momentum)

3. T =T", rotation invariance (from conservation of angular momentum)
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2.1 Euler equations

total surface force:
/T(x,t, v)dS = /T(:z:,t) L pdg 4 theorem /div Tdzx = /V -Tdx
OR OR R R

= force density on fluid: pf + V- T

Let X € Q be a particle; z(t; X) = (x1(t), zo(t), 23(t)) its trajectory.
Speed of particle X: @(t) = u(x(t),t) [The label X shall be skipped in the sequel.]

Acceleration of particle X:

y d
aft) = (1) = Su(a(t). 1
. . . Du
= Uy, T Uy, To FUz, Ty tup=u+ (u-V) u=—,
~— —~— ~— —— Dt

=u1 =u2 =us3 __scalar
diff. operator

D
with material derivative Di =0 +u-V

It describes the temporal rate of change of an z- and ¢-dependent physical quantity (e.g.
temperature) in a volume element which is transported in a flow field with speed w. It
hence describes the rate of change in the reference frame which moves with the flow.

Ex.: Let the temperature distribution (in 1D) change only because it is transported by

the flow, i.e., T(w,t) = TO(I —ut) = DD—f = 0.
Newton’s second law = balance equation for densities:

D
= .T
PO pf +V

add up; + udiv(pu) =0

=o( pu )+ udiv(pu) + p(u - V)u =pf+V.-T
v N ~ J/
mﬁféltlegilg;lm =V-(pu®u)...V from momentum flux density
= |0(pu) +V-(pu®@u—T)=pf| ... momentum balance equation (2.2)

Special case: inviscid fluid — no shear stress

7(z,v) = —p(x)v, p ... pressures = T = —p(z)[,V-T = —Vp

= O(pu) + V- (pu@u) + Vp = pf (2.3)
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2 Fluid mechanics

Rem.: no tangential forces = rotation cannot be started/stopped.

(c) conservation of energy

Balance: change of energy = power — heat loss
——
force - velocity.
E densit [ul +
ner nsivy: —_—
ergy demsity: p| = e
~~ internal energy
kin. energy
d [ul* Jul?
- — te|dr=— —+e|u-vdS
dt / P ( 2 / P\ 2
R OR
energy ﬂux‘ghrough OR
: d : — h dS VR CQ
+ / p f-u dr+ / ( Z\ow’e% ) C
R ESZV i; oR due to t}geciltg%ugR
volume forces surface forces
/(T-u—h)dS:/u-(T~u—q)dS;
OR OR

with h(z,t) =v-q(x,t); g ... heat flux density (=vector)

Divergence theorem = energy balance equation:

%[ﬂ(gwte)]+div[pu<%+e)+q—T-U]zpf-u (2.4)

(2.1), (2.2), (2.4) ... general balance equations; so far these do not incorporate physics
resp. material properties, but they are the starting point for Fuler (with T'= —pl) and
Navier-Stokes equations (in §2.2). In total we will examine 2 x 2 models: inviscid / viscous
X (in)compressible.

Special cases:

a) Fourier’s law of thermal conduction: ¢ = —kVT, k ... thermal conductivity, T
... temperature

b) inviscid fluid: 7' = —pI = div(T" - u) = — div(pu)
¢) inviscid ideal gas:
T=—-pl,p= pRT, R ... gas constant

frequently: e = ¢/ T + const (for polytropic gases), ¢y ... specific heat with constant
volume
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2.1 Euler equations

d) inviscid ideal fluid with f =0,¢ = 0:

compressible Euler equations (for inviscid ideal fluid):

pe +div(pu) =0
Oi(pu) + V- (pu@u)+Vp =10
O [,0 (%—i—eﬂ + div [pu (%—l—e) +pu] =0

This is a hyperbolic conservation law: 5 equations for 6 variables (p,u,p,e). One
needs one additional (physical) constitutive equation, e.g. e = ¢y T'+const, p = pRT.

e) inviscid incompressible fluid with f = 0,¢ = 0:

Flow u(z,t) is incompressible if V domains R(t) C €2, which move with the flow, the
following holds:

vol (R(t)) = / dz = const in t.

R(t)

This holds if and only if divu = 0, because:

1D-illustration of (*): 2 [*W dx = b(t) — a(t) = u(b(t)) — u(a(t))

dt Ja(t)
(detailed proof of (*): [CM] §1.1).
Incompressibility of good approximation for “small speeds” (e.g. mach number Ma :=
|u|/c < 0.3, with ¢ ... speed of sound).

D
Additionally suppose D_(; =0 (e.g. e = const):

incompressible Euler equations:

pr + div(pu) =0
Oi(pu) + V- (pu@u) +Vp =10
divu =0

5 equations for 5 variables

energy equation is satiesfied “automatically” (— Exercises).

References: [CM] §1.1
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2 Fluid mechanics

2.2 Navier-Stokes equations

Aim: Derivation of NS equations

Shear stress in fluid (=gas or liquid) depends only on local changes of velocity u(zx), i.e.,

n— —
Ox 0% ) j12

U2

2

Fluid at rest (i.e. u = 0) or in homogeneous movement (i.e. v = const): no shear stress, 7
has only normal component:

7(x,v) = —p(x)v, p... pressure, = T = —p(x)l

in general: T'=  —pl +o0o
— ~—~

normal stress

Matrix 0 = (0y;)i j=12,3 - .. viscous stress tensor (shear forces due to friction, viscosity)

Assumptions on o — as function of g—;:

0
l.o <8_u> is linear, i.e. Newtonian fluid (Ex.: water, oil):
T

3
oij(z) = Z Cijklg_l;;(x) (3* = 81 coefficients)

k=1

non-Newtonian examples: ketchup, shampoo, blood, starch suspension (non-constant
viscosity).
2. fluid is isotropic, i.e., A distinguished direction

= 0 is invariant under (rigid body) rotations, i.e.

o|\U- Ou Ul)=U-o Oul . U~! V orthogonal matrices U (2.5)
oz Oz

Fluid crystals are an example of anisotropic fluids.

3. o is symmetric (follows from conservation of angular momentum)
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2.2 Navier-Stokes equations

From (2.) we deduce:

ou  Ou’

i 1

) ... deformation tensor (orstrain tensor)

Proof. 0 = 0 for rotations with constant angular velocity; e.g. rotation around zs-axis:

~ T 8 __ 0 1 0
U = w(—xg,x1,0) ,%—w< 0o

@
oz

analogously for x;-, xe-axis: Cjjo3 = Cjz2, Cijis = Cijar.

0(5-)=0=Cijor =Cijiz ; 4,j=1,2,3

= 045 = Cij11(u1)ay + Cijoa(ua)zy + Cijzsz(Us)as
+ Cijia((u1)ay + (U2)ay) + Cijiz((U1) ey + (u3)e,)
+ Cijaz((U2)zs + (U3)1,),

hence o = o(D). [ |
e 0 = ¢ is a linear, isotropic (i.e. satisfying (2.5)) function of D. One can show that o, D
commute® (cf. theorem of Rivlin-Ericksen, [EGK] §5.9).

& o0, D simultaneously diagonalisable

= 0, (=eigenvalues of o) are linear functions of d; (=eigenvalues of D)

Due to rotation invariance (2.): o; is symmetric function with respect to index permuta-
tions

=0, = Ady +dy + d3) +2ud; ; i=1,2,3.
—— ——

=Sp D=divu

Transforming back to basis of o, D:

= |0 = Adivu)! +2uD (2.6)

Only 2 coefficients left; interpretation of A, u:

Example 2.1. isotropic expansion: u = cx,c > 0
divu =3¢c,D =cl
stress tensor:

T=—-pl+o=—pl+ Adivu)l +2uD = —(p— (3X\+2u)c)l
—_——

effective pressure
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2 Fluid mechanics

NS
N | S

€

/

/ N

a = A+ %u >0 ...pressure viscosity resp. 2nd viscosity coefficient

— effective pressure is lower than thermodynamic pressure.

Example 2.2. Shear flow v = (kx3,0,0)", x = const, p =0

1 0 ~ O
:>divu:O,D:§ k 0 0
0 00

010

=T =\Ndivu)[+2uD=pux | 1 0 0

0 00

T2
1

Stress vector 7 =T - v = ur(va,v1,0)"
T is pure shear force.

w >0 ... shear viscosity, 1st viscosity coefficient

O

I'M.E. Gurtin, A short proof of the representation theorem for isotropic, linear stress-strain relations; J.

of Elasticity 4, 1974
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2.2 Navier-Stokes equations

1 X2 0 X2
vV = 0 | vV = 1 v
0 | 0
I I—T
L e ] L _ _ -
.
T1 T1

1
=0= pa(divu)l + 2 <D — g(div u)[)

normal component of stress ~ -

~
tangential component of stress

Sp(D — 5(divu)l) =divu — sdive-3=0

Inserting T = —pl + o in balance equation of momentum (2.2):

V.-T=-Vp+V(Adivu) + 2V - (uD)

= compressible Navier-Stokes equations:

pt +div(pu) =0

O(pu) + V- (pu®@u—2uD) +V(p— Adivu) = pf

Oy [,0(%—1—6)} + div [pu (%—i—e) +q—T~u} =pf-u
5 equations for 9 variables (p, p, u, e, q)
special cases:

a) A=pu =0 = compressible Euler equations

b) A = const, u = const (henceforth assumed):

u  [ou\' L0 [Ou;  Ou
(QV-D)Z‘—<V'<%+<%) ))._;8% (a$i+axj)

= Oy, (divu) + Ay,

= O(pu) + V- (pu@u) +V(p— (A4 p)divu) = pAu+ pf

¢) incompressible homogeneous fluid: (e.g. water, oil)

divu = 0, p(z,t) = py = const = continuity equation trivially satisfied
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2 Fluid mechanics

42

=-incompressible Navier-Stokes equations for homogeneous fluid:

polus + V- (u@u)]+Vp=pAu+ pof (parabolic for u) (27)
divu =0 '

4 equations for 4 variables (u,p) — closed system

possible boundary conditions: u(z,t) = 0,z € 9§ (no slip condition)

If 4 = 0 (i.e. shear forces, viscosity negligible) =

incompressible homogeneous Euler equations:
polur + V- (u®u)]+ Vp=pof (hyperbolic for u) (2.8)
divu =0 '

possible boundary conditions: u(z,t) - v = 0,z € 0

Solution theory:

in R?%: 3! solution V¢ > 0 for (2.7) resp. (2.8)

in R3: 3! solution for “small times” for (2.7) resp. (2.8). It is not clear whether a
solution exists V¢ > 0.

Problem in R?: there can be turbulences or “chaotic behaviour”; but not in R2.

ideal compressible gas: (e.g. air, rarefied gases)

constant shear viscosity @ > 0

vanishing pressure viscosity: puqg = A + %/L =0
= 0 =2u[D — 3(divu)I]

The rest is analogous to the Euler equations.

homogeneous incompressible “slow” flow:

Let f = 0. If the nonlinear term (u - V)u in (2.7) is negligible:

V-(u@u):(@)u+(u-V)u%O

=0

= Stokes equations (linear for u, p):

{ut = —piOVp + vAu, vy:=pu/po ... kinematic viscosity (2.9)

divu=0



2.2 Navier-Stokes equations

Motivation: let & := x/L, @ := u/U with typical reference length L and reference velocity
U.

= (u-Vy)u= Ufg(ﬂ Vi), vlAzu= I/O%Aja

Disregarding this nonlinear term is OK for UTQ < Vo% resp. for Re := % < 1 ... Reynolds
number (dimensionless)

Rem:

e Typical scales of Vu, Au are actually still missing;

e Only (u-V)u and Au are compared because these “drive” the flow; Vp is only the
response to the constraint divu = 0, see (2.14).

Flows with equal Reynolds numbers allow for scaled (down) wind tunnel experiments.

some viscosity numbers:
air 4 = 1.8 x 10 °Pas
water g = 0.89 x 103Pas
olive oil = 0.8 x 10~ 'Pas

Example 2.3. incompressible, homogeneous, stationary flow between 2 parallel moving
plates (based on Navier-Stokes (2.7)):

Assumptions: f = 0, 2D-flow, infinite plates, no pressure drop in x, hence p = p(y).

ou

520

= divu =0, p = po,

(2.10)

poV - (u®u)+ Vp = pAu
divu =0

Look for special z—independent solution because problem is z—independent:

u(y) = (wi(y), u2(y)) " p = p(y)

divu = 0yuy +0yus = 0 = uy = 0 (due to boundary condition u(z,0) = 0)
~—~

=0
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2 Fluid mechanics

:>V~(u®u):(d\i\;y)u+( wy Ju =0

=0 U161+ugay=0

N 0 = pAuy = pdju,
by = 0

= p = const = po, douy = 0

No-slip condition: u1(0) = 0,u;(d) = U
U T
= u=u(y) = <7y,0>

This is pure shear flow, “planar Couette flow”.

’ U
d
ul@,y)
x
Force on (lower) plate at rest:
Tv)=T v=—py+ ,u%(yQ, v1)" (cp. Ex. 2.2 with %)
Forv=(0,1)": 7= (,u%, —po) " O

Example 2.4. like Ex. 2.3; both plates at rest (i.e. U = 0) with pressure drop p, = —c <
0. (2.10) is still z-independent. = look for z-independent solution. = 1st line of (2.10):

{px = ,u(u1>yy = (Ul)yy = _;%

= u(y) = (iy(d — ), 0) ,p(r) = —cx + 2o

=const

This is a “planar Poiseuille flow” (balance between pressure drop and friction)
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2.2 Navier-Stokes equations

(ev. + turbulence)

Application: measurement of viscosity (in practice: viscometer with 2 concentric cylin-

ders):

pocd?
12p

d
transported mass per time per length = /p0u1 (y)dy =
0

Poiseuille flow is unstable for large Reynolds numbers (i.e. small viscosity); transition to
turbulent flow.

filament of dye

Laminar (viscous) Transitional

TN

——

Turbulent

Figure 2.1: tube flow for increasing Re: transition from laminar to turbulent flow
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2 Fluid mechanics

References: [CM] §1.3, [EGK] §5.9

2.2.1 Helmholtz-Hodge decomposition

Aim: interpretation of incompressible (Navier-)Stokes equations as evolution equations
for u with p as Lagrange multiplier for the constraint divu = 0.

u+ (u-Viu = —piOVp +vAu ,
diveu =0 , 0 (2.11)
u-v=>0 , 00

Physically, the stricter boundary condition u| 50 = 0 would be better, but for the following
(purely analytical) lemma u - v = 0 suffices.

Lemma 2.5 (Helmholtz-Hodge decomposition). Let @ C R? d > 2 be bounded with
0N eC*™0<a<l),weCt(Q;RY). 2

= Jlu € CH(Q;RY),p € C>*(Q) : (p scalar; unique up to additive constant)
w=u+ Vp (2.12)

with divu =0 1in Q, u-v =0 on 0. (u,w ... wvector fields)

Proof. 1. Show the orthogonality relation:
Vu with dive = 0,u - v = 0 on 952 holds /u -Vpdzr = 0 (ie. u L Vp in L*(Q)),

Q

because:
div(pu) = (divu)p+u-Vp=u-Vp

=0 BC /pu cvds = /div(pu)dzr = /u -Vpdx v
0

Q Q

hence: (2.12) is orthogonal decomposition in L?((2).

*Holder seminorm: |f|qo,a(gy = sup @) = Fy)l
styeq | —yl*

Holder norm: ||f||cn.a := || fllcn + Igllax |DP f|co.a,n € Ny.
=n

,0<a<;
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2.2 Navier-Stokes equations

2. Uniqueness: let w = uq + Vp; = us + Vps
= 0= (u1 —uz2) + V(p1 — p2), (ug —ug) - V{aﬂ =0, div(u; —ug) =0 (2.13)

= (due to 1.) (u; —ug) L V(p; — po) in L*(Q2) and

/ U — U +V(p1 pa)] - (ug — ug) dx—/\ul—u2| dz
Q

'

=0
= U] = Uy = Vp1 = Vpg v

3. Existence: We want: w = v+ Vp = divw = divu 4+ divVp = Ap and on 02 :
w - v = Vp-v. Thus solve for p:

Ap=divw inQ, Vpv=w-v ond (= Neumann problem for Poisson equation)

Due to divw € C%*(Q) and w - v € C*(99) there exists p € C?*(Q) (see PDE
course). Let u 1= w — Vp € C1*(Q)

= divu=divw—-Ap=0 V

u-1/|89:w-y|aQ—Vp-u‘8Q:O. v [ |

Definition 2.6. Projection operator: Pw := u, where w = u + Vp,divu =0 and u - v =
0, 0%2.

P: CY(Q) — C1*(Q) is well defined due to above Lemma.

Properties:
(a) PP is linear
(b) w=u+Vp=Pw+ Vp
(¢) Pu=wu Vuwithdivu=0,u-v|,,6 =0

(d) B(Vp) = 0.
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2 Fluid mechanics

gradient fields

/

_____ 7,5 w
% 7

u = Pw

/

divergence-free fields

Apply P to (2.11):

P (@u + %Vp) =P(—(u- V)u+ ryAu)
0

Due to divdyu = 0, divu = 0 and (Qyu) - v = 0y(u-v) = 0:
From (d): P(Vp) =0

= Owu = P(—(u- V)u+ rpAu)

This is an evolution equation only for u; p eliminated!

—(u-V)u+ vyAu

Figure 2.2: manifold M determined by divu = 0.
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2.2 Navier-Stokes equations

Caution: div(Au) = A(divu) = 0, but in general (Au) - V{aﬂ # 0.
= in general P(Au) # Au
(2.14) also useful for numerical algorithms.
Determination of pressure p from u:
(2.11) :  Vp = —polus + (u- V)u — voAu]
P2 (1 = B)[—(u - V)u + moA]

References: [CM] §1.3

2.2.2 Rotation

Definition 2.7. w := rotu := V X u s called rotation or “vorticity field” of the 3D
velocity field w.
In 2D w is scalar: w := rotu := Oy uy — Op,u1 (embedded in R3).

Example 2.1 (continuation). u(z) = cx,c € R

a@l T O
w=c| O x| 29 | =10
8x3 T3 O

X2

T

w3 = double angular velocity around xs-axis (= axis of rotation).
In general: direction of w defines (as normal vector) local plane of rotation, its length the
local intensity of vorticity. ]
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2 Fluid mechanics

local decomposition of flow:

Movement ~ (rigid) translation + deformation + (rigid) rotation

Lemma 2.9. Let u(x) be a smooth 3D vector field.
1
u(y) = u(z) + D(@) - (y = 2) + 5w(z) x (y —2) + O(lly — =[*) Va,y € R’

Proof. From Taylor’s theorem:

uly) = u(e) + 52 - (y = 2) + O(lly — oI
Moreover:
(Detv=o)+ gox (r=2) =0 =)
2 (Ouus + Oour) (o — ) + (Dot + D) (s — )
+ 510 = D)4 — ) — (Bus = Do) (3 — )

=wo =w3

= O1u1(y1 — 1) + Oouy (Y2 — w2) + Ozus (ys — x3)
3
ou
= ;ajul(% —x) = [% (y — l’)]

other components analogously.

