Genericity Iterations and $L(\mathbb{R}) \models AD$

Master's Thesis

Lena Wallner, October 2023

supervised by Assoc. Prof. Dr. Sandra Müller

Overview

- 1. Ultrapowers and Iteration Trees
 - 1.1 Ultrapowers from Ultrafilters
 - 1.2 Iterated Ultrapowers
 - 1.3 Extenders and Ultrapowers from

Extenders

- 1.4 Linear Iterations via Extenders
- 1.5 Iteration Trees
- 1.6 Woodin Cardinals

Overview

- 1. Ultrapowers and Iteration Trees
 - 1.1 Ultrapowers from Ultrafilters
 - 1.2 Iterated Ultrapowers
 - 1.3 Extenders and Ultrapowers from

Extenders

- 1.4 Linear Iterations via Extenders
- 1.5 Iteration Trees
- 1.6 Woodin Cardinals

- 2 Using Iteration Trees
 - 2.1 Genericity Iterations
 - 2.2 AD in $L(\mathbb{R})$

Overview

- 1 Ultrapowers and Iteration Trees
 - 1.1 Ultrapowers from Ultrafilters
 - 1.2 Iterated Ultrapowers
 - 1.3 Extenders and Ultrapowers from

Extenders

- 1.4 Linear Iterations via Extenders
- 1.5 Iteration Trees
- 1.6 Woodin Cardinals

- 2 Using Iteration Trees
 - 2.1 Genericity Iterations

2.2 AD in $L(\mathbb{R})$

Let M be a countable model of ZFC and $a \in \mathbb{R}$. Assume that

- M has a Woodin cardinal δ and
- M is $(\omega_1 + 1)$ -iterable.

Let M be a countable model of ZFC and $a \in \mathbb{R}$. Assume that

M has a Woodin cardinal δ and large cardinal
M is (ω₁ + 1)-iterable.
will see in the proof

Let *M* be a countable model of *ZFC* and $a \in \mathbb{R}$. Assume that

- M has a Woodin cardinal δ and
- M is $(\omega_1 + 1)$ -iterable.

Then there is _____ will see in the proof

- a countable iteration $i: M \to M^*$ and this will be an elementary embedding
- $h \subseteq Col(\omega, i(\delta))$ generic over M^*

such that $a \in M^*[h]$.

- " δ is Woodin in *M*" is witnessed by a set of extenders in *M*
- build an iteration tree using those extenders

stage O

$\label{eq:EeM} {\sf EeM}$ Lena Wallner Genericity Iterations and $L(\mathbb{R})\models AD$

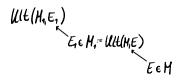
Stage 1

E, ∈ H, = UUU(H, E) E ∈ M

Stage 2

 $E_{i} \in H_{i} = UUU(H_{i}E)$ $UUU(H_{i}E_{1})$ $E \in H$

stope 2



Stage 2

$$E_{3} \in H_{3} = U(t(H_{4} \in I))$$

$$E_{4} \in H_{4} = U(t(H_{4} \in I))$$

$$E \in H_{4} = U(t(H_{4} \in I))$$

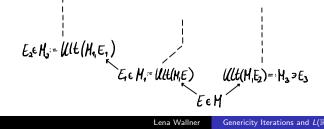
Stage 3

$$E_{3} \in H_{3} := U(t(H_{4}, E_{1}))$$

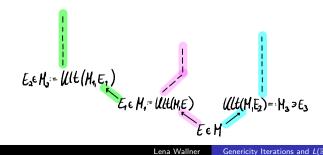
$$E_{4} \in H_{4} := U(t(H_{4}, E_{2})) = H_{3} \ni E_{3}$$

$$E \in M$$

Stage w



find cofinal branch

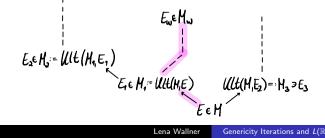


```
Stage w
           find cofinal branch
Hwis the direct limit along this branch
                                                                                               Mы
                            E_{3} \in H_{3} := (U|t|(H_{4}, E_{1}))
E_{4} \in H_{4} := (U|t|(H_{4}, E)) \qquad (U|t|(H_{4}, E_{2})) = H_{3} \Rightarrow E_{3}
E \in H
U(t_{4}) = H_{3} \Rightarrow E_{3}
```

