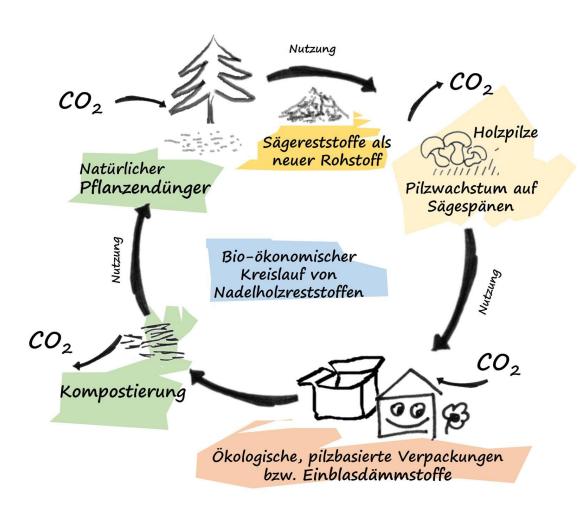


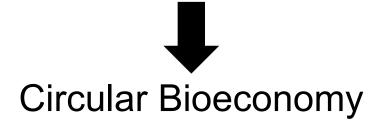
Inhalt

- Hintergrund
- Rohmaterial-Vorbehandlung
- Wachstumsversuche
- Charakterisierung
- Nächste Schritte

Hintergr

Hintergrund


- Verwertung regionaler Sägerückstände
 - Fichtenholz Sägespäne
- Entwicklung von
 - Verpackungsmaterial
 - Einblasdämmung

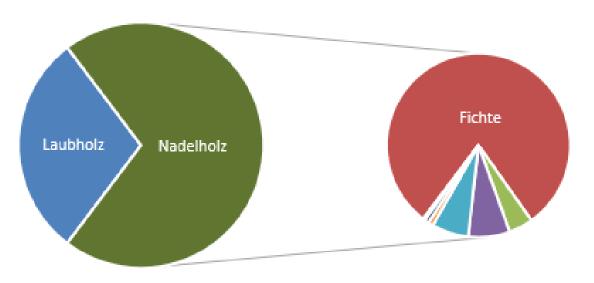

Anfallende Sägespäne bei Steyrermühl Sägewerksgesellschaft

Hintergrund

- Pilzmyzel als Bindemittel
 - Ausschließlich aus nachwachsenden Rohstoffen
 - Vollständig biologisch abbaubar

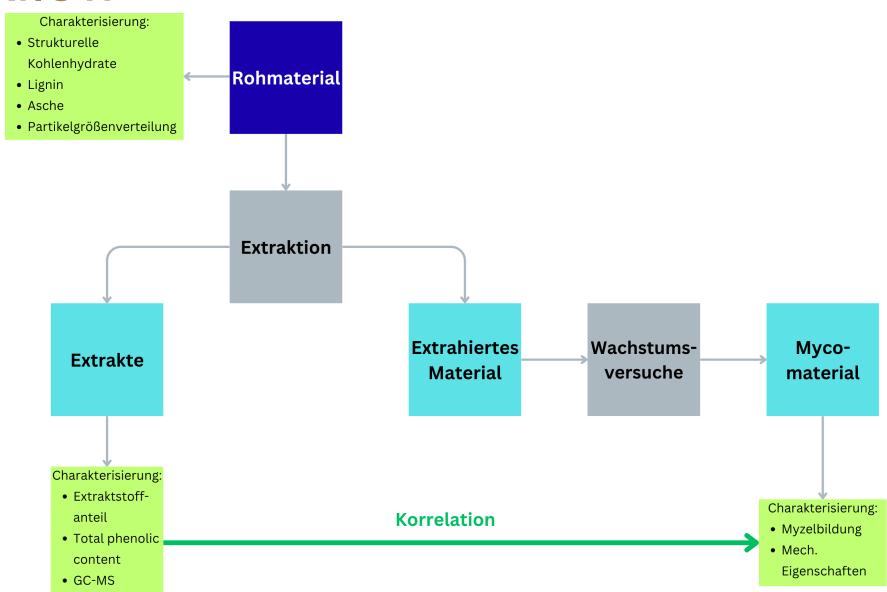
Mycosoft – Use cases

PV-Inverter in Styropor-basierter Verpackung bei Fronius


Einblasdämmung
https://homeguide.com/costs/blown-in-insulation-cost
Visited 28.09.2023 at 10:30

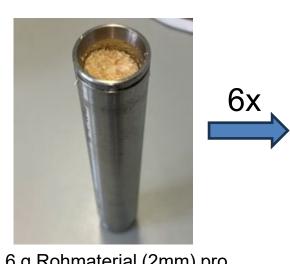
Myzelgebundene Materialien

- Mycomaterialien werden häufig auf landwirtschaftlichen Abfall- und Reststoffen angesetzt
 - Oft LAUBHOLZ
- Nadelholz sehr unbeliebt als Substrat, weil
 - Antifungale Extraktstoffe
 - Widerspenstigeres Lignin