1

References: [CM] §1.3, [MP] §1.2

2.3 Vorticity models

Aim: Vorticity formulation for homogeneous incompressible Euler equation

2.3.1 Vector fields from sources and vortices
Let G C R% d = 2, 3; simply connected domain;? let v € C'(G,R?) (in this chapter).
Definition 2.10. u is called irrotational [or curl-free/ if rotu =0 in G.

u s called conservative if / uds is path-independent.
C

3Every closed path can be contracted continuously to a point.
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2.3 Vorticity models

Theorem 2.11. u curl-free < u conservative < 3 potential p:u =V

Proof. Analysis course.

Lemma 2.12. Let u € CY(G) be a vector field. Then

(i) rotu=0 < FJp:u=Vp

(i1) divu=0 < 3 vector potential A:u =rot A (only in 3D)
(2D-interpretation only via embedding in 3D:

JA = (O, O, Ag)T u=rotA= (82143, —81143, O)T, bzw. u = (82143, —81A3)T = VJ‘Ag )

Aim: solution u € C'(G) of system

{ rotu =w in G (vortex of u: w € CY(@Q))
divu=f inG (source of u: f € C°(@))

Solution of (2.15):

Because divrotu = 0: (2.15) is solvable < divw = 0:
First look for special solution uy = (uy, us, u;;)T with us = 0.

rotug =w &

—03 Uo = W1
03 (5} = Wy
01 Uy — 0271,1 = W3

Choose special solution
Uy 1= /wg(l’l,il727fl,';g)diL’3

Uy 1= — /wl(:l,?l,xg,:zzg)d;rg + g(x1, x2)

with 019 = 0, / widas + Oy /wgd;z?;g + w3 .
General solution according to Lemma 2.12(i):
u=1u+ Ve , VYo€C*G)

in 2D: via embedding into R3:

(91 Uq 0
rotu = | Oy X | uy | = 0
0 0 (91 Uy — 02U1

(2.17)
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2 Fluid mechanics

= w; = we = 0 (necessary condition on data) = wuy = (0, / wgdngl)T

Rest is analogous.

Solution of (2.16):

General solution according to Lemma 2.12 (ii):

: T
u = </ fd;zq,(),()) +rot A, VA€ C*Q)

special solution

in 2D:
With ¢ = As.
[ fday 0 [ fday + 09t
u = 0 +rot [ 0 | = -0 Vi € C*(G).
0 W) 0

System (2.15), (2.16): Let f,w be given with divw = 0 (because divrotu = 0).

Strategy: Decomposition u = u, + u,, where u, is divergence-free and w,, curl-free.

Lemma 2.13. Let divw = 0. Solution u of (2.15), (2.16) has the general form u = w,+1uy,
where u, =10t A, uy, 1= Vo, and A, ¢ solve:

—AA=w and divA=0
resp. Ap = f.

Proof. First solve

divug =0
rotu, = w (solvable because divw = 0)

According to Lemma 2.12 (ii): u, = rot A
= w =rotu, =rotrot A = V(divA) — AA
Let for example div A = 0.

= —AA = w; is compatible with div A = 0 because:

—div(AA) = —A(divA) =0 = divw.
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2.3 Vorticity models

Now solve

divu, = f

rot u,, = 0
According to Lemma 2.12 (i): u,, = Vo
= divu, = divVy = f, hence Ap = f

= U 1= U, + U, is special solution of (2.15), (2.16).

General solution: u = ug + Vi, Vo with Ag = 0. [ |

Remark 2.14. A function u = Vi with Ay = 0 is called Laplace field. It is divergence-
free and curl-free because

rotu =10tV =0 , divu=Ap =0.

In fluid dynamics u describes an incompressible potential flow.

2.3.2 The vorticity equation

Homogeneous, incompressible Euler equation in R?, R3:

ou _ 1
{5 +(u-V)u= =Vp (2.18)

divu=0

We have: (u-V)u = 3V |u|*> — u x w with w := rotu

— 2
rot of (2.18) =

1 1
Oy rot u+=rot(V|u|?) —rot(u x w) = ——rot Vp
~ 22— poH,O_z
=W =0 —

rot(u X w) = (w- V)u — wdivou—(u Vw+u divw
= =divrot u=0

=(w-Vu—(u-Vw

= 0w — (w-Vu+ (u-V)w=0 Here we have eliminated p.

Dw
= Di = (w-V)u| with rotu = w,dive =0 ... vorticity equation in R?

(w - V)u describes the vortex stretching in 3D (with simultaneous thinning out of the
vortex and increase of vortex intensity).
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2 Fluid mechanics

Simplification in 2D:

w = (0,0,811@ — 82U1)T, V = (81,62,0) = (w . V)U =0

Dw w
= DL - 0| resp. e +u-Vw=0...vorticity equation in R?

w here is a scalar function! The vorticity equation is nonlinear because u = u|w].

A-priori estimates of w:

Lemma 2.15. For the vorticity equation in D C R? with u-v = 0 on 0D the following
holds:

= e Dllerw) = leollinmy 1< p< 00,20 219)
Proof. For 1 < p < oo multiply the vorticity equation by |w|P~! sign(w):
(Oyw)|w[P~ sign(w) + (u - Vw)|w[P~! sign(w) = 0,

= Oy|lw|? +u - V|wP =0

d
E/|w|pdgc:—/u.w,.;m;c - —/div(u|w|p)dx+/(divu)|w|pdx
D D D p =0
= —/(u-l/)|w|pds:0
——
op =0

This gives (2.19) for 1 < p < oo0. The case p = oo follows from |[w(-,t)||zp) =
tim [o(c, D)l 2o 1. .

p—00

This is an important estimate for the proof of existence in R? (much more difficult in R3).

Reconstruction of v from w:

1st case: Let D C R? be simply connected and bounded

81U2 - 82U1 =w |, D
81u1 + 82U2 =0 s D (220)
w-v=0 , 0D

divu =0 = 34 = (0,0,9)" : u =10t A, i.e. uy = Opth, uy = —11, resp. u = V¢ with

O:
\vAR 2
o ( -0 )
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2.3 Vorticity models

Definition 2.16. For given u, v with u = V' is called stream function; it is unique
up to an additive constant.

Definition 2.17. The integral curves z(s) = ( ?ES) > ,s € R of u(x,t) fort fized are

called stream lines / flow lines. They solve d_x = u(x;t).
s

Caution: stream lines # particle trajectories (except in stationary flow).

Interpretation:

Stream lines are level curves of ¥ (z,t) for ¢ fixed because:

d . .
gw(l’(s), t) = allb T + 82¢ To = —UU7 + UrUg = 0

Integration of the tangential vector field u along 0D gives x(s).

Due to u-v =0 on 9D (i.e. tangential field): One integral curve of u lies on 9D, so 9D
(with suitable parameterisation) is a stream line = 1) = const on dD.

Convention: Choose the additive constant for 1) such that ¢» = 0 on 0D.
This way, v is uniquely determined:

Lemma 2.18. u = ulw| = V19 is the unique solution of (2.20), where 1 solves the
potential problem

{—Aw:w , D

b0 oD (2.21)

Proof. Existence follows from (2.21) and w = —Av¢ = rot(V+ 1))V
I

divu = div(V+y) = 0v

Y|, =0= Vi LOD = u=V*+y|dDv

95



2 Fluid mechanics

Uniqueness: Let v := u — @ be the difference between two solutions, hence
rotv =dive=0in D;v-v =0,0D

According to Lemma 2.12 (i): v = Vo
= 0=divev =divVp =Apin D, Vy-v =0o0on 0D

=p=const = v=Vp=0 |

With Lemma 2.18 the “coefficient function” u[w] in the 2D vorticity equation

Ow
E+u[w]-Vw—0

is defined. For proof of well-posedness of this evolution problem the a-priori estimate
(2.19) is essentiell (see §2.3 in [MP]; §3.2.3, 3.3, 4.2 in [MB]).

Representation of w from (2.21):
Theorem 2.19.

v(e) = [ Golera'hula')d's

the Green’s function Gp solves

AGp(z,2") = —6(x —2') in D,
Gp(z,2') =0 Vxe€dD ora’ € 9D.

We have:

1
Gp(x,2') = Gz, 2" ) +v(x,2') with G(x,2") = b log |[x—2'|, Ayy = Apy =0, + BC for .
T

= u(r) = Vi(z) = / V+Gp(z, o) w(a')da'.
D

=:Kp(z,z")

Proof. PDE course. [ |

Remark 2.20. Under which condition does one obtain a stationary flow?
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2.3 Vorticity models

We have

U - Vw = 1101w + Uugow = Oa1) - O1w — ) - Oow

o (le' 02;0 L ) :
= det ( 9 Dol ) =: det J(w, ¥)

Hence:

Oow ‘

— =0 < detJ(w,¥)=0 VzreD.
ot

Then w(x), v (x) are (functionally) dependent, i.e., w = f(¥) or ¢ = g(w).

2nd case: D = R?

Therefore solve:

diveu=0
0
(2.22)
rotu = 0
w

Analogously to Lemma 2.18 u can be determined from u = V+1) and —Ay = w in R2.
A special solution can be given by means of Green’s function for the Poisson equation in
R2

’

1
G(x,2') = —2—10g|x — 2|z, 7" € R?
m

W(x) = /G(x,x/)w(x/)dx/,
up(w) = V*o(z) = /K(x — 2" w(z")da’ (2.23)
with

Ka—o)= - LE=2)" xi:( o )forx:<xl).

o |z — )2

1 1
|ullr@e)y < Cllwllre@ezy 51 <p<2,2<7 < o0 with i
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2 Fluid mechanics

holds.
Interpretation of K(x — 2’):

Let w(z) = d(z — 2'), 2" € R? be given.

= K(x — 2') = velocity vector field u(z), “produced” by unit vortex w(x) = §(x — ') at

'

General solution of (2.22) (cf. Rem. 2.14):

u=Vtp+ Vo with Ap = 0 in R?
—~—
Laplace field

Without “boundary condition at infinity” the solution is not unique.

Possible boundary conditions:

u(z) el Uso (= const) (i.e., uniform flow at infinity) (2.24)

= unique solution of (2.22), (2.24) (e.g. for w with compact support):

u =V + U

References: [MP] §1.2

2.3.3 Motion of point vortices in R?

We first consider the vorticity equation in D C R? simply connected and bounded:
we=—-u-Vw (2.25)

and u satisfies: divu=0in D, u-v =0 on 0D.
Aim: Reduce the PDE “vorticity equation” to a system of ODEs.

Consider the initial condition (linear combination of point vortices):

N
wo(z) == Zaié(:c —1;), x€DCR? (2.26)
i=1
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2.3 Vorticity models

with given positions x; € D C R? and intensities a; € R.
In Euler equations, the conservation of N point vortices for ¢ > 0 is plausible because the
model contains no diffusion/viscosity.

Problems: a distributional formulation of PDE (2.25) is “delicate” because already the
coefficient function wuwp] is singular at z;, hence is not usable in weak formulation. =
regularisation needed:

The following step function approximates wq:

1 N

)= Zap 2 XK (i, 2) ()
i=1 ——
ball
We have Xk (s,) 2z — 06(x — ;) in D'(D).

For the reformulation we consider Vf € C*(D) (and sufficiently smooth u, w):

d ivu= .
T wfdx:—/(u-Vw)fdx =0 —/dlv(fuw)dx—l—/wu-Vfda:
D D D D
div_ghe —/fwu~uds+/wu-Vfdx.
8D =0 D

= this motivates the weak formulation of the vorticity equation:

Find w € C'([0,T], L2(D)) with

). 1) = {wlt).ult) - Vf) VF € CUD),wlt = 0) =y (2.27)
and (f,g) := /f(y)g(y)dy. Same form for D = R?,

D

Properties of solution w®(¢) of (2.27) in D = R? with IC w§:

Theorem 2.21. For D = R? we have:
N

lim (W (1), f) = Y aif (2:(t) = (w(t), f), V[feC (R,

e—0 -
=1

N
with w(z,t) = Z a;0(x — z;(t)).
i=1
z;(t) solves the ODE (“discrete vorticity model”):

i) = w(i(),6) = 3 K(wilt) = (1)
J# . (2.28)
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2 Fluid mechanics

(*) ... velocity field of the “other” vortices = one (single) vortex is stationary.
Proof. [MP| Th. 4.2.3. |

Remark 2.22. Is w(z,t) (measure valued) solution of (2.27) with IC wy from (2.26)7
Almost, because w solves

d
T, f) = (wt),u, - V) Vf e (R (2.29)
with the “regularised velocity”
up(x,t) = /VLG(x,af’) X{wzayw (2, 1) da’ (2.30)
R2 :K(‘azrfz/) —0 for z—a

(in mathematically sloppy notation).

X{zc'y Prevents the “self interaction” of the point vortices; this is used now as additional
physical assumption. (2.30) with singularities of the integral kernel at positions of the
deltas would not even be defined. That one single point vortex has to be stationary is also
seen from the fact that in this case there is no distinguished direction.

Source of problem: weak formulation (2.27) with velocity field u from (2.23) is not defined
for distributional solution.

Solution w(t) with x;(t) solves the PDE (2.29)-(2.30) by reduction to a system of ODEs
(2.28). O

Vorticity model as Hamiltonian system:

(2.28) is equivalent to
(2.31)

with Hamiltonian (‘“energy”)
1
H = —EZZaiajlnh:i — zjl;
J#i
Notation z; = (z},22)".

Compare to Hamilton’s equations of point mechanics:

a particle with mass m, kinetic energy %, momentum p = mu and potential energy

V(z).
With Hamiltonian H(x,p) := % + V(z) we have:

—<L = F ... Newton’s second law.
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2.3 Vorticity models

Hamiltonian sytems always have the following property:

“Energy” is constant in time, hence: H(t) = const V.

Moreover:

S agi(t)
ZiNzl a;

Vortex center B(t) := is constant in time (for SN a; # 0) = M(t) :=

N

Z a;x;(t) = const.

i=1
N
Inertia is constant in time, i.e.: I(t) := Z a;|z;(t)[* = const
i=1
Hence: 4 (scalar) first integrals of the motion = ODE system (2.31) for max. 3 point
vortices (N < 3) is explicitly solvable (because a Hamiltonian system in R?" with N + 1

Poisson-commuting conserved quantities is completely integrable [V.I. Arnold, Dynamical
Systems III]).

Example 2.23. N=2:

1

H = — 5102 In|zy — x| = const = |o1(t) — xo(t)| = const
m
Vortex center ... B:= s const and it is on line connecting x;(t) and z5(%).
ap T az

1st case: sign a; = sign as

a1

here a; 2 < 0

2nd case: signa; # signas and |ai| # |as|
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2 Fluid mechanics

a1

here a; > 0, |az| > |a4]

We have: radius of rotation — oo for |a;| — |as]

3rd case: a; = —aq

u._vhv"-..velocity field of

o _ e
Lo 271"117502|

hier a; > 0

Question: Does system (2.28) have a global (in time) solution? 2 possible problems:
a) |z;| = oo for t — T™.

b) |z;(t) — x;(t)| — 0 for t — T™, which means 2 “particles” at one place and the right
hand side of (2.28) is not well-defined anymore.

Solution: Global solvability depends on {signa;}.

Theorem 2.24. Let signa; = signa; # 0, Vi =2,..., N = The solution of (2.28) 3 for
0<t<oo.

Proof. 1st claim: System stays in finite region, i.e., |z;(t)| < const V¢, because:

1(t)]
|a;

ail

1
lz:(t)]? < @l Z |a;||z; > = = const v’ (2.32)
g

2nd claim: All pairs k # [ have fixed minimal distance |z (t) —z;(t)|, i.e., velocity is always
finite Vt < oo, because:
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2.3 Vorticity models

— agay In |z (t) — ()| = AnH(t) + ZZ@,% In|z;(t) — x;(t)|
~—~ \q,_/
>0 (i,5) ;é(kl <|zi|+|zj]
(2.32) i | 1]
< AmwH(t) + ZZ a;a; In ( ” " ) =: C = const V.
i a;| ajl
(i) £ (k)

£>>0 Vtv [ |

— |z (t) — 2 (8)] > _
ult) = (0] 2 exp -

For different signs of a; and N > 3 a “collapse” (i.e. z;(T™) = x;(T™)) is possible in finite
time.

Example 2.25. N =3,a; = a; = 2,a3 = —1;
1= (=1,0)", 2o = (1,0) ", 23 = (1,v2)"

T
B= (—%, —?) ...vortex center,

self-similar evolution, collapse at T* = 3v/27.
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2 Fluid mechanics

After collapse: continues as (stationary) 1-vortex-flow; is not time-reversible!

O

Due to 2.24 the system stays in finite region for sign a; = sign a;; velocities also stay finite.
Generalisation:

Theorem 2.26. Suppose:

VI C{l,...,N}:> a;#0. (2.33)

icJ
Then VR >0, T > 0: 3R = R(ai, R,N,T) (independently of z1,...,zxn !) with
z1,...,on € Kg(0) =  z;(t) e Kz(0) Vi=1,...,N;V0<t<T
(if trajectory exists up to that time).

Proof. Corollary 4.2.1 [MP] [
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2.3 Vorticity models

Rem: Condition (2.33) is necessary — see Ex. 2.23, 3rd case with z1 — x.

Using this one can show:

Theorem 2.27. Suppose that VJ C {1,...,N}: Zai #0,N > 3.

icJ
= for almost all initial conditions (x1,...,zx) € R?N :

3 global solution (z1(t),...,zn(t)) of (2.28)si.e.: let A C RN be bounded and B C A the
set of initial conditions which lead to a collapse in finite time. Then:

wu(B) = 0.

Proof. Th. 4.2.2 [MP] [ |

Example 2.28 (von Karmén vortex street).
e 0o many vortices of intensity +a

+ - + +
) ) o«

R/ S A

g D A N
, ) ) )

System is subject to rigid translation with constant v, Vt > 0.

e Application: Flow around rigid body = viscosity (only important near surface )
produces counter-rotating vortices, then: transport of vortices by Euler flow for
(quite) long time

e vortex street for suitable a, b, h, [ linearly stable. 0

References: [MP| §4.1-3
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2 Fluid mechanics

2.4 Boundary layers for Navier-Stokes equations

Consider incompressible, homogeneous (scaled) Navier-Stokes equations with no-slip bound-
ary conditions:

u+(u-Viu+Vp = g Au 0
divu = 0 , 0
v o (2.34)

u(z,0) = wup(x) , )

In “interior” of Q: friction term vyAwu often negligible in contrast to convective term (u-V)u
— Euler equations (easier to solve).