Stage w

```
find cofinal branch
Hwis the direct limit along this branch
                                                                            (wi+1)-iterability assures that we find
                                                                            a branch with wellfounded Limit
                                                                            and such that there are also branches
                                                                            with well-founded limits at every
later limit step
                                                     Mы
           E_{3} \in H_{3} := U(t(H_{4}, E_{1}))
E_{4} \in H_{4} := U(t(H_{4}, E_{2})) = H_{3} \rightarrow E_{3}
E \in H
```

Stage w



Stage
$$3^{+7}$$

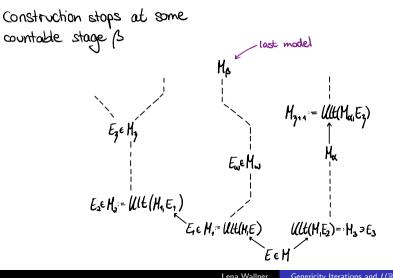
 $E_{3} \in H_{3}$
 $E_{3} \in H_{3} := U(t(H_{4}, E_{1}))$
 $E_{4} \in H_{3} := U(t(H_{4}, E_{1}))$
 $E_{5} \in H_{3} := U(t(H_{4}, E_{1}))$

Stage 3+7

$$E_{3} \in H_{3}$$

 $E_{3} \in H_{3} = U(t(H_{4}, E_{1}))$
 $E_{4} \in H_{4} = U(t(H_{4}, E_{1}))$
 $E_{5} \in H_{3} = E_{5} \in H_{3} = E_{5}$
 $E_{6} \in H_{4} = U(t(H_{4}, E_{2}))$

Stage 3+7 find $\alpha \in 3$ apply E_3 to M_{α} H₃₊₁ = Ult(H_{el}E₃) } ... H_e EzeHz Ewe Mw $E_{a} \in H_{a} := \mathcal{U}(\mathcal{U}(\mathcal{H}, \mathbb{E}_{1}))$ $E_{a} \in \mathcal{H}, := \mathcal{U}(\mathcal{U}(\mathcal{H}, \mathbb{E})) \qquad \qquad \mathcal{U}(\mathcal{U}(\mathcal{H}, \mathbb{E}_{2})) = : \mathbb{H}_{a} \to \mathbb{E}_{a}$ $E \in \mathbb{H}$



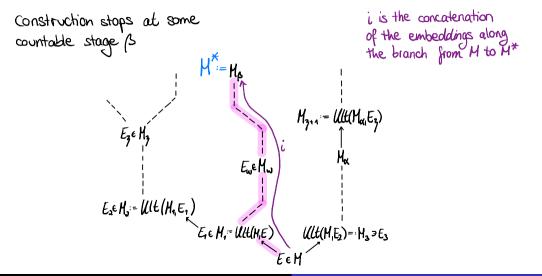
Let *M* be a countable model of *ZFC* and $a \in \mathbb{R}$. Assume that

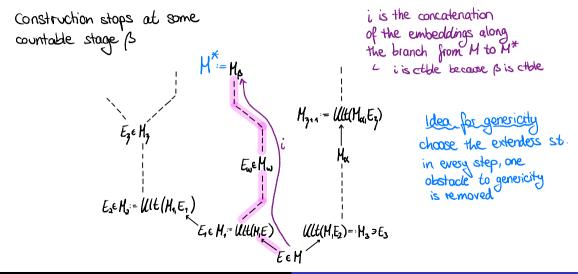
- M has a Woodin cardinal δ and
- M is $(\omega_1 + 1)$ -iterable.

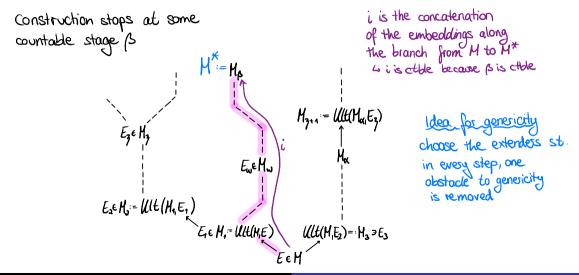
Then there is

- a countable iteration $\underline{i: M \rightarrow M^*}$ and
- $h \subseteq Col(\omega, i(\delta))$ generic over M^*

such that $a \in M^*[h]$.







Let M be a countable model of ZFC such that

- *M* has ω -many Woodin cardinals $\delta_0 < \delta_1 < \delta_2 < \dots$,
- *M* has a measurable cardinal $\kappa > \sup_{n < \omega} \delta_n$ and
- *M* is (a little bit more than) $(\omega_1 + 1)$ -iterable.

