Towards a better understanding of C^p functions and definable C^p functions of several variables

Rafał Pierzchała

The first aim of my talk is to present the following result concerning definable C^p functions.

Theorem 1. Assume that $f: \Omega \to \mathbb{R}$, where $\Omega \subset \mathbb{R}^N$ is an open set, is a function definable in some polynomially bounded o-minimal structure (e.g., a semialgebraic function), and let $p \in \mathbb{N}$. Then:

- (i) If, for each $\nu \in \{1, ..., N\}$, the partial derivative $\frac{\partial^p f}{\partial x_{\nu}^p}$ exists and is continuous in Ω , then f is of class \mathcal{C}^p .
- (ii) If, for each $\nu \in \{1, ..., N\}$, the partial derivative $\frac{\partial^p f}{\partial x_{\nu}^p}$ exists and is locally bounded in Ω , then $f \in \mathcal{C}^{p-1,1}(\Omega)$, i.e., f is of class \mathcal{C}^{p-1} and, for each $\alpha \in \mathbb{N}_0^N$ with $|\alpha| = p 1$, the partial derivative $D^{\alpha}f$ is locally Lipschitz in Ω .

The above result is connected with the following problem. Assume that $\omega: [0, +\infty) \to [0, +\infty)$ is a modulus of continuity. Assume moreover that $f: \Omega \to \mathbb{R}$, where $\Omega \subset \mathbb{R}^N$ is an open set, and let $p \in \mathbb{N}_0$. Consider the following two conditions:

(i) f is of class C^p and, for each $a \in \Omega$, there exist an open neighbourhood $W_a \subset \Omega$ and $C_a > 0$ such that, for each $\alpha \in \mathbb{N}_0^N$ with $|\alpha| = p$ and each $y, z \in W_a$,

$$|D^{\alpha}f(y) - D^{\alpha}f(z)| \le C_a\omega(|y - z|).$$

(ii) For each $\nu \in \{1, ..., N\}$, the partial derivative $\frac{\partial^p f}{\partial x_{\nu}^p}$ exists. Moreover, for each $a \in \Omega$, there exist an open neighbourhood $U_a \subset \Omega$ and $M_a > 0$ such that, for each $\nu \in \{1, ..., N\}$ and each $y, z \in U_a$ with $y-z \in \mathbb{R}e_{\nu}$,

$$\left| \frac{\partial^p f}{\partial x_{\nu}^p}(y) - \frac{\partial^p f}{\partial x_{\nu}^p}(z) \right| \le M_a \omega(|y - z|).$$

(If
$$|\alpha|=0$$
, then $D^{\alpha}f:=f$. If $p=0$, then $\frac{\partial^p f}{\partial x_{\nu}^p}:=f$.)

Problem 2. What assumptions on ω should be made to guarantee that conditions (i) and (ii) are equivalent?

The second aim of my talk is to provide a complete answer to this problem.

¹By e_1, \ldots, e_N we denote the canonical basis in the vector space \mathbb{R}^N .