In Boundary layer at 0€): friction term essential, because u “small” and influence of bound-
ary conditions.

Aim: coupling of Euler equations in interior of €2 with boundary layer equations.

Model problem for Method of asymptotic expansion:

"+2 +2y=0, 0<x<1, <1,
ey’ + 2y + 2y x 3 (2.35)
y(0) =0, y(1) =1
Exact solution: y.(z) = —2—; (M — M) xe (6_’” — 6’2?35> 20220 el=,
—1 4+ +/1 — 2¢ Taylor —1 — /1 — 2¢ Taylor 2
M=—""7-—"7— R~ -1, h=—"—— = ——+1
€ € €
e +~_Y%
€2
/ Yeq 1
boundary layer 1 .
Yo = e~ solves reduced equation
2 +2y =0,
R (2.36)
y(1) =1

is for > ¢ good approximation for y., but not for z ~ 0.
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2.4 Boundary layers for Navier-Stokes equations

Idea of asymptotic expansion: approximation of solution of (2.35), seperatly on (0, d(¢))
and (6(¢),1); here 6(¢) = O(e).

Step 1 (outer expansion):

Formal ansatz for solution on (6(¢),1):

y(z) = yo(x) +eyi(z) + 2 o) + ...

Rem.: Convergence of this “series” does not matter as it is always truncated after a few
terms.

Plug into (2.35) =

e®(2y0 + 2y0) + €' (o + 204 + 2u1) + 2 (¥ + 205+ 2y2) +--- =0
yo(1) + ety (1) +2yo(1) +--- =1

Equating the coefficients suggests:

200 +2y0 =0 , yo(l) =1
yo+2yi+2y1 =0 , y(1)=0
Y2y +2y, =0 , 12(1) =0 (2.37)

= yo(x) =77, ...

Step 2 (inner expansion):

The inner expansion should approximate the solution on (0,0(¢)).
Let £ := £ (fast variable), Y (&) := y(c&).
Y (€) satisfies

1 2
-Y" + gY’ +2Y =0, Y(0)=0. (2.38)
€

Expansion ansatz:
Y(€) = Yo(§) +eYi(§) + 2 Ya(E) + ...
Plug into (2.38) =

e Y+ 2Y]] + eO[YY + 2] + 2Y| + e[YY + 2Y) + 2Vi] 4 - =0

Equating coefficients suggests:

Yo' +2Y5 =0 , Yp(0)=0
Y/ 4+2Y] +2Y,=0 , Y;(0)=0 (2.39)
VY +2Y]+2Y1 =0 , Y3(0)=0
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2 Fluid mechanics

= Yy(¢) = a(l — e7%) for some a € R.

Step 3 (matching):

Compatibility condition for y, and Yy for ¢ — 0 (Y, gives boundary layer transition
between boundary condition at x = 0 and yo(6(¢)); for € > 0 it is still discontinuous):

lim Yy (§) = liIr(l]yo(x) = a=e.
T

£—o0

Step 4 (composite solution):

5(a) i {YO@, v e (0’5(?

yo(x), x € (d(e),

is discontinuous and not an approximation of order O(g) to the exact solution y (compare
for 6(g) = e: yo(e) = €' 7%, y.(g)).

Step 5 (uniform approximation):

i(z) ==Y, (g) +?/0(£U)—glcig(l) yo(r)=---=¢e (e"” — e’Q:> (cf. Taylor expansion of y.)

is uniform approxzimation (w.r.t. x € [0,1]) of order O(e) (follows from Taylor expansion

of y.).
Rem.: In g the sum of the last two terms vanishes for x — 0, as well as the first and third

term for 2 — oco. For small and large z one thus obtains g(z) =~ §(z).
Remark 2.29. 1) In the outer expansion €y” plays no role, but in the inner expansion
- because of rescaling to § = Z.

2) The further expansion terms y;(z), Y1(§) can be calculated from the inhomogeneous
ODEs in (2.37) resp. (2.39).

3) General inner expansion with ¢ := % and
Y(€) = Yo(§) +"a(€) +Va(6) + ...

Plausible values for v > 0, 5 > 0 can be found by inserting into ODE and balancing
dominant e-terms (i.e. smallest e-exponents). Aim: as many such terms as possible.

Yy
a=c| Yo(z)
j(x)
1+ yo(x)
inner Exp. outer Exp.

8
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2.4 Boundary layers for Navier-Stokes equations

Prandtl’s boundary layer equations (1904)

Consider 2D Navier-Stokes equations above a flat plate, u = (v,w)" € R?; (z,y)" € Q =
R x R*; let ¢ = - < 1 (but fixed):

O+ v0v+ wov+ O,p = cAv
Ow + vo,w + woyw+ Jyp = eAw
;v + Oyw =0 (2.40)
Vly=0 = wly=0 =0
U(O,l‘,y) :U[(Jf,y); w(07x7y>:w1<m7y)

Step 1 (outer expansion): Ansatz (“away from {y = 0}"):

v o= U+ z—:vl+52v2+...
2
Wo+ ew + € wa + ...

P = poteEp+eEiprt...

Plugging into (2.40) gives in lowest order (¢°) the Euler equations:

Otvo + Vg axvo + wo ayvo + a;,;po 0
&gwo + ’anx’wo + wo 8yw0 + (9yp0 =0 (2 41)
axU() + 8y’LUO =0 '
(0,2, y) = vr(z,y); wo(0,2,y) = wr(z,y)

(but no BC at y = 0)

Step 2 (inner expansion):

We expect large changes of the solution in y-direction, but not in z-direction = Scaling
ansatz near {y = 0}:

T:=t X:=x Y := i, with a > 0 to be determined;
EO[

V(T,X,Y) = o(t,z,eY),
W(T,X,Y) = w(t,z,e"Y),
P(T,X,Y) = p(t,x,eY).

Plug into (2.40):

OorV + VoxV + e “WoyV + OxP = 0%V + e 72 0LV

OrW + VOxW + e *WoyW + e 0y P = 5 W + el 722 2W
OxV + e oW =0

Viy=o =Wly=0=0

(2.42)
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2 Fluid mechanics

Expansion ansatz for V., W, P:

= Vo+PVi+ P Vo+ ...
Wo+ P Wi+ e Wy + ... (2.43)
= P0+€’BP1+€2BP2+...

NS <
I

with 8 > 0 to be determined.
Plugging into 3rd equation of (2.42) =

[0V +P0x Vi + e¥ox Vo + ... ]+ [oyWo + /0y W + ¥y Wa +...] =0
Leading e-power is 0y Wy; this suggests:
OyWy =0, W()(T,X,O):O, VI X = | Wy=0.

Hence the vertical velocity in the boundary is of order at most O(&”).

Balance of next hicher e-power suggests a = 3, hence

| OxVo+ Oy Wi =0. |

Inserting (2.43) into 1st equation of (2.42) =

[0 Vo +e*orVi+. . ]+ [Vo+e* i+ ] [0xVo+e*0xVi+...]
+e 0+ W+ ][Oy Vo+e“ O Vi |+ [Ox Po+e%0x P+ .. ]
=e[xVo+e* RxVi+... ]+ [0V +e*BjVi+...].

If 1 — 2a < 0, there was only one leading term: 92V, = 0.

The choice 1 — 2a = 0 gives the maximal number of leading terms:

OrVo + Vo Ox Vo + W1 0y Vo + Ox Py = 03 Vo,

and o = = 5 gives the bondary layer thickness 6(¢) = O(e2).

Inserting (2.43) into 2nd equation of (2.42) =
te2 {0+5%W1+...] - [0+5%aywl+...} 43 [é)sff:)()+€%ayp1+...]
:&?[O+5%8§(W1+...} + [O+5%8?,W1+...].

For the leading order we have (Pressure is const in Y in boundary layer.)

Step 3 (matching):
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2.4 Boundary layers for Navier-Stokes equations

Matching conditions:

lim V5(T,X,Y) = limoo(t,z,y)
Yy—

Y >

[0 =W, =] Ylim Wo(T, X,Y) = lim wo (¢, z,y)
—00 y—0

[P(T,X) =] lim Py(T,X.Y) = limpo(t, z,y)
—00 y—0

2nd row and Wy = 0 lead to: wy(t,z,0) =0 (i.e., typical Euler BC ug - v = 0.)

Solution step 1: Solve the Euler equations (2.41) for vy, wo, po with wy(t,z,0) = 0 in
exterior domain (for y > 0).

The 3rd line of the coupling conditions and dy Py = 0 give Py(T, X) = po(t,z,0), VT =
t, X ==z

Hence: pressure in boundary layer = pressure of outer flow at boundary (y = 0).

Solution step 2: Using the functions pg|,—o, vo|y=0 Which are known from the outer flow,
solve the Prandtl boundary layer equations in the boundary layer. (for Vo, Wp; X € R,
0<Y < o0):

OrVo + Vo Ox Vo + Wi 0y Vo + Ox (poly=0) = 95V,
Voly=o = Wily=o = 0, (from (2.42), last line)
Ylim Vo(T,X,Y) = w(t,z,0),
— 00

OxVo+oyW; = 0, (from (2.42), 3rd line)
Vo(0,X,Y) = wi(x,0), Y >0, if u; contains no boundary layer.
This is a degenerate parabolic equation for V4 (the term 9%V, is missing), wherein V;, and

Wi are coupled by a linear equation of first order.

Combined approximation:

@(t,l’,y) - % <t7x7£1> +U0(t7x7y)_vo<t7x70)7
€2 N——
limy 0 vo
w(t,z,y) = wolt,z,y), (no correction of order O(e?) because Wy = 0),
p(t,z,y) = polt,z,y), (because pressure=const in Y in boundary layer).

Result: In a boundary layer of vertical thickness O(1/¢) the horizontal velocity component
vp is corrected such that at y = 0 the no-slip condition u = 0 is satisfied. The vertical
velocity component already satisfies wy(t, z,0) = 0 because it solves the Euler equations
and hence does not need to be corrected.

References: |[EGK] §6.6

71



2 Fluid mechanics

72



3 Theory of elasticity

Aim: Model how a body deforms subject to external forces.

3.1 Notation

Q C RY d =2,3: Reference configuration — region occupied by the body when no
forces are applied

x € () particle

P : Q — R?: deformation field. The particle z is moved by the deformation to ®(x)
(description in Lagrance coordinates; ® does not have to be volume preserving)

‘3—3 € R¥4: deformation gradient. We only consider orientation preserving deforma-

tions, i.e., such that det 42 > 0 (i.e. no reflections)

u(zx) := ®(x) — x: displacement field

We now consider the relative change of length effected by ®.

Let Az € R? be a small distance between 2 material points —

|®(z + Az) — ©(2)|* _ 55 (x) - Az + O(||Az]?) |

Iz + Az) =2l | A2
DT (200N 2200 . Ax
- o) (%\(]A)a)cH? ) & + O([|Azl])

Definition 3.1. The symmetric matriz

00" 9P ou T/ ou
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3 Theory of elasticity

is called Cauchy-Green strain tensor and describes the local relative change of length in

the body.

We have
C=1 < 3QcOd);beR? : d(z)=Q-z+b
~——
orthog. matrices in R%

(hence for rigid body movements there is no change of length).

Definition 3.2. The symmetric matriz

1 1/Ou” Ou Ou' ou
Efﬁ“‘”—§(£'+%+55'%>

is called Green strain tensor and vanishes for such rigid body movements (and is quadratic
The matriz

€ B < -+ ) (fO?" small variations 0] the dzsplacement)

1s called linear strain tensor.

3.2 Hyperelastic materials

A body is deformed by some force. The work done is saved as deformation energy. An
elastic body completely returns this energy if the applied force is removed. A material
is called hyperelastic if the deformation energy depends pointwise on the Cauchy-Green
strain tensor C"

Eus = [ W(C@)s

with energy density W : {A e R>”4|A=AT} - R
(resp. general W (x, (') for inhomogeneous materials).
Ex.: Rubber (isotropic; linear elasticity would be too inaccurate)

We only consider isotropic materials, i.e., material properties are the same in all directions
= W is invariant under (rigid body) rotations = W(E) := W(I 4+ 2E) depends only on

=C
Sp E, Sp(E?) (for d = 2) and for d = 3 additionally on det E. Derivation analogous to
the proof of the form of the viscous stress tensor o (g—;‘) in §2.2: F is symmetric, hence

diagonalisable — W only depends on its eigenvalues.

74



3.3 Variational formulation

Lemma 3.3 (Hooke’s law). Let E = 0 be a local minimum of W with (w.l.0.g.) W (0) = 0.
Then it holds in quadratic approximation:

1
W(E) ~ SA(Sp E)* + i Sp(E?),
with Lamé-constants A\, p € R (cf. (2.6): 0 = N(divu)l 4+ 2uD).

Proof (for d =3).
Let W(E) =W (SpE, Sp(E?), det E) with W :R*> = R.

cubic in
If E =0 is a local minimum of W, Taylor’s formula gives

W(E) = W(0,0,0)+8,W(0,0, 0) SpE+ 82W(0,0,0)(SpE)2+82W(0,0,O) Sp(EY)+O(||E|]?).

~
=0 —0 =:A =l

Rem: Hooke’s law corresponds linear material law (cf. force-deformation relation in spring)

3.3 Variational formulation

Let 0 = I'p UT'y (Dirichlet- resp. Neumann-boundary). Assume the body is fixed at I'p
and on ['y an external surface force b is acting. Moreover, assume that on €2 a volume
force is acting, e.g. gravitation. The displacement u caused by the forces implicates a total
energy

Eioi(u /W ))dx — /f udz — /b udS (3.2)

'y
7 \ 7
Vv ~"~ -

deformatlon energy work work
of volume force  of surface force

Rem: domain of integration {2 ... undeformed reference configuration

Aim: find equation for displacement v — by minimizing Ej.(u).

Admissible displacements satisfy u|r, = 0.

Let u be the minimizing displacement and v another admissible displacement, i.e., v|p, =

0.

= V:R - R, U(t) := Eyp(u+ tv) has a minimum at t = 0 so
/{ }:[i—c(v)]dx—/f-vdx—/b-vdS (3.3)
u
Q h\,_/ —— Q I'n
;VZGRdXd cRdxd
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3 Theory of elasticity

V admissible v = gives minimality condition for u.
U'(0) = 0 Eyor(u,v) ... first variation of Eyy at u in direction v
Notation:

e A:B =3, A;Bi= Sp(AT - B) ... Frobenius scalar product for (real) matrices.

° (%)ij - (g%;)

o (divA); =3, 0;A;; ... divergence of a matrix function A(z) is a vector field.

First variation of Ey(u) := [, f-udxz:

aw,  d
T_a/ﬁ(u—i—tv)dx—/f-vdx v
Q Q

next aim: representation of $¥(C) : 4 (v).

e V (small) symmetric matrices A € R%*%:

Tallor d_W (
N dC

W(C+ A) W(C) + [ O)} A+ 0O(||A]17)

The matrix ¥ := 2%(0) is called 2nd Piola-Kirchhoff stress tensor ¥;; = 2%. Because

C is symmetric, 3 is symmetric; in general it depends on .

oV (small) t > 0: Clu+tv) = Clu)+ %E(v)t + O(t?)

0 oz 0 0
ou T o o' [ou
=C t{(—+T)  —+— - —+1 O(t?
(w) + (83}+) 8$+8x (8x+> +0(t")
= L) = (% + I)T : % + g—z (% + 1) ... directional derivative of C' at u in direction
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3.4 Linear elasticity

e From (3.3): /f-vder/bmdS _/[%(0)} [ii()

I'n

o) e 0T (e
ox or Oz ox

dx

% symm

N

vV admissible v and outer normal vector n.
(x) with A:(B-C)=(B"-A):C
= equation as well for integrand =
e Equations of elasticity theory (for % and ¥ =% (g—;)):
{—div((%+1) %) = finQ
(%-FI)-E-TL =b on I'y
These are the Fuler-Lagrange equations of Fyy in (3.2).

From 2% and ulr, = 0 we obtain u(z), Vz € Q.

3.4 Linear elasticity

Assumptions:

e small displacements u
e small distortion, F ~ €
e Hooke’s law holds: W(C) = 5(Spe)? +p € ¢

=Sp(€?)

() e ()
- Lae((G2er)-5) v [[(Ger) 5] vas

(3.4)

= Minimization problem: find admissible displacement u (i.e., satisfying u|r, = 0), such

that

Eip(u) = /(%(Spef%—ue:e—f-u) dx—/b-udS — min,

Q I'n

with e(u) = 3 (g—z + %T). Further assumption: A,y > 0

(3.5)
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3 Theory of elasticity

Notation:
a(u,v) := /% (Spe(u)) (Spe(v)) + pe(u) : e(v) de,
l(u) :== /f-ud:l:—l—/b-udS,

hence: J(u) := a(u,u) —l(u) — min
next aim: bilinear form a is coercive on “space of admissible displacements” H}, := {u €

(H'()" : ulr,, = 0.

Lemma 3.4 (Korn’s inequality). Let 2 be a bounded domain with piecewise smooth bound-
ary and pg—1(Ip) > 0. = Je > 0 with

d
/e(u) ce(u)de > CZ ||ui||§{1(m Yu € Hp . (3.6)
i=1

Q

Proof. (here only for smooth u satisfying u|sq = 0)

We have the formula

‘ ou Ou , 2 . (Ou i
2¢(u) : e(u) — 9 D (divu)” = div (ax u — (divu) u) .
_ ou Ou 2 [ du
= /QE(U) e(u) — 9 (divu)” dz = /le (83: u — (divu) u) dz
Q Q
Ggﬁ/ (% ~u — (divu) u> ndS =0, da ujgg=0. (3.7)

From (3.7), Poincaré inequality for u;:

2 [t ctuydo> [

Q Q

a dx = Z Vs 20y = cpz lillZ 0y

with a constant ¢, > 0.

for extension of proof: Poincaré inequality also holds for (smooth) w vanishing only on
I'p. [

Rem.: For d = 1, (3.6) corresponds to the Poincaré inequality. For d > 1, (3.6) is non-trivial
because the left hand side includes only the symmetric part of %, that is % (gT“; + %),
but not all derivatives separately.
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3.4 Linear elasticity

Theorem 3.5. Let f € L*(Q), b € L*(T'y). Under the conditions of Lemma 3.4, E in
(3.5) has a unique minimizer u € Hj,.