Let M be a countable model of ZFC such that

another
large cardinal
•
$$M$$
 has a measurable cardinal $\kappa > \sup_{n < \omega} \delta_n$ and

•
$$M$$
 is (a little bit more than) (ω_1+1) -iterable.

Let M be a countable model of ZFC such that

another
large cardinal
•
$$M$$
 has ω -many Woodin cardinals $\delta_0 < \delta_1 < \delta_2 < \dots$
• M has a measurable cardinal κ > sup _{$n < \omega$} δ_n and
• M is (a little bit more than) ($\omega_1 + 1$)-iterable.
Then $L(\mathbb{R}) \models AD$.

Let M be a countable model of ZFC such that

- *M* has ω -many Woodin cardinals $\delta_0 < \delta_1 < \delta_2 < \dots$,
- *M* has a measurable cardinal $\kappa > \sup_{n < \omega} \delta_n$ and
- *M* is (a little bit more than) $(\omega_1 + 1)$ -iterable.

Then $L(\mathbb{R}) \models AD$. smallest model of ZF containing all reads and ordinals



Let M be a countable model of ZFC such that

- *M* has ω -many Woodin cardinals $\delta_0 < \delta_1 < \delta_2 < \dots$,
- *M* has a measurable cardinal $\kappa > \sup_{n < \omega} \delta_n$ and
- *M* is (a little bit more than) $(\omega_1 + 1)$ -iterable.

Then $L(\mathbb{R}) \models AD$. "Axion of Determinacy" is interesting because it implies regularity proporties for sets of reals containing all reals and ordinals

Let M be a countable model of ZFC such that

• *M* has ω -many Woodin cardinals $\delta_0 < \delta_1 < \delta_2 < \dots$,

"Axiom of Determinocy"

is interesting because it implies regularity proporties for sets of reals

- M has a measurable cardinal $\kappa>\sup_{n<\omega}\delta_n$ and
- *M* is (a little bit more than) $(\omega_1 + 1)$ -iterable.

smallest model of ZF containing all reals and ordinals

Then $(L(\mathbb{R}))$

- $L(\mathbb{R})$ is the smallest model of ZF containing all the reals and ordinals.
- AD = Axiom of Determinacy came up in early 60's, implies regularity properties for sets of reals
- there was no proof for the consistency of AD
- a proof was found after 25 years of development in inner model theory
- Theorem shows that AD is consistent (relative to ZFC and large cardinals)

• Fix large enough θ .

Find countable elementary submodel of V_{θ} containing everything relevant.

P is the transitive collapse of this model.

• Fix large enough θ .

Find countable elementary submodel of V_{θ} containing everything relevant.

P is the transitive collapse of this model.

• \mathbb{Q} denotes the finite support product $Col(\omega, \delta_0) \times Col(\omega, \delta_1) \times Col(\omega, \delta_2) \dots$

• Fix large enough θ .

Find countable elementary submodel of V_{θ} containing everything relevant.

P is the transitive collapse of this model.

• \mathbb{Q} denotes the finite support product $Col(\omega, \delta_0) \times Col(\omega, \delta_1) \times Col(\omega, \delta_2) \dots$

We show
$$L(\mathbb{R})^P \models AD$$
. Then $L(\mathbb{R}) \models AD$.

Find an iteration $k: M \rightarrow N$ such that

- there is $H = h_0 \times h_1 \times h_2 \times \cdots \subseteq k(\mathbb{Q})$ which is generic over N,
- $\textcircled{0} \bigcup_{n < \omega} \mathbb{R}^{N[h_0 \times h_1 \times \cdots \times h_{n-1}]} = \mathbb{R}^P \text{ and }$
- $P \cap On \subseteq N \cap On.$

Find an iteration $k: M \to N$ such that

• there is $H = h_0 \times h_1 \times h_2 \times \cdots \subseteq k(\mathbb{Q})$ which is generic over N,

Then

AD is a $\Pi_1(\mathbb{R})$ -statement

 $+\ {\rm a}$ version of the Derived Model Theorem

$$\Rightarrow L(\mathbb{R})^{P} \models AD.$$

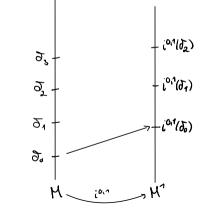
Use Genericity Iteration for M, a_0 and δ_0 .