Proof. The (symmetric) bilinear form a is on H}, continuous and coercive (due to Korn’s
inequality). For a minimum the following (weak formulation) has to hold:

0= 6By (u,v) = 2a(u,v) —1(v), Yve Hp.
Claim follows with Lemma of Lax-Milgram. |

[compare: the minimizer of 1(|Vul[3, — [, fudx satisfies —Au = f ]

Analogously to the derivation of (3.4) one obtains the linear equations of static elasticity
as Fuler-Lagrange equations of (3.5):

{_)\V(divu)—Qudiv(E(U)) = f, Q (3.8)

(Adivu—l—lu%)-n =0b, I'y

This is a linear 2nd order PDE system.

References: |[EGK] §5.10, §6.1.9, [Scho| §1,82
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4 Ditfusion filtering in image
processing

Diffusion filters are
e optical lens attachment for photographic special effects — blur, softener;
e software-driven, digital image (post)processing, e.g. “Gaussian blur” in Photoshop.

Application/Aim: Smoothing of noisy images, blurring of too sharp/hard images, image
sharpening, edge detection (e.g. for image segmentation)

We only consider greyscale images with scale f(z) € [0,1],z € Q@ C R? Real-world
application: f discrete (pixel) on a bounded region.

Here only © = R? to avoid problems with boundary conditions. Moreover, let f € L*(R?*)N
L>(R?).

4.1 Linear diffusion filter

Simplest image smoothing by convolution with 2D Gauss function

with standard deviation (“width”) o > 0:

(Kyx f)(x /K x—1y)f(y)dy (4.1)

Effects:
e Because K, € O°(R?) = K, * f € C*(R?), also for f € L'(R?).

e In frequency domain:

Ky % f(w) = K, (w) - f(w) (4.2)
with f(w) /f et dy
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4 Diffusion filtering in image processing

Because K, (w) = 2mexp “2/0? :
o

(4.1) is low pass filter, which (monotonously) dampens high (spatial) frequencies =
edge smoothing, denoising.

Equivalence to linear diffusion filter:

=A R?
{ut u , r€eRt>0 (4.3)

u(z,0) = f(z) , feLY(R*)NL®R?
has the unique solution (e.g. assuming Gaussian decay of u for || — c0):

f(x) , t=0
(Kyg* f)(x) , t>0.

{T}|t > 0} ...evolution semigroup of the diffusion equation

u(a:,t):th:{

Hence: time t corresponds to (spatial) width /2t of the Gauss function; smoothing of
image structures up to order o corresponds to stopping time T = o2 /2 of diffusion process.

Maximum-minimum-principle:

inf f <wu(x,t) <supf auf R?x [0,00)
R2 R2

e Images typically contain structures on a large bandwidth of scales (e.g. portrait with
resolution of every single pore)

e Often it is a-priori unclear which scale represents the “desired information”. = It is
desirable to have a representation of the image in different scales.

e Original image f is embedded in evolution process resp.scale of smoothed/simplified
images {u(z,t)|t > 0}.

o u(z,t) =3 0 (uniformly on bounded domains)
= More and more image structure gets lost. = Only “small” ¢ is practically relevant.

e An image can only be seen as representative of an equivalence class which contains
all images of the same object. The difference between two images of a class can be
e.g. grey value adjustment, translation, rotation, ...

Numerical aspects:

e Discrete version of convolution (4.1), multiplication (4.2) in frequency domain (via
FFT), and discretization of diffusion equation are not equivalent.

e For this application mostly explicit finite difference schemes for (4.3).

Disadvantages of linear Gauss filtering:
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4.2 Nonlinear diffusion filters

Figure 4.1: noisy original f, diffusion smoothing with mean curvature equation, Gaussian
diffusion smoothing, diffusion smoothing with anisotropic diffusion orthogonal
to the edges [Ma)

a) Isotropic diffusion smoothens noise but also image structures (e.g. edges).
Local diffusion orthogonal to the edges is not desired.

b) Linear diffusion filters may move edges in the transition from fine to coarse image
scale (i.e. for large t).

c¢) Topology of contour lines can change (in 2D), e.g. splitting in two contour lines
when moving to a coarser scale.

d) Smoothing does not commute with (nonlinear, monotonic) mappings F' which change
contrast or grey value: T,(F(f)) # F(T,f)

(a), (b) can be ameliorated with nonlinear diffusion filters; (c), (d) using morphological
equations.

References: [We| §1.1, [Ma| §10

4.2 Nonlinear diffusion filters

e Nonlinear PDEs as improved model of (4.3);
Image scale {T, f | t > 0} is still represented by an evolution semigroup {7 | t > 0}.
e Use of scalar diffusivity which depends on local properties of the image.

e Extension to adaptive diffusion matrices for anisotropic diffusion filters.

4.2.1 The Perona-Malik model

Model:
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4 Diffusion filtering in image processing

scalar diffusivity g(|Vu|?) > 0 with

g(s) N\ 5 9(0)=1, g(s) =30

e.g.
g(s?) = _ (with parameter A > 0) (4.4)
14 s2/)\2
hence:
u, — div(g(|[Vul*)Vu) =0 ;2 €R*t>0 (4.5)
u(z,0) = flz) '
Motivation: little diffusion at edges, because there |Vu(x)| is large.
Edge sharpening;:
1D-variant of (4.5) with flux function ®(s) := sg(s?):
up = Oy (Pty)) = O () Uss (4.6)

For g of (4.4) we have:
®'(u,) > 0 for |u,| < X = (4.6) is forward parabolic,
®'(u,) < 0 for |u,| > X\ = (4.6) ist backwards parabolic

(i.e. indication for ill-posedness of (4.6)).

A is a contrast parameter:
For |u,| < A (low local contrast): smoothing;

for |u,| > A (high local contrast): edge sharpening (for “small time”, then growing oscilla-
tions).

We now consider the local behaviour (in z and t) of edge sharpening:

u(-,t)

: x
o
Edge position for a “smoothened edge”
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4.2 Nonlinear diffusion filters

For a “smoothened edge” we define the edge position xq (at time t) as the inflection point of
u, i.e. as maximum of u2. Hence: (uztiz,) (7o) = 0 (With u,(zo) # 0) and (ugtpss)(To) < 0.

Calculate 0 (u?)(xo, t):

Op(u2) = 2uyty (10 2u, D" (uy) uZ, +20 (uy) Uplipee > 0 at (zg,t) exactly for & (u,) < 0,
~~ ~—

T

=0 at (zo,t) <0 an (zo,t)

hence exactly for |u,| > A. Then we have temporal growth of |u,(zo)|, i.e., edge sharpening.

2D-equation (4.5): Introduction of (local) coordinates &, tangential resp. orthogonal to
level curves of u =

0%u
uy = g(|Vul?) Au, +4¢ (|Vul*)2 V'u- el Vu = g(|Vul?) uge + ' (|Vul) wyy, (4.7)
=uge+uny :lvm%m >0 €R

O'(s) = g(s%) +25°¢(s7),
hence forward diffusion along level curves (e.g. parallel to the edges) and forwards/backwards
diffusion (corresponding to sign of ) in normal direction.

Results:
e Smoothing of small fluctuations (for |Vu| small),
e Edge sharpening (normal to the edges) (for |Vul large);

e PM-filter works very well practically (i.e., numerically) (although tending to be ill
posed, which is not proven yet though).

Reason: numerical schemes give “implicit” regularization /stabilization (disappearing
for finer and finer meshes).

e Disadvantage: noise (with |Vu| large) is misinterpreted as “edge” = is retained or
even amplified.

systematic way out with following regularization ...

References: [We| §1.2, [Ma] §10, [TE]

4.2.2 Regularized Perona-Malik model

Replace diffusivity ¢g(|Vu|?) in (4.5) by ¢(|Vu,|?) =: a(z) with u, := K, *u =

{ut = div(g(|Vu,|*)Vu), t > 0, (4.8)

u(z,0) = f(x).
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4 Diffusion filtering in image processing

o > 0 is another scale parameter: noise on length scale smaller than ¢ is smoothened.

Consider (4.8) on Q := (0,a;) x (0, as) with “extension by reflection” of f’Q on R? (nec-
essary for definition of u,).

Theorem 4.1. Let f € L>®(Q2). = (4.8) has a unique distributional solution u(x,t) with:
u € C([0,00); () N L2,(0, 00; H'(@)) 1 C%(31 x (0, 00),

O € L2 (0, 00; H?(Q)).

loc

For a < f <b u satisfies the minimum/maximum principle:

a<u(z,t) <b Vret>D0.

Idea of proof.  a) Existence by Schauder fixed point theorem for the mapping v — w =:

d
U(v) in W(0,T) := {w, d_lf € L*0,T; Hl(Q))} for fixed T' > 0. w solves the linear

equation

{wt = diV(Q(‘VUU’2)Vw)>t >0 (4.9)

w(z,0) = f(x)

b) Regularity via “bootstrapping” argument; i.e. from u(t) € H'(Q2) Vt > 0 follows
u(t) € H*(Q)) Vt > 0, and so on.

¢) Uniqueness & continuous dependence on initial conditions via Gronwall Lemma for
difference of two solutions.

d) Minimum/Maximum principle with truncation method.

Details: [CLMC], Th. 2.1 in [We| |

Remark 4.2. 1) Iteration of (4.9) converges in C([0,T]; L?(2)) VT > 0 (see [CLMC]).
2) possible discretization of (4.8): finite differences; g(|Vu,|?) explicitly, rest implicitly

in time [CLMC].
regular grid (ih, jh, nAt),

1
h= 570 <00 <N+ Ly = ulih, jhnA)

Let of; = g(|V Ky * ul?)(ih, jh, nAt).

2

Discretization of 0., (a(z)uy,) an (ih, jh, nAt):

1

212 [(afiyy + o) (uitl; —ui ) — (o + oy ) (g —uitl )]

i, i,

analogously for 0, (a(z)uy,).
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4.2 Nonlinear diffusion filters

— semi-implicit scheme:
n+1
ij Wiy 1
At 2h?

n n n+1 n n n+1
+ (o + oy ui; + () + o)l

(a?fl,j + O‘Zj)u?jll,j + (O‘ijl + O‘Zj)uzj—ll

n n n n n n+l| __
— (4o t oy ol ol Fal)ul | =0,

IC: uajzf(ih,jh), 1<4,7<N

. n+l _  n+l n+l _  n+l .
Neumann-BC: " = w7, ui'y = uwi'n,yy, 0<:<N+1,
n+l _  n+l n+l _ _ n+l .
Upj = Urj »UNj = UNt1 O<sjsN+1
unJrl —u"
total structure: Tt Ap(u™)u" = 0. Hence one has to solve the following

linear system:
(I + AtA,(u")u"™ =u", n >0,

with Aj, block-tridiagonal, positive definit = I + AtA,(u™) invertible.

Invariances:
Let {T},t > 0} be the solution semigroup of (4.8).
a) Grey value shift:

Diffusivity ¢g(|Vu,|*) only depends on Vu but not on u. =
T,0)=0 , >0
T.(f+C)=T(f)+C , Vt>0;VCeR
On bounded domains one additionally needs homogeneous Neumann-BCs.
b) Contrast inversion:
9(| = Vue?) = g(IVuo?)
= T(=f)=-T(f) Vt=0

¢) mean grey value:

1 1
u.zﬁﬂ/f(x)dx:@Q/Tt(f)dx t>0 (4.10)

follows from divergence form of (4.8) and homogeneous Neumann-BC (compare
extension by reflection).

d) Translation and rotation invariance for 2 = R?.

Reduction of information for ¢ > 0:

Local Extrema of u are not amplified in (4.8):
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4 Diffusion filtering in image processing

Theorem 4.3. Let xg € Q be a local extremum of u(-,ty) for some ty > 0. =
u (o, to) <0 if g local maximum,

ui(xo, to) >0 if xy local minimum.

Proof. Let xy be a local maximum, hence V u(xg,tg) = 0, Ayu(zg,ty) < 0.

At (z9,to) we have by (4.8):
uy = g(|Vug|?) Au +V(9(|Vue|?)) - Vu < 0.

>0 <0 7
[

Convergence of solution u from (4.8) towards mean grey value u:
Theorem 4.4. Let f € L>(R2), Q@ = (0,a1) x (0, az).

= [Ju(t) — pl| o) < Ce™ 1< p<oo,t>0,
with C, X\ depending on Q,p, || f||co-
Proof. e(x,t) := u(z,t) — p satisfies (4.8).
According to maximum principle in Theorem 4.1:

le()ll=@) < [[fllze@ + [ul ¥t = 0. (4.11)

= Ve, (t) = (VK,) * e(t) satisfies (with Young inequality for convolution):

4.11)

(
IVeo®)llm@ < IVKallm@slle@lim@ < Ci V¥t >0

= Jv > 0 with g(|Ve, (2, 8)|>) > v Vit > 0,Vo € Q.
First proof for p = 2: From (4.8) for e(t) we infer, using Ve - n‘m = 0:

/eetdx:/ediv( (|Ve,|*)Ve)d /]Ve[Z ]Veg| ) dz

Q Q

hence
H()ﬁmné—ﬂvdﬂﬁmn, t>0.
2 dt

For ¢ > 0 fixed: e(t) € Coo(ﬁ),/e(x,t)dx =0 (due to (4.10)) = dxy € Q with e(z,t) =

Q
0. According to Poincaré inequality with Cy = C5(€2) > 0

Iy < Call Ve(Dl2a) ¥t >0,
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4.2 Nonlinear diffusion filters

hence
d 2 -1 2
&He(t)np(ﬂ) < —2vC; ||e(t)||L2(Q) ;6> 0.
= (by Gronwall’s lemma) ||e(t)]|z2(q) < 6_”051t||f — 2@ -t >0. (4.12)

Same decay for ||e(t)||rr) with 1 < p < 2 because L*(Q2) C LP(2). Result for 2 < p < oo
follows from (4.11) and (4.12) by interpolation (Ho6lder inequality). [

References: [We| §1.2, 2.3-4

4.2.3 Anisotropic diffusion filter

e so far only scalar, i.e., isotropic diffusivity in u; = div(®(Vu)); flux
j=—®(Vu) = —g(|Vul*)Vu always || zu Vu
e compare to PM-model written in local coordinates (£ tangential, 7 normal to level
curves of u):
Uy = g(|Vu|2)u§§ + &' (Vu)uy,
e an efficient anisotropic diffusion model: diffusion only tangential to level curves/contour
lines (i.e. || to edges)

Ex.: mean curvature filter:

linear diffusion filter in local coordinates:
Up = Uge + Uy

anisotropic analogon (with diffusion only tangential to level curves):

Uy = Ugg , t>0
{u(x, 0) = f(a) (419)

This is a nonlinear degenerate parabolic equation; in local coordinates the diffusion matrix
10
ds A= .
reads ( 00 )
Transformation to = (1, x2)-coordinates gives mean curvature equation:

L N\T  %u 1 2 2
(Viu) ' - 55 - Vou ud Uy — 20, Ugy Uy + U Unyay

|VU/|2 B U’%l + U%Q

U =

(cp. to (4.7))

Vu

= |Vu|div (W) . (4.14)
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4 Diffusion filtering in image processing

k(z,t) = div (%) ... (mean) curvature of level curve of u(-,t) through z.

Theorem 4.5. Assume that f is bounded and uniformly continuous on R?. =

(4.14) hat a unique viscosity solution u(x,t) on R?* x [0,00). It satisfies a maz/min-
principle:

inf f <wu(x,t) <supf.
R2 R2

Solution is L>-stable, i.e., for 2 solutions uy 2(t) with ICs fi 2 we have:

lui(t) — ua(t)|[zo@ey < | f1 — follpo®zy  VE>0

Rem.: vague motivation of viscosity solution: because (4.13) is degenerate parabolic, con-
sider u; = uge + eAu, € — 0 (precise notions is very technical).

Reformulation of (4.14) as transport equation:

ur + Kz, t)n(z,t) - Vu = 0; (4.15)
with

Vu(x,t)

n(x,t) = _—|Vu(x, D)

. unit normal vector on level curve of u(-,t)

(nonlinear, because x,n depend on u!)

Solution of (4.15) using method of characteristics:

u = const along characteristics, given by & = k(z,t)n(z,t).
Result:

e Velocity of level curves is proportional to local curvature;
in direction of decreasing u

e Smoothing by alignment of curvature of each level curve:

Each level curve asymptotically tends to a circle and collapses to a point in finite
time.

e (4.15) cannot amplify contrast:

References: [We| §1.2.3, 1.4-5, [Ma|§10
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4.3 Edge sharpening, shock filter

RN
Uus
/ RN
/\ U9
KRN (51

Figure 4.2: Level curves of u (at fixed time ¢ with u; < uy < ug); the move apart.

4.3 Edge sharpening, shock filter

opposing processes:
e smoothing, blur

e sharpening, deblur

1D-situation:

sharpening?

RN
~_

smoothing
-1

Aim: find a PDE for image sharpening as “time” evolution process
Example 4.6. Let f(x) = cos(x).
O

Conclusion:
e Direction of movement of 1D-“level points” u(z,t) depends on sign[u,(x, t)u.(x,t)].

o for u,(z,t) = 0 or uy,(z,t) = 0: no movement desired

Proposed model (in 1D): “shock filter” by Osher & Rudin:

U = — Slgn(uzu:px)um = _‘U’I| Sign(UIEI)?x S R7t >0 (416)
u(z,0) = f(x)
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4 Diffusion filtering in image processing

b ue>0 | 4w <0 | <0 | ua>0
iumm<0 Eumm<0 E um>0fumm>0

Figure 4.3: desired edge sharpening in 1D, [AK]

This is a transport equation with velocity 1, e.g. in the region where u,(x,t) > 0, . (z,t) >
0: uy + u, = 0. But in total the equation is fully nonlinear.

Preliminary study of a simplified model:
In the above example the local convexity /concavity do not change.

{ut:—|ux|sign(fm),x€R,t>O (4.17)

u(z,0) = f(z) := cos(x)
1st case: consider (4.17) on (—2,%) x R*
—sign(foe) = =1 = uy = |uy (a Hamilton-Jacobi equation.)

Solution by method of characteristics:

cos(x +t) , —T<x<-—t
u(z,t) =41 , t> |z
cos(x —t) , t<xz<F

This is a rarefaction wave, analogously to §1.2; weak solution is only unique if we demand
continuity.

i ¢
(at first) no '
characteristics

|
u=cos(x +1t) — w = cos(x — 1)

|
e
o
SE]
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4.3 Edge sharpening, shock filter

2nd case: consider (4.17) on (%,%8) x RT
—sign(for) =1 = up = —|uyl

analogous rarefaction wave:

cos(x+1t) , F<rx<m—t
u(z,t) = ¢ —1 , t>|x—m
cos(zx —t) , t+m<az<

Solution of (4.17) by periodic extension:
has shocks at » = (2k +1)3,k € Z:

|
B
(@]

u = cos(z +t) u = cos(z —t)

For t > Z :u(x,t) = (—1)* for (2k —1)5 <z < (2k +1)3. = (4.17) sharpens the curves
up to perfect step functions (in finite time!) with jumps where f,, = 0.

Information gain (because of sharpening) seemingly possible because of restriction to
ue {-1, 1}.

Generalization of “shock filters” (4.16):

U = —|ug| F(tuge), 2 € Rt >0 (4.18)
u(z,0) = f(x)
with F' € Lip(R) and F'(0) = 0;sign(s)F(s) > 0, Vs # 0.
e.g. with F(s) = s:
U = —|Ug|Upe = —(Uge sign(ug))u,, = € Rt > 0. (4.19)
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4 Diffusion filtering in image processing

Figure 4.4: u(-,t) for t =0,..., %

This is a transport equation with local propagation speed c(z,t) = sign(u,)uz,.
Edge positions x( are defined as maxima of u2 = wu,.(z¢) = 0, u,, changes sign at .
= sign change of ¢(x) is “detector” for edges (and extrema of u).

(4.19) is ill posed (backwards parabolic!), but works very well numerically (reason still
unclear).

Conjecture 4.7 (Osher-Rudin, 1990). Let f € C(R). = (4.18) has a unique solution
with jumps (for ¢ > 0) only at inflection points of f(z). The total variation of u(.,t) is

constant in ¢, the same holds for positions and values of local extrema.

2D-generalization:

uy = —|Vu|F(Au), z€R? t>0;

e.g. with F(s) := sign(s).

References: [AK] §3.3.3, [Ma]§10
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5 Pattern formation /
reaction-diffusion equations

Examples for pattern formation processes:

e chemical reactions, e.g. spiral waves

e two-phase mixtures of liquids, e.g. “fingering” in oil-water flow in porous medium

e in biology: leaf structures, animal skin (“animal coat”), ...

in biology: only the “recipe” for pattern formation processes is “stored” genetically, but

not the pattern itself.

Aim: (nonlinear) mathematical models (e.g. parabolic PDEs) producing “such” patterns

— as possible mechanism for pattern formation.

5.1 Reaction-diffusion equations

Derivation:

c(z,t) ... (scalar) density function of a substance; x € R?
J(c,z,t) ... flux function
f(e,z,t) ... production rate of substance

Balance equation in domain © C R3:

d
cle,t)de =— [ J-vds+ | fle,z,t)dx
/ Q/

dt
Q o0

div.
e [ div 4 f)da

Q

Q) arbitrary =
o +divJ = f(e,xz,t)

classical diffusion: J = —DV¢; here only D = const.

Generalization on multiple interacting species or chemicals ¢;(x,t); i =1, ...

(5.1)
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5 Pattern formation / reaction-diffusion equations

Rate of production/reaction here only f = f(c) € R™ (nonlinear!):
¢ = f(c) + DAc. (5.2)

here: 0 < D = constant diagonal matrix; hence no cross-diffusion.

References: [Mu] §9.2

5.2 Turing mechanism

let m = 2; ¢ = (u,v)", after suitable scaling (spatial scale parameter v > 0,d > 0):

{ut =~f(u,v) + Au (5.3)
vy = vg(u,v) + dAv

Turing mechanism:

1. Let (ug,vo)" € R? be a spatially homogeneous, asymptotically stable stationary
point of

up = vf(u,v), vy = vg(u,v). (5.4)

2. For suitable f,g and 1 # d we have: (5.3) is linearly instable at (ug,vo)", although
diffusion “usually” stabilizes.

= small disturbances of the homogeneous stationary state can produce spatially inho-
mogeneous patterns in the time evolution: “regular” (but usually not perfectly periodic)
patterns as stationary states tq(z) = limy_o u(z,t) resp. voo(x) = limy_,oo v(x,t). They
are not unique!

Consider (5.3) on © C R? with BC:

ou Ov

—_— — = Q

ov  Ov 0, zeo,
i.e. 0-flux-BC to permit self-organizing patterns (without BC-effect!).
IC: u(x,0),v(z,0) given.

Definition 5.1 (linear asymptotic stability). For an autonomous dynamical system y' =
F(y) a point yo € R™ is called a linearly asymptotically stable stationary point if F'(yy) =
0 and for all eigenvalues of%—g(yg) we have: Re(\;) < 0. If there is an eigenvalue satisfying
Re(X\;) > 0 then yo is called a linearly unstable stationary point.
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5.2 'Turing mechanism

The case Re(A;) = 0 is not covered here because it does not allow for a stability statement
about the nonlinear system.

Conditions for diffusion-driven instability:

Lemma 5.2. (ug,vy)" € R? is a linearly asymptotically stable stationary point of (5.4)
=

f(uo, Uo) = g(UO, Uo) =0,
fut o], , <0, (5.5)
fugv - fvgul

uo,v0

uo,v0

Proof. Linearization of ODE (5.4):

U — Ug
w = ;
UV — g
for |w| small we have:

wy = yAw, A= ( Ju Jo ) c R2%2.
Ju Gv ) o 00

w = 0 is linearly asymptotically stable < ReAj2(A) <0 <

Conditions:

trA:)\1+)\2:fu+gv| < 0,

u0,v0

detA:)\l/\Qqugv_fvgu| > 0. n

u0,v0

Theorem 5.3 (necessary condition for instability). Suppose (5.5) holds. Let (ug,vy)' €
R? be a linearly unstable stationary point of (5.3) =
dfu + Go >0,
) ‘uo’vo (5.6)
(dfu + 90)° — 4d(fugo — f’UQU>‘

ug,vo
(1st condition and middle condition of (5.5) imply that d # 1, fug, <0)

Proof. Step 1: Solution formula for linearized RD-equations, via eigenfunction expansion:

Linearization of (5.3) around stationary state (with w(z,t) € R?):

1
wy = yAw + DAw | Dz(o 2)
ow (57)
BC: =2 =0, €09,

IC: w(z,0) is “small” disturbance of (ug,vg)".
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5 Pattern formation / reaction-diffusion equations

Consider first the scalar eigenvalue problem (=Helmholtz equation), z(z) € R :

—~Az=p%2 , ...bounded domain (5.8)
=0 , 00 '
p2 € Ri,n € Ny ...discrete eigenvalues of —A (increasing), p ... “wavenumbers’; i

proportional to wave length

zn(z), n € Ny ... (scalar) eigenfunctions; form ONB of L?(£2) (due to “expansion theorem”
for self-adjoint compact operators).

In particular: gy = 0, zp = |2|~'/2. This 2-homogene mode is asymptotically stable by
assumption (5.5).

Ansatz for system of two parabolic equations (5.7): based on eigenfunction expansion for

(5.8):

[e.9]

w(x,t) = che’\"tzn(x), (5.9)

n=0

Main question: When can there be a A\, with Re \,, > 07

Calculation of A\, € C, ¢, € C% n € Ny by inserting in (5.7) and matching the coefficients
of z,:

AnZnCn = VznAcy, + Az, Dey, &8 Zn(vA — ,uiD)cn Vn € Ny

This is a homogeneous linear system of equations for ¢,. Its solvability condition (because
zn Z0):
0 =det(\ ] —yA+p2D) = X2 +1(2) N\ +h(p2) =0, (quadratic eq. for \,) (5.10)
(p?) = p*(1+d) = 7(fu+90) ER,
h(p?) == dp* —y(d fu + go)p® + 77 det A € R.
Let M € C,j = 1,2 be solutions of (5.10), i.e., eigenvalues of yA — u2 D, and ¢/, € C? the

corresponding eigenvectors. (Here we assume that yA — u2 D is diagonalizable Vn € Nj.!)

= ez, (z) solves (5.7).

A2 resp. ¢l? are conjugate complex or both real because YA — p2 D is real.

= w(z,t) = Z [oznc,lle)‘}lt + B2t 2, (), (5.11)

n=0

and the coefficients «,, 8, € C are uniquely determined by the Fourier expansion of the
ICw(-,0) € L*(;R?).

Step 2: proof of the two inequalities (5.6):

!This also implies that the eigenfunctions ¢, z, are complete for (5.7); it would not follow from the
“expansion theorem” as (5.7) is not symmetric.
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5.2 'Turing mechanism

Homogeneous stationary state (ug,vg) of (5.3) is linearly asymptotically stable < both
solutions of (5.10) satisfy: Re A\L? < 0 Vn € N,.

In any case we have

(p*) =p*(1+d) =y (futgs) >0 Vp
—— e ——
>0 <0 <01t. (5.5)

If A\, is a double eigenvalue (340 A, = —1(p?)/2 < 0, i.e., asymptotically stable mode.

Stationary state (ug, vo) is linearly instable < In € N, 35 € {1,2} with Re \J, > 0. (Rem.:
n = 0 is asymptotically stable mode.)

This happens exactly for h(2) < 0 in (5.10) for one n € N; because (5.10) implies:

N = —1(y22) +/B(i2) — Ah(s2) (5.12)
———"

<0

and A\l >0 <= n(u?) <0.

h(p?) = dp* —y(d fu+ go)p® + 7*det A (5.13)
>0 >0 from (5.5)

= h(pu?) < 0 only for d f, + g, > 0 possible (= Condition 1).
As fu+ g, <0 (from (5.5)) = d # 1, fug, < 0.

Minimum of h(u?) as function of p?:

d fu+ gu)? d fu, + g, Cond.1

Bomin = 72 th_(“—” 2 e Iy 0

,Y \e>0, 4d ) /Lmln ’y 2d >
>0

= condition for h(u?) < 0 for one p # 0:

(d fu+ gv)?
4d

le.for0O<d<lord>1. [ |

>det A >0, (= condition 2).

Remark 5.4. h(p?) <0 & p® < p? < * (possibly empty set, depending on d, )
with

2 o :Vdfu—i—gv T \/(d fu+ gu)? —4ddet A

14
W 54 (5.14)

(=zeros of (5.13)).

Above conditions are necessary but not sufficient because p2, isn’t an eigenvalue in
general.
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5 Pattern formation / reaction-diffusion equations

h(k?)
d=d, Tl Wavenumbers

d<d, of unstable modes

’ o k%/#

AN k2 k2 k2 AN S
d>d;
de
(a) (b) d<dn 4l

Remark 5.5 (sufficient condition for instability). Exactly for the discrete eigenvalues
p2 € (p?,7i%) (if they exist!) we have Re A}, > 0 (unstable modes! Follows from (5.12)).

Following (5.11), the asymptotic behaviour of w (for large ¢) then is:
Z anch et Zn ()
p<pn<p

Sum only over discrete eigenvalues of (5.8) (possibly empty set) = only finitely many
wavenumbers pi,, (of the “pattern”) are unstable. Mode with maximal )\, is domainant.

Idea: Linearly instable eigenfunctions are bounded by nonlinear effects = spatially inho-
mogeneous stationary states develop (proof exists only for special cases)

Java-Demo for Brusselator: http://crossgroup.caltech.edu/Patterns/Demo4 5.html
(runs in Internet Explorer 11; not in Firefox)

Scale parameter 7 (/7 proportional to typical length scale) appears only in the interval
boundaries (5.14) for instable p-interval: the larger « is, the more instable (pattern) modes
there are.

Remark 5.6. Let Q = R? = Helmholtz equation (5.8) has continuous spectrum p* > 0.
For all modes with z* € (p?, 77°) (5.9) is linearly instable.

= spatial pattern develops; with wavenumber p for maximal )\b.

References: [Mu] §14.2-3; [EGK] §16.2.12

5.3 Pattern formation in a sample system

Example for (5.3), first in 1D:

{“t = 7 (1, 0) + thas = (@ — v+ 0P0) + U (5.15)
Ut

= 79(u,v) + dvge := Y(b — u?v) + dvg,
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5.3 Pattern formation in a sample system

t>0,z€(0,p);a,bd>0

Schnakenberg-System: Model for biochemical reaction between 2 substances with den-
sities u(z,t),v(x,t) and 3-molecule reaction (e.g. additional encyme reaction in system
dynamics).

Pattern formation is independent from exact form of f, g.

Homogeneous, positive stationary state:

u0:a+b,voz(a+b)2 , b>0,a+b>0;
at (ug,vo):
b—a —2b
u — v — b2>0; w = s v = — b2<0
fo=y fo=(atd) Gu= oy 9 (a+0)

Consequence of (5.6): fug, <0 = b> a.
Conditions (5.5), (5.6) for linear ODE-stability resp. linear PDE-instability:

futge<0 = 0<b—a<(a+b)3
det A= fug, — fogu=(a+b)>>0 v
dfu+9,>0 = db—a)> (a+b)3
(d fu+ 9)* — 4d(fugo — fogu) >0 = [d(b—a) — (a+b)’]* > 4d(a + b)*

(5.16)

These inequality for (a,b,d) define area of instability (“Turing space”).
Eigenvalue problem (5.8) on © = (0, p):

Zow + 1122 =0, 2:(0) = zz(p) =0
nmw nTT

= fp = —, 2p(x) = cos —,n € N
p p

Let (a,b,d) be in the Turing space defined by (5.16).
= from (5.14): band of instable wavenumbers = (u, 1) = (y/72, /70) with

2 o db—a) = (a+bF/[db—a)—(a+b)*? —4d(a +b)*
07T 2d(a + b) (5.17)

= all discrete modes with p, = I e (u, @) are linearly instable.
p &

asymptotic behaviour (for large t) of w(x,t) ~ (u(x,t) — ug,v(x,t) — vg) from (5.15):

n
1 nmx
w(x,t)NZan cn et cos ——, (5.18)
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5 Pattern formation / reaction-diffusion equations

AL ... positive solution of quadratic equation (5.10).
n,7 choosen such that the corresponding wavenumbers are in the band (y, ).

Influence of scale parameter v > 0:

typical length scale / system size oc /7:

| | | | |
| | | | | Hn

| |

[ [
b=ya =0
Instable interval (u, ) shiftable by 4. Depending on «y there are 0, 1, ... linearly instable

modes:

o For vy <. = (@)2: all modes are linearly asymptotically stable = (ug, vg) is stable

g
= no “pattern” possible.

e Bifurcation at vy = . (critical value)

o For v > v, with p < py <z < pp = only mode 1 is linearly instable:
x
u(x,t) ~ug + ceM? cos W—, Re Al > 0.
p

(valid in “linear regime”)
exponential growth of w is restricted by nonlinear effects.
Hypothesis: uo(x) & ug + ¢cos ZF

expected 1D-pattern (for ¢ > 0):

//

Z.

o If 1y < p < pp < < pz = only mode 2 is linearly instable:

[S14S]
i~

2mx
w(z,t) ~ up + ce2 cos —= Re AL > 0.
p

expected 1D pattern:
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5.3 Pattern formation in a sample system

Uoo > U

A

NS
oS e
o
iS]

Z

Analogously for even lager systems. Also: system size and geometry (in 2D) are decisive
for possible patterns.

2D-case:
Eigenvalue problem (5.8) on = (0,p) x (0, q):

Az4p?z=0 |, %zOon@Q
v

2 2
m nmx Y
= iy =T (1? + —2) s Znm (T, Y) = cos — cos in,m € Ny

q p
All discrete modes 2y, (7, y) With fi,.m € (u, 1) (from (5.17)) are instable.

asymptotic behaviour:

N nww mm
w(z,y,t) ~ Qlym, Cpym €™ COS —— COS
~—

(sum over instable modes)
p q

o eC2

Expected 2D-pattern, mode (1,1):

Y

/@/
7/

N

References: [Mu] §14.4
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5 Pattern formation / reaction-diffusion equations

5.4 Animal coat color patterns

Explanation ansatz: coat color patterns correspond to a bio-chemical “prototypical pat-
tern” which is formed during pregnancy.

“experimental”’ reaction-diffusion model:

{ut =~vf(u,v) + Au (5.19)

vy = vg(u,v) + dAv
f(ua U) =a—uU— h(u7 v),g(u,’u) = a(b o U) o h(ua U)v
B pUL
1+ u+ Ku?
Parameter a,b, o, p, K > 0;d > 1

h(u,v) :

(rather “invented” function)

Scale parameter /7y proportional to typical length scale.

Region () for animal leg or tail: surface of cylinder (resp. trunacted pyramid)

Eigenvalue problem (5.8) on  with 0 < z < 5,0 < 6 < 27 leads to (with periodic BCs in
g; r =radius):

n®>  m2n?

2
Hoom = T_Q + —82 ;Zn,m(97 :1:) = cos nb cos

x
in,m € Ny
and

x
in € N;m e Ny

m
Z_nm(0, ) = sinnb cos T

All discrete modes zy, y, With fi,,, € (i, i) are instable.
Effects:

from numerical simulations with FEM; solution of (5.19) for “¢ — o0” (up to stationary
state).

e long, thin cylinder (0 < r < 1): all circumferential modes n > 1 are outside the
band of instability (i, ) = only vertical stripes (with n = 0)

e the thicker the cylinder, the higher circumferential modes are possible
Conclusion:
e Effects are described qualitatively correctly.

e Whether model (5.19) describes their evolution correctly, is (still) unclear. The qual-
itative influence of the length scale on the possible patterns is “quite independent”
of the equation.

References: [Mu] §15.1

104



5.5 Pattern formation in 2-component mixtures / Cahn-Hilliard equation

5.5 Pattern formation in 2-component mixtures /
Cahn-Hilliard equation

Application: Phase separation (under dominant diffusion) in binary fluid mixtures (e.g.
(liquid) metallic alloys, emulsions: vinegar-oil, Ouzo-water microemulsion).

0<cpa(x,t) <1 ... local concentration of 2 components

Derivation of Cahn-Hilliard equation:

ci+div,=0; i=1,2

Assumptions: system isotherm, isobar, incompressible
= c1+cp =1, at(61+02):0, J+J=0

choose c:=c¢;—cp€[-1,1], J:=J1—Js

= ¢ +divJ =0 QcR% (5.20)
phenomenological Derivation of flux J = —LVy :

L>0 ... (const.) mobility

L e chemical “potential” (e.g.. u = ¢ with diffusion);

defined as derivative of a potential (resp. variational derivative of

free energy); Vu is driving force for evolution

e free energy for mixture (= necessary energy for “generation” of a system with def.
temperature 7" which is in balance with the environment.)