Use Genericity Iteration for M, a_0 and δ_0 . We get

- countable iteration $i^{0,1}: M \to M^1$ and
- $h_0 \subseteq Col(\omega, i^{0,1}(\delta_0))$ generic over M^1

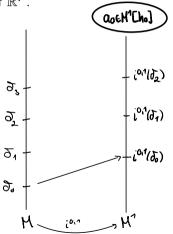
Use Genericity Iteration for M, a_0 and δ_0 . We get

- countable iteration $i^{0,1}: M \to M^1$ and
- $h_0 \subseteq Col(\omega, i^{0,1}(\delta_0))$ generic over M^1



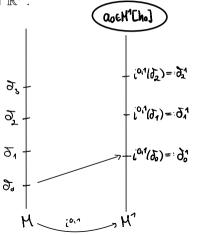
Use Genericity Iteration for M, a_0 and δ_0 . We get

- ullet countable iteration $i^{0,1}:M
 ightarrow M^1$ and
- $h_0 \subseteq Col(\omega, i^{0,1}(\delta_0))$ generic over M^1



Use Genericity Iteration for M, a_0 and δ_0 . We get

- ullet countable iteration $i^{0,1}:M
 ightarrow M^1$ and
- $h_0 \subseteq Col(\omega, i^{0,1}(\delta_0))$ generic over M^1



Repeat this for a_1 :

Repeat this for a_1 :

Use Genericity Iteration for M^1 , a_1 and δ_1^1 .

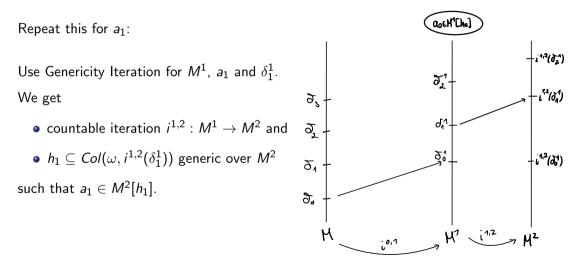
Repeat this for a_1 :

Use Genericity Iteration for M^1 , a_1 and δ_1^1 . We get

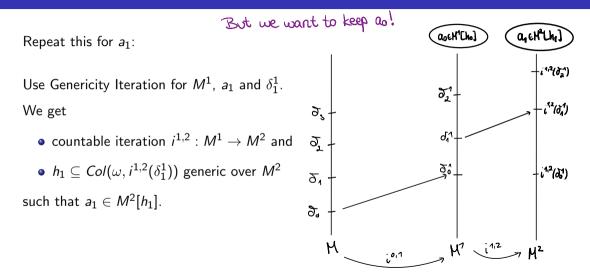
 ${\scriptstyle \bullet}$ countable iteration $i^{1,2}: {\it M}^1 \rightarrow {\it M}^2$ and

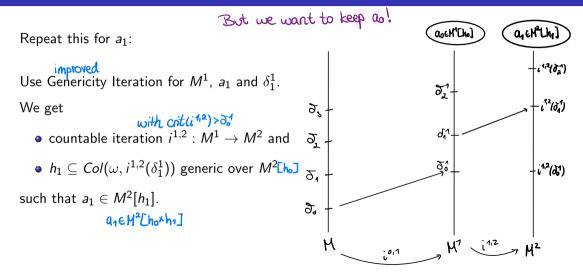
•
$$h_1 \subseteq Col(\omega, i^{1,2}(\delta_1^1))$$
 generic over M^2

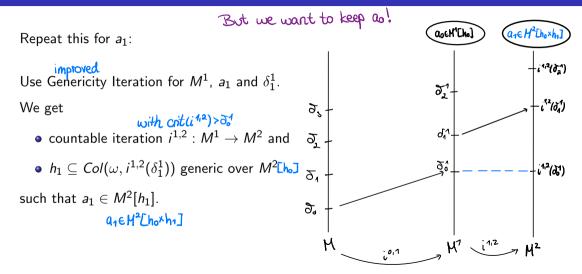
such that $a_1 \in M^2[h_1]$.