E(c) :z/[f((:)%—% IVe]*| dz e R, ~ >0 const.
0

% |Vc\2 o energy of phase boundary between ¢ = +1;

“penalizes” phase transitions
f:R =R, given function, bistable (i.e. with 2 minima), e.g.

fle)=a(c®—ad*)?* a,a>0.

e system desires minimization of E(c)
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5 Pattern formation / reaction-diffusion equations

e /i ist variational derivative of (non-convex) functional E (cf. Gateaux derivative):

E(c+ev) — E(c)

OF (c,v) = lim
—— e—0 9
(%)
2 2
_ hm/f(c—l—av) f(c) +f_y\V(c—|—8v)| Ve de
e—0 € 2 €
Q
int. by:parts /f/<C)U . ’)/AC'U da
Q
(%): at position ¢; in direction v € CJ(£2)
= u(c)= 0E(c) = —yAc+ f'(c) ... Riesz-representant onL?(2) (5.21)
as lin. functional
insert into (5.20) = Cahn-Hilliard equation:
¢t = LA(=vAc+ f'(¢)), Q (semilinear, 4th order) (5.22)

e possible BCs:
a) periodic BC
b) ¢ =0,J-v=—LZ(—yAc+f'(c)) =0, i.e. vanishing flux through boundary

e Idea of evolution:

const. solutions ¢ with f”(¢) < 0 can be unstable (because diffusion term L div(f”(c)Ve)
appears; is dominant for small variations) — pattern formation (coarsening for
t 1 0; “grains” develop out of almost one substance)

Theorem 5.7. Let ¢ be classical solution of the Cahn-Hilliard eq. in Q := (0,1)¢ with
periodic or 0-flux BCs. =
d
1. Jocdz =0
(= [ocide = const, because [ ¢y + cadx = [1dx = const)

2. % E(c(t)) <0 (free energy is Lyapunov-functional)

Proof.

1. d
a/cdx = L
Q

div Thm

A(=yAc+ f'(c)) dz

BC

L [v-V(—yAc+ f'(¢))ds =0

S — o —
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5.5 Pattern formation in 2-component mixtures / Cahn-Hilliard equation

d
&/(% \Vc|2+f(c)) dz = YWVe Ve + f(e)e da
Q

— O —_

int. by parts [—vAc+ f'(c)] ¢; dx
Q
= 1ot FEIA LA ]
Q
e byparts / IV [=7Ac+ f/(e)]]* dz <0
Q

Remark: also holds for weak solution

Theorem 5.8 (|[EF]|, Th. 2.1). Let Q = (0,1), f be double sink potential with
fle) = yac! + e + 9%, o € HR(Q) == {y € H*(Q) | y,(0) = (1) = 0}.
For the Cahn-Hilliard equation (5.22) with boundary condition (b) we have:

(i) VT > 03! solution c € L* ((0,T); H*(QY)) with ¢ € L*((0,T); L*(Q)) .

(ii) If co € HS(Q) N HZ(Q) and 5—; co € HE(Q) then the solution c is classical.

linear instability:

All constants ¢ = ¢,, € R solve the Cahn-Hilliard equation (5.22) (homogeneous station-
ary solution).
Disturbance ¢ = ¢, +u, u small with [, u do = 0 (conservation of mass); let e.g. L = 1.

Linearization at c¢,,:

u=c = Al=yAu+ f'(c) = f'(cm)]
A [_'VAU + f”(cm)(c - Cm)]
—AyAu — f"(em) u] (5.23)

Q

Eigenfunctions of operator u + —A(yAu — f"(c,) u) on Q = (0,1)¢ with periodic BCs:

. 2
or(z) = €F ke K = TWZd \ {0} (because [udx =0),

Moo= kP (= IEP = " (em))

" 2 " 2
- (i Do e 20
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5 Pattern formation / reaction-diffusion equations

Remark: {¢x}rer ... Basis of {L*(Q2) | periodic BC, [ fdz = 0}
= solution of (5.23) as linear combination:

U(ZL‘, t) = Z ake)"“t eik~x

keK

e u =0 is unstable if an eigenvalue A, > 0; only possible for f”(c,,) < 0.
Let f"(cm) <O.
e from (5.24): most unstable mode for largest eigenvalue, hence
" 2
|k|* + M} — min
2y

——
<0

Let the solution be k.

— most unstable wave length:

2T 27y .
lg = — =27,/ — because k discrete).
"= ol 2N T Fen )

= k[
T Pled e\
Y

unstable wave numbers 27y

e wave numbers |k|* > —@ are (linearly) stable

— Region with [ = 2% < 27 7

|k| _f”(cm)

does not allow for instability, i.e., no

pattern formation.

Long term behaviour:

Theorem 5.9 (|EF|, Th. 2.1). Assumption of Thm 5.8: let 7 [ ¢y dz = M, and c be
the unique solution of the Cahn-Hilliard Eq. with BC (b) =

t—o00

(1) c(t) == coo n L*(Q) with co is one solution of the stationary problem:
yeho = fllew) —a, 0<az<l,
A (0)=d () = 0, (5.25)
[ewdr = [¢da,
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5.5 Pattern formation in 2-component mixtures / Cahn-Hilliard equation

and integration constant o € R to be determined.

(2) Solution of (5.25) is equivalent to finding critical points of F(c) in H'(2) N LY(Q)
under constraint G(c) == [, c dx = Ml. (by calculus of variations then c, satisfies:
dE(c) + AdG(c) (521 —vAc+ f'(¢)+X =0, with 0G(c) = 1 and Lagrange multiplica-

—_— —_—

=p(c)
tor A € R.)

(3) c(t) =5 M (= const) in L*(Q) (hence no phase separation), if one of the 3 fol-
lowing conditions holds:

a) v > 7lr_22 and ||coll2 small enough;
b) |M| large (because then solution of (5.25) is unique);

¢) [(flco(x)) = fm) do+ 2 chll32 small enough and f(co(x)) > fm Va € (0,1),
where [ = f(cm) is a local minimum of f and |y, — M| is small enough.

Remark 5.10.
(1) Solution of (5.25) in general not unique; co, = M is always a solution.
(2) Stationary problem of Cahn-Hilliard Eq. (5.22):
(—YCez + f())oe = 0, 0<z<l with ¢,(0)=c,()=0
(vew+ FO)] =0

integrating twice gives (5.25).

(3) ad stationary problem (5.25):

For M =0 and f(c) := % - < (5 25) has exactly 2Ny + 1 solutions, where Ny =

Lﬂlﬁj ... Gauss bracket. One solutlon is ¢ = 0. If ¢(z) is solution = —c(x) is

solution.

Proof. of Theorem 5.9 (3c):
from E(c(t)) \:

l
/f ) de+ 2 < Ble)
0

Sobolev embedding + Poincaré inequality (for c — M € H'(Q), fol(c — M)dx =0) =

1 l
/f da;—l—— e — M| < /f co) dz + 2 HcoHLz ] — fml
0 0
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5 Pattern formation / reaction-diffusion equations

: 2
= with i{lc — cnllie < |lc = M3 + |cn — M|

l

l
Cry Cr Y
J@=tmder L lle = enli < [ (fe0) = i) dot ST e = MP+T Il = ¢
0 0 >0 1t. VS
(5.26)

c
by assumption ¢ “small enough”.
. I
Now let ¢y such that ¢ < % (cm — cp)? and /f(co) — fmdz >0
0
Claim:
lle(t) — emllpoe < € —cp VE>0. (5.27)

Proof: From (5.26) for ¢ = 0, hence ¢ = ¢o:

oo = Gl < 2 < 5 lem = ) < (6 = u)®
¢ continuous in ¢ = (5.27) holds on maximal interval [0,¢*). Let t* < oo and

lle(t™) — emllpoe = Cm — Co. (5.28)
From (5.27): for t € [0,t*): c(x,t) € (cp,2¢m —p); f is convex

= f(c(z,t) > frn Vo e(0,1), te]|0,t7)
= /f(c(t)) — fmdz >0 on [0,t%)
Cry

C
= (from (5.26) ) — [|e(t) = enllf <& < % (em — c)?
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5.5 Pattern formation in 2-component mixtures / Cahn-Hilliard equation

1
= le(t) —emll o < 7 (¢m —cp) on [0,t") ... contradiction to (5.28).

Hence (5.27) Vt > 0.

From (5.27): f"(c(x,t)) >0 Vze (0,1), t>0

l

et = (—VCax + f/(c))xx | - (c— M), / dz

0
d l
1 int. b t
= = lle= M+ lealia T ETT —/f”(c) (cz)?dz <0.
2 dt ——
0 >0

With 2x Poincaré inequality (due to fol(c — M)dz = 0) and with ¢,(0) = 0 we obtain:

Cyl
le=Mll. < G lleallpe < % ezl 2 -

d 2 4~y 2
= g lle= M < 7 o= M
2

&y
= )= Ml < e G o= M, 20

Remark: In Theorem 5.9 (3) f” > 0 is essential, while for linear instability f”(c,,) < 0
was necessary.

References: [EGK] §6.2.13, [EF|, [TE]
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6 Problems with free boundary /
thin-film equation

Examples:

e Flow in porous medium (u; = Au®, a > 1); d(supp u(t)) is free boundary: dependent
on time and solution

e Phenomena of melting and solidifying (“Stefan-Problem”): interface between liquid
and solid phase is free boundary

e Obstacle problem for elastic membrane — course “calculus of variations”

e Evolution (resp. flow) of thin (wetting) liquid films on flat surface; free boundary =
O(supp h(t))

6.1 Derivation from Navier-Stokes equation

NS-equation for homogeneous incompressible flow:

0o [ur + (u-Vul+Vp = pAu
divuy = 0

in domain

Qt) = {(w’,xg) = (11,19, 73) €R? ‘ e 0<az< h(dt) }; Q' c R?...bounded domain
——

smooth, pos.
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6 Problems with free boundary / thin-film equation

114

€3

on fixed boundary ((2',z3) with 2’ € 9 or x3 = 0): no-slip boundary condition

u=0.

wanted: BC on free surface I'(t) = {(z/, h(2',1)) | 2’ € Q'} .
particle trajectory: (z'(t), x3(t)) with tangential vector u(z'(t), x3(t)) .

Idea: free boundary moves along with fluid:

d /

— (¢

Ay
d

(1))

= (ug,u2)(2'(t), h(2'(t),t),t) ... projected trajectory,

= wug(2'(t), h(2'(t),1),1)

= kinematic BC'on T'(t):

us = 8th—i—u1 axlh+U2 &Ezh (62)

Balance of forces on surface between stress and capillary forces:

TV;’)/I{V

. surface tension (acts in normal direction) (6.3)

Hence: tangential components of T'v vanish:

(Ty)tang = 0

Stress tensor

o (TV)norm = YK (6.4)

T=2uD—pl (as divu = 0)

Deformation tensor 2D =V ®@u+ (V@ u)"

v ... const (~ capillary number)
. Vo h
Kk = divy | —m—— mean curvature
14|V hl?



6.1 Derivation from Navier-Stokes equation

Scaling:

L typical length scale (horizontal)
H ... typical height of film
Vv typical velocity scale (horizontal)

- H
vy = Lt;; 1=1,2; wx3=Ha3; h=Hh with 5:f<<1
L. ey g3y
i = Vi =1,2; =cVus; t=—t; =—p V.i=—
u u 1 us gVvus v p Lp p
LV
Re = &0 Reynolds number
1

The scalings of w;, t, p arise naturally; the choice of V' (later on) gives the “correct” bal-
ance between pressure term and viscosity.

Scaled NS-equation (notation ‘"’ for scaled variable is omitted from now on):

e Re [Oyu;+ (u-Vu) + 0, p = (20, 202, 407 Ju; i=1,2 (6.5)
e Re [Qyus + (u-Vus) +c 20, p = (202, +° 02, + 02,) us (6.6)
divu =0

Assumptions: e2Re <1, <1

= dominant e-order in (6.5), (6.6) (— “lubrication-approximation”):

D2 u; = Oyp; i=1,2 (6.7)
Opyp = 0 (hence p =p(a',1))
Solutions of (6.7) with BCs w;(z3=0)=0, O,,u;(x3="h)=0 (see (6.9) below); i = 1,2:

2

wi(z,t) = 8, pla',t) {%—h(m’,t)xg}; i=1,2 (6.8)

(cf. Poiseuille-flow)

On free boundary x5 = h(z/,t) (with 0,,h = O(¢)):

0
y:<(1)>+0(5), k=¢eAh+O(?).
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6 Problems with free boundary / thin-film equation

Consider (6.3) (unscaled !) for this particular v:

Quy 4 Ous

0 (913 ory 0
T10 |=p| 52+52 |-{0
1 9 Ousg D

“Ox3

Magnitude of above terms after scaling: O(s?), O(e?); O(=%), O(e)

Dominant e-order of tangential component (xy, x3) in balance (6.4) at x3 = h(z') is O(g?) :
Oz ui(h(2')) =0; i=1,2. (6.9)
Dominant e-order of normal component (x3) in (6.4) is O(e) :

—p=Ah (in scaled variables) (6.10)

e Integrate divu =0 in x3:

h(z‘l,l‘g,t)
0= / Oyt + Dyttn) s + us(a, B!, 1), 1) — s (', 0,1) :
0 =0

from kinematic BCs (6.2) at x5 = h(a2'):

8t h = us — Ulaxlh - U28332h

h($1,$2,t)

= — / (@Clul + 8;52’&2) d[Eg — Ux &Clh — U9 aQJQh

0
Uy (6.8) : , . h3
Uy dzs | = —divy | =V p(2', 1) 3

= — din/ (
flux fl;_rnCtiOIl

With (6.10):

h(iE1 ) ,t)

N

3
hy = —div (% \Y Ah) ... thin film equation for h(xy,x2,1), (6.11)
(quasilin., 4th order)

e Evolution driven by surface tension, slowed down by viscosity

e While Navier-Stokes describes the full flow inside the film/droplet, (6.11) describes
the evolution of its shape (due to the underlying liquid flow).

e Applications: movement of drop of water, (oil) lubrication, (paint) coating processes
References: [EGK] §7.10-11, [My]|
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6.2 Boundary conditions

6.2 Boundary conditions
more general thin film equations:

_ irm d.
{ he = —div(h"VAh), z€R?; 0<n<3 (6.12)

h(-,0) = he >0
(6.12) holds on {h > 0}.

wanted: BCs on free boundary 0{h > 0}.
Caution: in §6.1 the surface of the liquid was the free boundary, now it is the boundary
of the liquid film.

(6.12) is parabolic eq. of 4th order with free boundary — 3 BCs at every x € 9{h > 0}
needed:
1) h=0 on 9{h >0}

2) contact angle 6 of the liquid at the intersection between fluid, der Fliissigkeit am
Schnittpunkt zwischen Fliissigkeit, support, air — results from three surface tensions
between two materials each (Young-Dupré law)

a) 0 #0 (e.g. water drops on plastic)
b) & =0 (e.g. water drops on very clean glass, wetting), h, =0 on 9{h > 0}

Luft /( liquid Luft / liquid

solid solid

3) Speed of propagation of contact line:
First special case n =1, d =1 with BC 2b); hence

hi + (hhyzs)e = 0.

Formally V' := hg., on 9{h > 0} is the speed of progation of the free boundary
(compare linear transport equation — hyperbolic). Movement of contact line back and
forth is possible.

Formulation as free boundary value problem:

he + (Whoga)e =0, in {h >0}

h=h,=0 ,on 0{h >0}
V = hypa ,on 0{h >0}
h( 70) :hO

This is a coupled evolution system for h(z, t)|{h>0}, a(t), b(t).
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6 Problems with free boundary / thin-film equation

h(z,t)

Va Vi
— —

a(t) b(r)

Deduction of V' = h,,, for smooth solutions:

wlog let the (only) free boundary at ¢ =0 be at x = 0.
coordinate transformation

t

yi=x— /V(T) dr = problem with fixed boundary for h(y,t) := h(x,t) :

el

hy —hy V() + (R hyy), =0 , in (0,00) (6.13)
h=h,=0 , y=0 t>0 (6.14)
;L( 70):h0
d, in (6.13)
= 0 = %Lyt_@yyv‘FSNﬁgyy)yy R S
= hy — hyy V + hyy hyyy + 20, 05 b+ h O} h

At y =0 we have with (6.14): hy,,(0,1) [V(t) — izyyy((),t)] =0
If By, (0,1) # 0, then V = hyp,.

Generalisation to d € N, n > 0 (Proof: |GR] §9):

V(zg) = xlirilo p1 % Ah(x,t), x9€ 0{h >0}
zesupp(h(-,t))

References: [Kn| §1.1, §2.12

6.3 Positivity of the solution

Parabolic equations of 4th order in general have no maximum principle (— Exercises),
but degenerateness of (6.12) “prevents” h < 0.

e technical aid: integral estimates
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6.3 Positivity of the solution

e multiply (6.12) by Ah; integration over R? x (0,T) formally gives

T T
1
_§/aty|wl\|2 dt = //h”WAhF dz dt
0

0 Rd

and hence the energy estimate:

/th| dx+//h”\VAh\ do dt = /|Vhy (0) dz (6.15)

0 R

~
energy of the linearised energy dlss1pat10n
surface tensions through viscosity

= energy \, (if [|[VA(0)|zz < o0)

o “entropy” [p. G(h) dz defined using

S

G(s) := /g(r) dr, g(s):= / |r|™" dr, (A > 0; large enough)
A

Entropy > 0 (see (6.20)).
e multiply (6.12) by G’(h) = g(h); integration over R? x (0,7T) formally gives

/ / htG’ ) dtdz = / / (R"VAR) - Vg(h) dz dt
——

0 =6:G(h =h—"Vh

and hence the entropy estimate:
T
/G(h(T)) dx + //(Ah)2 dr dt = /G(h(O)) dz . (6.16)
R 0 Rd R

= entropy \, (if [ G(h(0)) dz < o0)

Problem: the above calculations are only valid for “smooth solutions”

For the following rigorous result consider with 1 <n < 4:

ht - _(hn h;mx):v S Q= (—a7a) , > 0
hy = hppy = 0 , x==a (6.17)
h(.,0)=ho € H'(—a,a)
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6 Problems with free boundary / thin-film equation

Theorem 6.1.

a) 3 “weak solution” h € C([—a,a] x [0,00)) (details in [BF] §3);
(Rem: in general no uniqueness because weak formulation has “not enough” BCs. Sub-
ject largly unsettled.)

b) Additionally suppose n > 2,hy > 0 and [,|Inhg| dz < oo (if n = 2) resp.
Jo he7" dz < o0 (2f2<n<4) (— [, G(ho) da < o0).

= solution from (a) satisfies h(z,t) > 0.

Idea of proof:.

a) non-degenerate approximation problems:

Othe = — ([|he|" +€]03R:), , Q2 x(0,00)
Ophe = 2h. =0 ., x=Za (6.18)
he(-,0) = ho. € CH(0) (Hélder continuous)

with hoe > ho, hoe =5 ho in HY(Q), Ophoe = 9ho. =0 on z = +a.

= (6.18) has unique classical solution h.; subsequence satisfies h. — h uniformly
in [—a,a] x [0,T] VT > 0 (via a-priori estimates, compactness; details in [BF]| §2-3).
Sign of h. can change!

b) Step 1: deduction of 2 integral estimates for h. is rigorous.

Analogously to (6.15):
T
1 2 n 3 2 1 2
3 10:he|” (T) da + (|he]" +€)|En.|” da dt = 3 10.he|” (0) da
Q 0 Q Q

= /|hax| ) de < /|h057$|2 dr <2 /|h0ﬂc|2 dr Ve <e; (from H'-convergence)
Q
(6.19)

(6.18) is in divergence form = [, h(T) dz = [, ho. dx
= with Sobolev embedding, Poincaré, (6.19):

he(z,8)| < Cllhe®)|lm < C+Cl|0uhe(®)|r2 <: A Yz €Q, Vt>0, Ve<e.

Analogously zu (6.16):

A
with  g.(s) : / e +€ <0, Gs):= —/gg(r) dr >0 (fir s <A) (6.20)
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6.3 Positivity of the solution

/GE(hE(T)) da:+/T/\8§hs|2 dr dt = /Gg(hog) dz

Q

hoe > ho
< /G(hOE) de < /G(ho) dz < o0 (6.21)

Q Q

Step 2: to show: h(x,t) > 0.
Assumption: let h(zg,ty) < 0

= (due to uniform convergence h.) 36 > 0, &g > 0 with
he(z,ty) < =0 for |z—mo| <d, z€Q, e<ep.

For these x we have:

A 0 0
Ge(he(z, 1)) = = / g:(r) dr > —/ga(r) dr =3 —/9(7") dr 2% 400
he(z,to) <0 s s
<

= lim [ G.(h(tp)) dz = o0 (contradiction to (6.21))

e—0
Q [ |
Rem:

1) Discrete analoga of energy and entropy estimates are important for numerical schemes
= num. solution > 0, (probably) uniqueness (subject still unsettled).

2) Film rupture (i.e. h(zo,to) = 0) for n < & possible (rigorously proven) — no max-
principle!

3) h > 0 (i.e. prevention of film rupture) is of technological importance: oil lubrication,
continuous coverage of paint.

References: [Be| §3, [BG]| §2, [BF] §3, 4
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6 Problems with free boundary / thin-film equation
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7 Collective behaviour - kinetic
equations

Applications: Many self-moving objects of similar size and shape (insects, fish, birds,
pedestrians, many robots) often show complex global behaviour — despite simple individ-
ual rules of interaction.

The models described here are based on detailed observations of individual interactions
(much more well-founded as with most applications of Turing instabilities).

For the interactions there often are 3 typical distances around a central object:

orientation /
alignment with neighbors

attraction

7.1 microscopic ODE-models

Model 1 (2006)
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7 Collective behaviour - kinetic equations

r,€RYG i=1,..,N positions of N objects
v; € RY their velocities

Evolution in Newtonian Form:

dl’i
= V;
dt ’
dUZ'
= « v ;—— VU(|z; — x 7.1
T -y S VUl - o) ()
propulsion ficfion J#i |
attraction/repulsion

— asymptotic speed = /a/f3

typical pair potentials (cf. Morse-, Lennard-Jones potentials in atomic physics):
U(r) = —Cyue M 4 Cre/n

with Cg > Oy > 0, Iy > 1p > 0, 4 12 > in,

U(r)

_— T

Possible long-term effects in model (7.1): swarm formation (rotation); flock formation

(translation Vi: v; = 0 € R?, || = \/a /)

Cucker-Smale model (2007)

dz;
= v
dt
N
dv; 7.2
dt ;a|xl_% v — i) (7.2)
orlen\t'atmn
with a(r) = a HQ)W, v >0 ... rate of communication

Possible long-term effects in model (7.2): alignment of velocities, flock formation for v < %:
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7.2 mesoscopic PDE-models

Theorem 7.1 (Flock formation; [CS]). Let d =3, v < 3. = 3X € R¥Vx3N;

RIVEN 5 X (1) i= (2:(t) — xj(t))1<ij<N =YX (convergence of all pair distances);

3o € R3: v;(t) =X 6 Vi

Model improvement: (e.g. for birds): alignment of velocities only in field of sight:

replace sum in (7.2) by Z ... field of sight around own velocity vector, with

J€ai(t)

i) = {l;é |¥

> cos gb} for some ¢ € (0,7) .
|z — @3] [vi]

7.2 mesoscopic PDE-models

For N > 1 it is often more practicable not to consider each individual “point” but only
averaged models.

For x, v € R? consider the x — v—phase space with probability density f(x,v,t); hence
f>0, [ [f(z,vt)dedv =1Vt f(z,v) should decay “sufficiently” fast for |z|, |[v| — oco.

Evolution of f according to kinetic equation:

fot v Vof +divy[(a = BloP)of] = div,[(V.U(|2]) *, p)f] = 0, t>0, (7.3)
with p(z,t) fRd z,v,t)dv > 0 ... position density (this is a marginal density and
S pdz = 1)

This is a quadratically nonlinear Fokker-Planck-like equation (cf. plasma physics: for ion

dynamics under electrostatic force). . _
Characteristics for the second and third term of (7.3): X =V, V = (a — B|V|*)V, cp.
(7.1)

v-integration of (7.3) leads to continuity equation:

pr+div, j =0, (7.4)
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7 Collective behaviour - kinetic equations

with flux j(z,t) :== [pavf(2,v,t)dv

Total energy:
1 9 1
=35 [ feo )l dede+ 5 [ [ U(le —y)p(e,0)p(y, t) dedy =: Exin + Epor

Lemma 7.2.

(6%
250

with C' = %Sup \U|. (This implies Epy < C, as [ pdx =1.)

E(t) <max{&(0),C +

Proof. For the kinetic energy of the second term of (7.3) we have:

——//v \Y f|v|2dxdv———//dlvx vv)?f) dzdv = 0 .

For the kinetic energy of the 4th term of (7.3) we have with 2x integration by parts and
(7.4):

5 | [P dwl(V.U(Gal) 5 p) fldodo = = [ [0 (.0« p)f doo

— [W el aiv, ( [og )iz = [@lal) ) i

The last tem cancels with the time derivative of the potential energy:

dEpot _ // (| — y]) [p: ()p(y )+p(x)pt(y)}dxdy:// U(lz = yDp(y)pr(z)dyde

With [[ fdzdv =1 we conclude:

Hold 2
= / flo— BloPlfvf ded < a / floPdrdo - 5( / fIvf dedv)” <0
—~—
=VI(VTv?)

where the last inequality holds for [f flv|*dzdv > §
Hence: <0for€>C+2B,asthenEkmzé'—EpotZC’+%—C:%. |

This a-priori estimate on the energy is a crucial input for the global solvability of (7.3).

Relationship to ODE-Model (7.1):

(7.3) can be rigorously derived as “self-consistent” limit of (7.1) (cf. discrete vortex mod-
els). Conversely, (7.1) can be considered as numerical method (particle method) for (7.3);
is also in use.
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7.2 mesoscopic PDE-models

Definition 7.3. M(R) ... signed Radon measures with finite mass (can also be negative;
inner reqular and locally finite); can be identified with Co(R)" (Cy ... continuous functions

with compact support).
PHR) € M(R) ... the subset of probability measures (which means p >0, [dp=1).

Let (2?,0?) be the IC of (7.1) and
N
fr =Y mibae.e € PR, (7.5)
=1

. . 1 . . . .
with m; = & be the corresponding empirical measure in x — v-phase space.
Idea:

0 290 40 (weak * as measure, predual is Cy(R?*?)). (7.6)

Theorem 7.4 (From Newton to Fokker-Planck; “self-consistent” limit; cf. [BH, Ne, Do
for Vlasov equation). Let U € CZ(R{) with U'(0) = 0.

a) [N fized] Let (z;,v;) € C([0,T);R*®); i = 1,..., N be solution of particle system
(7.1), for some T > 0.

= The probability measure

N
I (t) = ijé(xj(t)wj(t)) e PHR*) , (7.7)

j=1
with Z;VZI m; =1 (e.g. m; = ) satisfies fx € C([0,T); PH(R*)) (weak *) and
solves (7.3) with I1C (7.5).

b) [N — oo Let O > 0 with |E[f°]| < oco. Assume that an approzimative sequence
{fSnen (of empirical measures) of the IC satisfies (7.6), and that E[fY] is uni-
formly bounded.

= fn from (7.7) satisfies VT > 0: fy Y222 £ i C([0,T); PLR?*®)) (weak *), where
f is the unique solution of (7.3).

Idea of proof. (only part a)
Step 1:
Let the “force field” E(xz,t) ;= —V,U % p] be given.

Assumptions: let F € C(R? x [0,T]) be locally Lipschitz in « (uniformly in ¢ € [0,T]).

fi +v-Vof +divy[(a — Bv))vf] + E(z,t) -V f =0, t>0 (7.8)
—_————

=div, (Ef)
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7 Collective behaviour - kinetic equations

is a linear hyperbolic equation; corresponding characteristic equations:
dx

dt (7.9)

= BX.0) + (a— VPV

= The measure transported by the flux of (7.9) solves (7.8) (in a weak sense).

Step 2:
For the particle density (actually a measure)

N
pn(t) =7 /fN dv” = ij5xj(t) S Pl(Rd)
R =1

we have

(VU *px) (@) = Som VU (ja =) € GRS,

Hence the nonlinear term (V. U(|z]) * p)f of (7.3) is also well-defined for empirical mea-
sures fy, and the coefficient function V,U(|x|) * py satisfies the assumptions of Step 1.
]

References: [CS], |[BH, Ne, Do]
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8 Nonlinear waves — Solitons

(only up to WS 2011/12)
e 1D wave equation: uy — 2u,y, = 0,2 € R, t € R

Solution: travelling waves u(z,t) = f(x — ct) + g(z + ct) with const. velocity, not
changing profile

linear equation — superposition principle

e transport equation: u; 4+ cu, = 0
— wave propagation in only one dirction

e dispersive wave equation: u; + Uy + Ugppe = 0
harmonic wave solutions: u(z,t) = e'(h=t)

— dispersion relation: w(k) =k — k*

w ... (angular)frequency

k ...wave number

c=32=1- k% ...speed of propagation (phase velocity)

= waves with different wave number are travel with different speeds — wave “dis-
perses”; profile of wave is not preserved.

Superposition: u(m,t):/ A(k) pilkz—w(k)t) 4L
——

R Fourier-transform of u(x,0)

e inviscid Burgers’ equation: u; + uu, = 0 develops shocks discontinuities (“shocks”
— large wave numbers k in solution) in finite time.

nonlinear equation — no superposition
e Korteweg - de Vries (KdV) equation: u; + ut, + tgyy = 0

Change of variables u — au,t — ft,z — vz (o, 5,7 € R\ {0}) gives general form
of KdV:

af B

fy

Standard choice of parameters:

Uy — 6UUy + Upgy = 0 (8.1)
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8 Nonlinear waves — Solitons

Smooth solution exists for t € R; “dispersive regularization” of Burgers’ equation,
i.e., wave components with large |k| “travel away” more quickly. Dispersive term
dampens large slopes; balance with nonlinearity.

(8.1) is invariant under the following group of transformations:
Gl e R\{0}: X =1la, T =1’t,U =1"u

— suggests the existence of similarity solutions

References: [DJ] §1

8.1 Applications of KdV

Long waves in a shallow canal can (seldom) have the form of solitons, i.e., do not change
their shape:

u(z,t) = asech?[b(z — ct)], (8.2)

b2 =4h*(h +a)/3a,c® = g(h + a)

z=h+u(x,t)

u ...wave height over level at rest

a >0 ...amplitude

h ...water depth

¢ ...speed of propagation (depending on amplitude!)
g ...gravitation constant

sech = 1/ cosh . ..secans hyperbolikus

Assumption for “shallow water waves” wave length > water depth
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8.1 Applications of KdV

c "f’% e
L S L

Figure 8.1: Imitation of Russel’s soliton

Observed 1834 by J.S. Russel in Scottland (Fig. 8.1); is gavitational wave with constant
mass transport in x-direction.

(8.2) satisfies KAV (with a8/ = ¢/4b?, 3/~v* = 3bc/a).

KdV can be derived for £ <1 from 2D incompressible, rotation-free, inviscid fluid equa-
tions (over horizontal plane with free surface) (|[DJ] §1.2, [De| §9.3), or from 2D Euler
equation ([Jo] §3.2.1).

(8.2) is gravitational wave, i.e. transport of mass.

further applications: (simple) tsunami-model.

Superimposition of solitons:

t=0 t1>0

fast, high soliton “overtakes” slow, low soliton: short “interaction” (with phase shift) but
no change of form (Fig. 8.2).

— almost a superposition principle, altough nonlinear equation>

Further completely integrable systems with soliton solutions:
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8 Nonlinear waves — Solitons

Figure 8.2: 2 interacting solitons as function of z, ¢: the interaction effects a local dis-
placement of both solitons.

e kubic nonlinear Schrodinger equation
i+ 1ee £ [V = 0,2 R, >0

Applications: nonlinear optics (disperson-free message transmission in fiber optic
cables), Bose-Einstein condensate

e Sinus-Gordon equation

1
_Q@Dtt - ¢xx + Sinw =0
C

Applications: differential geometry (for surfaces with constant negative Gauss cur-
vature), displacements in a crystal with periodicity sin ¢

References: [DJ] §1.2-4, §8.2, [TE]
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8.2 Schrodinger scattering problems for KdV

8.2 Schrodinger scattering problems for KdV

Aim: Solution (resp. construction of solution) of IVP

{ut—Guux—i—umx:O, reRt>0 (8.3)

u(z,0) =up(x), x€R

Approach: transformation of (8.3) in family of linear eigenvalue problems (with parameter
t>0); ¢ eC:

{_aa_; +u(z; t)} U(z;t) = A(t)v (a3 t).

Gives stationdry Schrodinger equation for (real) potential w.

“Miura-transformation”
u =02+ v, (8.4)

gives from (8.3):

0
(2v + %)\(vt — 600, + vxm)j =0.

modified KdV (mKdV)

Hence: if v solves mKdV then u solves KdV.

Solution of the Riccati equation (8.4) (for ¢ fixed) with substitution
v="/t . P(x;t) #0 (8.5)

KdV is Galilei invariant, i.e., invariant under transformations & = x + 6At, & = u — A for
A € R. Inserting into (8.4), (8.5) gives (¢ is only parameter!)

Idea: 1) Solution of linear EVP (8.6) for ¢ (z;t),t > 0.

2) (8.4), (8.5) then gives u(x,t).

At first this sounds “weird” because u is given coefficient in (8.6), but we need the scattering
data S (i.e. eigenvalues A(t), (generalized) eigenfunctions ¢(z;t)) only for ¢t = 0, i.e. ug(x):
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8 Nonlinear waves — Solitons

scattering data

u(x) 5(0)
|
: simple
! time evolution

Kdv (explicit
|
| formula)
|
* .
inverse
u(z, 1) scattering problem S(t)
2
Spectral theory of L = —— + u:

0x?

let uw = u(x;t) be bounded, smooth; rapidly decays for |x| — oo, because solution of KdV.
t > 0 ...parameter in operator L.

a)

134

finitely many eigenvalues:

A= —K2<0, kp>0;, n=12...,N
asymptotic behaviour of real eigenfunctions (“bounded states”):
Up(x;t) ~ cp(t)e ™% o — oo, (8.7)

cn(t) from normalization ||1)y||L2m) = 1, ¥n(2;t) also decays exponentially for z —
—00.

continuous spectrum:

A = k% > 0. Discussion here for k& > 0; for k¥ < 0 analogously:

generalized eigenfunctions (“scattering states”; € L?) oscillate for |z| — oo:

B t) ~ {e““” +b(k;t)e*® | 2 — o0 (8.8)

a(k;t)e ik , T — —00

a € C ...transmission coeflicient
b e C ...reflection coefficient

We have: |a|*+[b]* = 1 (conservation of momentum resp. flow in scattering process)



8.2 Schrodinger scattering problems for KdV

u(z)
ae~ ke ke
. —
transmitted incoming wave
wave
beik::c
_—

/ reflected wave

Remark: (8.6) even has Vk = v/A € C solutions of the form (8.8), except in the
upper half-plane for k, = ik,; n=1,..., N.

X

If w = u(x,t) solves KAV then also the scattering data of (8.6) have a simple t-
dependence:

Theorem 8.1. Let u = u(x,t) be solution of (8.3). = The “bounded states” satisfy
(form=1,...,N;t>0):
N = const in t;
An(t) = An(0); (8.9)
en(t) = ¢ (0)etn,

Proof. Step 1: Differentiating (8.6) with respect to z resp. t:
Yot + (N —u)p + (A =)y =0 (8.11)
Define

R(x,t) == by + ugth — 2(u + 2\)tb,

= %WmR —YRy) = ... = Yo (Y + upt) — 2urp, — 4NY,)
— V(Vrat + Urza®) — 3UsVre — 2urre — 4Nia)
[¢222 and ., with (8.10), (8.11) eliminieren]
= Ve (V1 — 2uhy — AMy) — VY (Ugaa®) — YUgtye)
— (uthy — My — Mth + wih) + 9 (2u + 4N (U ) — Ay + uhy)
(8:6) V(N —uy + 6uu, — Ugzz) = MA)? (8.12)

=0 with KdV

Remark: (8.12) also holds for continuous spectrum A > 0.
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8 Nonlinear waves — Solitons

136

Let now A = \, = —x2 < 0,9 = ¥, R = Rlu,¢,] =: R,,.
tn, R, decay exponentially for |z| — oo.