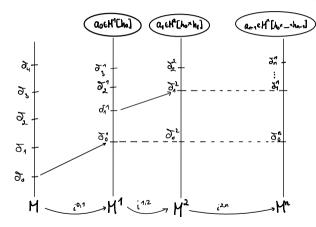
Repeat this for a_1 : Use Genericity Iteration for M^1 , a_1 and δ_1^1 . 2, i12(8.1) We get Э, • countable iteration $i^{1,2}: M^1 \to M^2$ and ď 2 • $h_1 \subseteq Col(\omega, i^{1,2}(\delta_1^1))$ generic over M^2 9% ^{1,2}(2,1) δ such that $a_1 \in M^2[h_1]$. 5. Μ



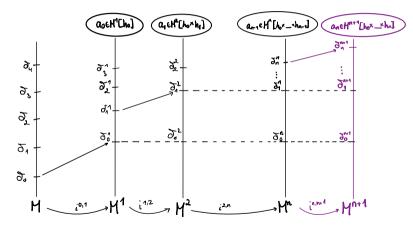




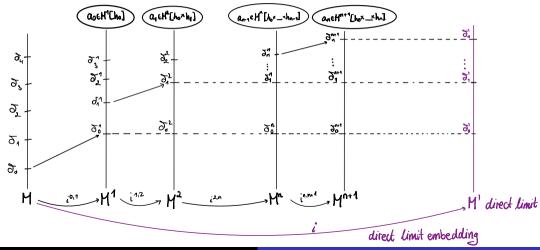
Repeat this for every $n < \omega$



Repeat this for every $n < \omega$



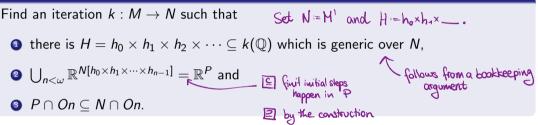
Repeat this for every $n < \omega$ and build the direct limit M'.



Lena Wallner Genericity Iterations and $L(\mathbb{R}) \models AD$

Find an iteration $k: M \to N$ such that Set $N = M^{1}$ and $H = h_{0} \times h_{1} \times \dots \times h_{n}$. a) there is $H = h_{0} \times h_{1} \times h_{2} \times \dots \subseteq k(\mathbb{Q})$ which is generic over N, b) $\bigcup_{n < \omega} \mathbb{R}^{N[h_{0} \times h_{1} \times \dots \times h_{n-1}]} = \mathbb{R}^{P}$ and b) $P \cap On \subset N \cap On$.

Find an iteration $k: M \to N$ such that Set $N := M^1$ and $H := h_0 \times h_1 \times \dots$. • there is $H = h_0 \times h_1 \times h_2 \times \dots \subseteq k(\mathbb{Q})$ which is generic over N, • $\bigcup_{n < \omega} \mathbb{R}^{N[h_0 \times h_1 \times \dots \times h_{n-1}]} = \mathbb{R}^P$ and • $P \cap On \subseteq N \cap On$.



Find an iteration $k: M \to N$ such that Set N:= M' and H:= hxhx. • there is $H = h_0 \times h_1 \times h_2 \times \cdots \subseteq k(\mathbb{Q})$ which is generic over N, $U_{n<\omega} \mathbb{R}^{N[h_0 \times h_1 \times \cdots \times h_{n-1}]} = \mathbb{R}^{P} \text{ and } \underbrace{\mathbb{E}}_{\substack{\text{happen in } P}}$ C follows from a bookkeeping argument $P \cap On \subset N \cap On.$ 1) by the construction ordinals of H' belong to P[(anlnew)] => PnOn \$H'nOn \$ => H' is not the model that we are looking for !

M' and $H := h_0 \times h_1 \times h_2 \times \ldots$ satisfy

• *H* is *M*'-generic for $i(\mathbb{Q})$ (need more bookkeeping to arrange that)

$$O \bigcup_{n<\omega} \mathbb{R}^{M'[h_0\times\dots h_{n-1}]} = \mathbb{R}^P$$

③ the ordinals of *M'* belong to $P[\langle a_n | n < \omega \rangle] \Rightarrow P \cap On \not\subseteq M' \cap On$.

We stretch M' to obtain 3 whilst keeping 1 and 2.

Build a linear iteration on M' using $i(\kappa) =: \kappa'$ of length $\xi := P \cap On$.

Step 2: $P \cap On \subseteq N \cap On$

Theorem (Neeman, Woodin)

Let M be a countable model of ZFC such that

- *M* has ω -many Woodin cardinals $\delta_0 < \delta_1 < \delta_2 < \dots$,
- *M* has a measurable cardinal $\kappa > \sup_{n < \omega} \delta_n$ and
- *M* is (a little bit more than) $(\omega_1 + 1)$ -iterable.

Then $L(\mathbb{R}) \models AD$.

- Itay Neeman: Determinacy in $L(\mathbb{R})$, In: Handbook of Set Theory, 2010
- John Steel: An Introduction to Iterated Ultrapowers, 2015
- Ilijas Farah: The extender algebra and Σ_1^2 -absoluteness, 2016