= [ dz-integral of (8.12):

0= thw R — U Rua| ™ = Au / G2 A=Ay v
R cR

o0

Step 2:

= indefinite z-integral of (8.12) (i.e. =0, (Yn Ry — YRy ) = 0, because A, = 0)

gives:
Ry — Una Ry = gn(t), gn(t)...arbitrary integration constant

tn, Ry, decay for || > 00 = ¢, =0 Vt>0.

indefinite z-integral of (8.13) (i.e. wa = &E% =0):

Ry,

o = hy,(1), hn(t)...arbitrary integration constant

Multiply by 2, use (8.6):

Jg dz—integration:

1d
0=35% /%%df :hn(t)/%%d-f

R R

=1

= h,(t) =0,vt >0
(8.14), d.h. R,, = 0 gives evolution of ,,(x;1):

wn,t = _ua:wn + 2(“ + 2)\n>wn,x
use u —3 0, 9, —asymptotics (8.7):
= (t) —4r3c,(t) =0

= (1) = cu(0)e™ 0.

(8.13)

(8.14)

ha ()7



8.2 Schrodinger scattering problems for KdV

Theorem 8.2. Let u = u(x,t) be solution of (8.3). = The “scattering states” satisfy
(Vk > 0;t>0):

a(k;t) = a(k;0), b(k:t) = b(k; 0)e¥*", (8.15)

Proof. Let A = k? > 0 be fixed (i..e const in ¢, because continuous spectrum (0, oo)
is t-indep.); ¥ the corresponding generalized eigenfunction; R = R[u, )]
Integrate (8.12) with respect to « (with Ay = 0):

. R — YR, = g(t; k) ...arbitrary interation constant (8.16)
According to (8.8): ¥(z;t, k) ~ a(k;t)e ™ z — —o0

da

T + 4ik53a) e kT 5 —0

= R(z,t;k) ~ by — 4\), ~ (

= ,R—9YR, "==°0 = g(t:k)=0 Vt>0
x—integration of (8.16):
R

E = h(t; k) ...beliebig; R = hy (8.17)
xr — co—asymptotics of ¥, R leads to:
% + 4ik*a = ha (8.18)

analogous behaviour for x — oo:

db | i | |
R(l’, t’ k) ~ Eezkx + 4ik3(671kx o bezkx) (8 172(8 8) h‘(efzkx + bezkx) ~ hw

+ikx

Because e is linearly independent (comparing coefficients):

db
T 4ik*b = hb,  h(t; k) = 4ik®

= b(k;t) = b(k; 0)ed**
a(k;t) = a(k;0) (from (8.18)) [ |
Remark 8.3. In formulas (8.9), (8.15) the exact form of u(x,t) does not enter.

They give a lot of a-priori information for the KdV-evolution (“similar” to conserved
quantity of evolution).

References: [De| §9.7, [DJ] §3.1-2,4.1-3, [Wh] §17.3
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8 Nonlinear waves — Solitons

8.3 inverse scattering problem

Aim: Solution of nonlinear IVP

U — Uy + Upp, =0, z€R, >0
u(z,0) = up(x), ze€R

in 3 steps:

1) linear eigenvalue problem 1., + (A — ug(x))1) = 0,2 € R — scattering data S(0)

2) explicit evolution of scattering data S(t), ¢ > 0 (according to Thm 8.1, 8.2)

3) inverse scattering problem: reconstruction of u(x,t) from S(t) with linear integral

equation

scattering data

uo ()

(
|
|
|
KdV !
|
|
|
¥

U(l‘, t) mverse

scattering problem

inverse scattering problem for t fixed:

¢xx + (kQ - U(IE))’QD =0 , X € R

given: scattering data of (8.19) S = S(t) := {—k?, ..., —K%;c1,..

obtained using Thm. 8.1, 8.2 from S(0)
wanted: potential u(x) = u(x;t)
Define for suitable decaying reflection coefficient b(k):

N

F(&) =) cre ™ +

n=1

b(k)e®dk , ¢cR

¥ =
S

(. J/

inverse Fourier trans.

S(0)

explicit
time evolution

(8.19)

en;b(k), k€ R} (eg.

(8.20)

Theorem 8.4 (inverse scattering theorem). Let F' be rapidly decaying. =

d
u(zr) = —2£K(x,a:),
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8.3 inverse scattering problem

with: K (z, 2) is the unique function on R? such that K(z,2) = 0 for z < x and satisfying
the linear Fredholm integral equation:

K(:v,z)—i—F(a:—l—z)—|—/K(x,y)F(y+z)dy:O ,—oo<x <z

(“Gelfand-Levitan-Marchenko” (GLM)-equation,).

Idea of proof. First discussion of direct scattering problem (8.19); Deduction of GLM-
equation:

Case 1: L := —aa—;g + u(x) has only continuou spectrum (e.g. for u > 0).

We are looking for solutions (for k& € R fixed) of the form Form (“Jost solutions”)

By(z) = ¢ 4 / K(z, =) d, (8.21)
O_p(z) = e 4 /K(m,z)e‘ikzdz. (8.22)

If K decays (suitably), then

lim @4y (z) = ™2,

T—r00

Aim: Find equation for K by inserting &, in (8.19):

, d 7 .
aus (8.21): Py, = ™ [—k2 - d—K(x, x) —ikK(z,z) — Kx(x,x)} + / K,.e**dz
T

2x integration by parts in (8.21):

. K K. (z, 1 A
CI)k — ezkw |:1 + ¢ (]::7$) . gj; ZL’):| o _/Kzzezkzdz7

if K(z,2), K.(x,2) =3 0 (such that the integrals exist):

=0 @y + (K2 — w)dy, =

. d T .
— _pike {u + 2£K<£L‘,$):| + /(Km — K,. —u(z)K)e*dz

xT
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8 Nonlinear waves — Solitons

This holds if
Ky — K., —u(x) K =0 ,z>zx, and

u(z) = —2%[((@1’) = —2[K,(z,z) + K,(z,2))]. (8.23)

next aim: equation for K which only contains scattering data (but not w).

o O, (x) linearly independent = are fundamental solutions of (8.19)

e generalized eigenfunctions according to (8.8):

e~k L b(kit)etr |z — o0
Y(x5t) ~ _f,m )
a(k;t)e , T — —00

= The particular solution with

Up(x) ~ e *  for x — —o0o, hence Yy (z) = aid)(x)
k

| 1 o)

~e~thT g o0 ~etkT r o0

Vi(x) = (8.24)

~—

a(k) Yy () (8.21).(8.22) e~k 4 /K(x, z)e‘ikzdz

+b(k) | + / K(z,2)e**dz| Va €R; Yk € R fixed.

inverse Fourier-transformation (k — y) gives for y > x:

o [ aByta)etar (8:25)

R

_ L eik(y_w)dk+/K(x, z){i/eik@_z)dk}dz
2m 2T

R T R

N J/ (&

J/

'

=i(y—x)= 0asy>x =0(y—=z)

1 .
o / b(k)eF= ) dk / K(z,2) | — / b(k)eRW+dk | dz
R

N

=F(z+y) acco‘;dlng to (8.20)

= K(z,y)+ Flx+y)+ / K(z,2)F(y + 2)dz,
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8.3 inverse scattering problem

because L has no discrete spectrum (by assumption).

Calculation of the integral (8.25) with residue theorem and complex contour integral:

/a(k:)@bk(x)eikydk =0, Va,y fixed
R

because a(k), b(k), vy, are analytic in upper half-plane (details: [DJ], §3.3)

= K satisfies (with y <> 2):

K(as,z)—l—F(a:—l—z)+/K(x,y)F(y+z)dy:O, —00 < < 2. (8.26)

inverse scattering problem:

F given by scattering data = K(x, z) can be calculated from integral equation (8.26) =
u from (8.23).

case 2: L has N > 1 eigenvalues \q,..., Ay.

We have: a(k), b(k) are meromorph in the upper half-plane with N simple poles at k = ik,
(Kp > 0,\, = —K2)

n

Calculation of the integral (8.25):
With
ik, (T) = €, Pi, (x) (cf. (8.24))

(8.21)

= cﬂn(e”"x+/K(x,z)e“”Zdz)

one can show (details [DJ] §3.2-3):

N
1 .
5 | alk)e(@)e™dk = — Zl Crop Vi, ()€Y
R n=
N o0
= — Zcin e rnlzty) 4 /K(x,z)e””(y“)d:v
n=1 o

Inserting into (8.25) again gives (8.26).

Rem: (8.26) implies (as desired) K, — K. — u(z)K =0, z > z for u(z) := —2L K(z,z)

(see Exercises). [ ]
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8 Nonlinear waves — Solitons

Remark 8.5. 1) The Fredholm integral equation (8.26) can be written as fixed point
iteration for K € C(R?) (or € C*(R?)):

Kw— K*(z,2) = —F(x + z2) — /K(x,y)F(y + z)dy. (8.27)

Mapping (8.27) is Lipschitz with constant ||F||p1 ().
Let ||F||z1 < 1 = GLM-equation has unique solution.

2) Special case: Let F' be separable; i.e.,

N
F(x+2) =) Xu(x)Zu(2) , N €Nwith Z, Lu.

n=1

(e.g. for b = 0, which means a reflection-free potential). = GLM-equation becomes

N N s
K(e.2)+ 3 X0 20(2) + Y 20l) [ K () Xal)dy =0
n=1 n=1 o
N
= Ansatz for solution: K(z,z) = Z L, (z)Z,(2)
n=1
N oo
S L@) X0+ D o) [ Za@ Xy =00 0= 1N
m=1 o
) zggwn

hence: N linear algebraic equations for N unknowns L, (x)

3) We have: number of bounded states of operator L (= N) = number of solitons a
solution develops for ¢t — oo.

Example 8.6 (Reflection coefficient with N =1 pole). Scattering data are given as

1) b(k) = 3 fzk (for some 0 < 8 = const), hence pole at k = i/3, which means
one eigenvalue \; = —x? = —32 of L.

2) Y1(x) ~ /Be P* for & — oo; d.h. ¢; = /B
Aim: calculate corresponding potential w.

ke

Bﬂ,kdk = ... = Be PH(=¢)

5P =pesi-
R

(with residue theorem; H ...Heaviside function)
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8.3 inverse scattering problem

From GLM-equation (8.26): K(x,z) =0 for z + z > 0.
GLM for x + 2z < 0 (as F(y + z) # 0 only for y + 2z < 0):

K(z,z) + Be Plets) 4 B/K(x,y)e_ﬁ(y+z)dy =0, < min(z,—2).

(unique) solution: K = —f, hence
0 , z+2>01]_ o
K(m,z)—{ B r+z<0 }— BH(—x — 2)
K (v, x) = —BH(~2x) = —3H(~z)
= u(z) = 2L K(z,2) = —286(x).
Furthermore: initial profile uyg = —23¢ splits in one soliton
9 9 5,  In2
u(z,t) ~ 28°sech” |z — 46t + %)
and a dispersive wave.
(@) —u
X
0
(b) —u
- A 0| - X
Figure 8.3: initial condition uy = —28¢ (see (a)) splits in one soliton and a dispersive

wave (siehe (b)) [DJ].
[

Rem: inverse (scattering) problems in many applications: e.g. computed tomography scan,
acoustic exploration of soil geology

References: [De] §9.7, [DJ] §3.3, 4.4, [Wh] §17.3-5

143



8 Nonlinear waves — Solitons
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Traffic low diagram: velocity as multivalued function of
density

0.9

0.8

0.7

0.6

0.5

U®(p)

0.4

0.3

0.2

0.1

0.7 0.8 0.9 1

Multivalued function v(p) permits multiple stable traffic states;
also hysteresis behaviour and “stop-and-go” possible. From
|Glinther-Klar-Materne-Wegner, SIAM J. Appl. Math. 2003].



Characteristics for traffic light example

t
green
phase N
T = st
red e )
phase
U=1u
/ u=1
U=1u u=1
BC: u = —1,
red light

Figure B.1: Traffic light: red phase, 1st part of green phase



Numcerical methods for linear advection equation
(smooth solutions 1)

0, z€R,t>0
sin(27x)

Ut + Uy
uo(z)

num. solution on [0, 1] with periodic boundary conditions.

zentrales Schema: h=0.01, k=0.0075, y=0.75

zentrales Schema: h=0.01, k=0.0075, y=0.75
15 T T T T T T 15 T T T T T T
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Lax-Friedrischs: h=0.01, k=0.0075, y=0.75 Downwind: h=0.01, k=0.0075, y=0.75
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left: Lax-Friedrichs ist conditionally stable (for v := % <1);
right: the downwind scheme is unstable.



Numerical methods for linear advection equation
(smooth solution 2)

u+u, = 0, xeRt>0
up(z) = sin(2mx)

num. solution on |0, 1] with periodic boundary conditions.

Upwind: h=0.01, k=0.0075, y=0.75 Upwind: h=0.002, k=0.0015, y=0.75
T T T T T T

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
- -0 - -0

—1=0.285: Uum —t=0.2895: Uum
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The upwind scheme is conditionally stable (for
=9 < 1); here y = 0.75
0 <~v:=% <1); here v = 0.75.
Upwind: h=0.01, k=0.0118, y=1.18 Upwind: h=0.002, k=0.0024, y=1.18
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For v > 1 the upwind scheme is unstable; here v = 1.18.



Numerical methods for discontinuous solutions (1)

u+u, =0, zeRt>0
1, <0
uole) = {0 >0

Lax-Friedrichs

18 F

1.0

05 |

0.0 | =

-0.5 k 1 L 1 L
0.0 0.2 0.4 0.6 08

Lax-Wendroff
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Upwind
0.0 0.2 0.4 0.6 0.8 1.0
Beam-Warming
0.0 0.2 04 0.6 0.8 1.0

exact solution (—) at ¢t = 0.5 and numerical solution (- --) with

h =0.01, k/h = 0.5 (from |LV])



Numerical methods for discontinuous solutions (2)

u+u, =0, xeRt>0
I, <0

tol®) = {o, z>0

Lax-Friedrichs Upwind
1.5 F 1.5 F
1.0 1.0
05 | 05 |
0.0 0.0
-05 b L s L L L 05 k L ) _a N )
00 02 04 06 08 1.0 00 02 04 06 08 10
Lax-Wendroff Beam-Warming
15 F 15 F
10 1.0
| |
05 05
0.0 } i 0.0 +
“0_5 1l i L 1 1 L -0_5 il i 1 ol
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

exact solution (—) at ¢t = 0.5 and numerical solution (---) with
h = 0.0025, k/h = 0.5. Order of convergence: 1/2 resp. 2/3 |LV|



Riemann-Problem for Burgers’ equation

ur +uu, = 0, reR,t>0
u = 1.2, wu,=04, — shock speed s =0.8

1.0
o
1

-02 02 06

0.0 0.2 0.4 0.6 0.8 1.0

exact solution (—) at ¢ = 1 and numerical solution (- --) with

non-conservative scheme:: "t = " — EU? (U? — u?—l)

J J h

| = e “mm—
O. [ ]
© b
St

—.m
N
o
N \
Q
0.0 0.2 0.4 0.6 0.8 1.0

num. solution with conservative upwind scheme (from [LV]):

UjH Ty (5(“;)2 - §(Uj1)2>



Linear Gaussian diffusion filter

original image f; diffusion filters K, * f with growing
“thickness” o in (4.1) (created with Photoshop)



Diffusion filter (triangle and rectangle)

.: :. I -. -. .-'.'.!'..' - ! .- I.:l-rc* :

o PRSP P [

) = £ ﬁ":'-u - <~ ="

FrETR L e

I s bR T A N Lo e W o

R TR e g A

i e A P T e L

noisy input image filtered with linear diffusion
(+ automatic stopping time)

-

filtered with isotropic nonlinear diffusion filtered with anisotropic nonlinear diffusion
[Perona-Malik equation| (4 automatic (+ automatic stopping time)
stopping time)

from [Pavel Mrazek, Dissertation, Prag, 2001]



(mean) curvature equation

u; = |Vuldiv (&)

Vil
0
(é

otk |0

@ T
ar
Q ‘

=() =50 =100 t=150 =200  4=250  t=3K0

Evolution of curves under (mean) evolution equation, [AK|. All
closed curves asymptotically become circles and collapse in
finite time.



Shock filter

w, = —|Vulsign(Au), x €R? ¢t>0

Initial condition is Gauss-smoothened original image. Image
reconstruction: convergence (in finite time) towards a step
function (i.e. perfectly sharp image), |[AK].



Brusselator (reaction-diffusion equation)

w = a— (b+ 1)u + v*v + d;Au

B.1
v = bu — u*v + doAv (B.1)

Model for autocatalytic, oscillating chemical reaction (i.e. a
reaction product is also a reaction partner);
equation for 2 substances with densities u(z,t), v(x,t)

homogeneous stationary state (ug,vy) = (a,b/a);
Turing instability for b > (1 + a\/%)Q ... (= 2nd necessary

condition)

2 numerical examples for spatially inhomogeneous stationary
states Ueo () = limy_yoo u(x, ) (with same parameters a, b); are
not unique!

stable, but not asymptotically stable.




B Slides

(B.1) is invariant under translations and rotations (modulo BC)
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pattern formation in chemical process (experiment)

e

evolution of concentration waves in chemical reaction
(Belousov-Zhabotinsky reaction)



Pattern formation with reaction-diffusion equations (1)




Pattern formation with reaction-diffusion equations (2)




Cahn-Hilliard: simulation / experiment

z 3
lag({Tme} {MC siops)

a) numerical simulation(Monte Carlo) of the Cahn-Hilliard Gle-
ichung: £ =0, 20, 100, 400, 1000, 3000, 5000

b) Magnification of ¢ =20, 400, 1000, 3000 shows scale invariance.

c¢) Movie of experiment (fat bubbles) [T. Ursell, 2007]:
http:/ /www.youtube.com /watch?v=kDsFP67 ZSE&NR=1



Cahn-Hilliard: simulation for ¢t — oo

f(c) :==c*/12 —c%/2; local minima at c,, = £/3
v =003, L =6
3.00tu ™

2.00

1.00

xV

—1.00}

—2.00}1

300t Y™

200

1.00 -

1.00 200~ [3.00 4.00

1.00

200

FEM-simulation of Cahn-Hilliard equation [EF]:
e solution converges towards cq,
® ., almost piecewise constant (values at 4+/3)

e still unclear, whether c., stationary state or only metastable



thin films: “fingering”—instability of front

|Huppert, Nature, 1982]



thin films: simulation

- i
#
=, T
[

FEM-simulation of (extended) thin film equation [BG]:

e [C: homogeneous film with small disturbance
e film ruptures

e evolution to few large droplets



data transmission with solitons Dateniibertragung mit
Solitonen

~—_ N\

300 km, soliton

300 km, linear

125 km, soliton

125 km, linear

Eingangs-
| | | M| impulsfolge
0 500 1000 1500 2000

Zeitin ps —=

e practical comparison for impulse transmission at 4 Gbit/s:
soliton vs. linear

e at 300 km: signal cannot be recognized with linear transmis-
sion
e with soliton-transmission almost unchanged

e practical applications still in preparation