Baumarten in Österreich

Quelle: BMLUK; Datensammlung zum Österreichischen Wald Stand 2023

Workflow



Rohmaterial - Vorbehandlung

- Entfernen der Extraktstoffe mittels Extraktion
- Möglichst schonende Lösungsmittel
 - Wasser
 - Ethanol/Wasser
- Methode: Accelerated solvent extraction (ASE)
 - Druck bis zu 150 bar
 - Extraktion weit über herkömmlichen Siedepunkt (bis zu 200 °C)

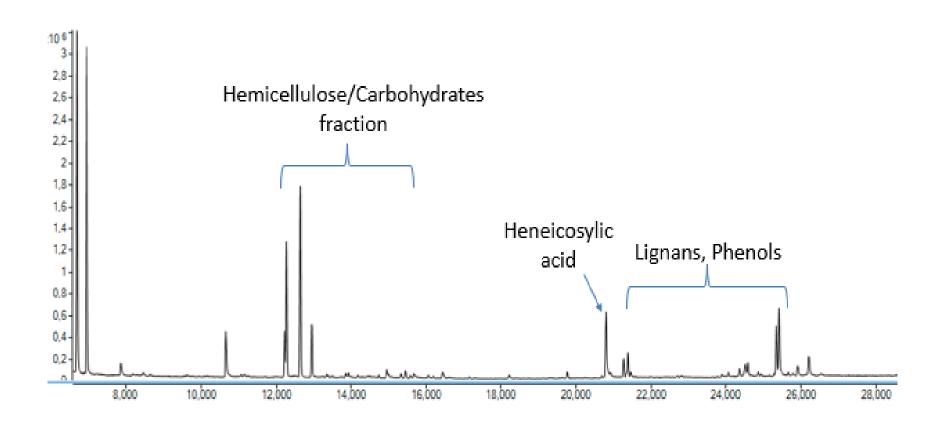
Accelerated Solvent Extraction

5,6 g Rohmaterial (2mm) pro Extraktionshülse

SpeedExtractor E-916 (BÜCHI)

Extrahiertes Material

Extrakte



Parameter

- Druck: 70 bar
- Temperaturbereich: 100-150 °C
- Extraktionszeit: 4-60 min
- Lösungsmittel:
 - Wasser
 - Ethanol/Wasser (50-100%)

Charakterisierung der Extrakte

Wachstumsversuche

- Beimpfen der extrahierten Späne mit Pilzkulturen
 - Sterile Bedingungen

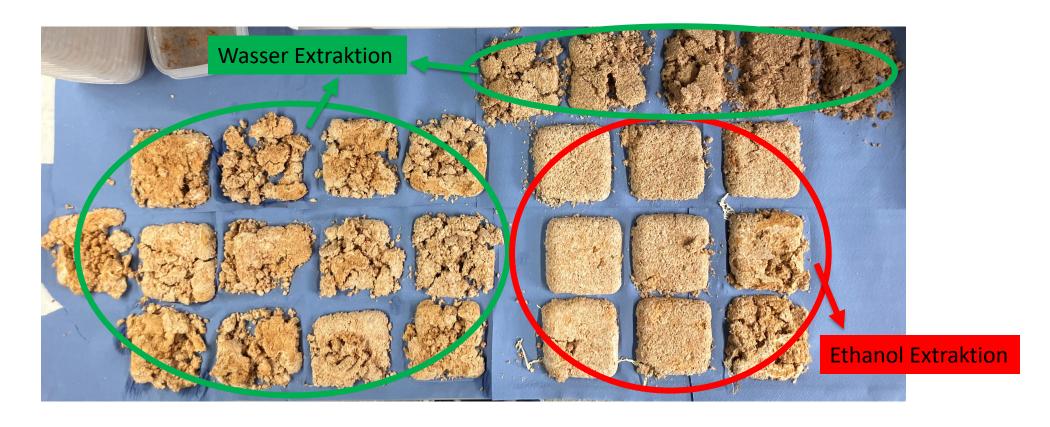
Ganoderma lucidum
https://my.chicagobotanic.org/tag/ganoderma-lucidum/
Visited 28.09.2023 at 12:45

als Flüssigkultur

als Getreidebrut

Wachstumsversuche

Pilzkulturen auf Agar in Petrischalen


Wachstumsversuche

- Gemahlen (2 mm) vs ungemahlen
- Substratfeuchte mit Wasser einstellen
- Flüssigkultur oder Getreidebrut mit extrahierten Spänen vermischen
- Wachstum 1-2 Wochen bei Raumtemperatur


Ergebnis Flüssigkultur

- Besseres Myzelwachstum auf Ethanol extrahierten Spänen
- Mycomaterial ist trotzdem sehr brüchig

Ergebnis Getreidebrut

 Starke Myzelbildung mit Getreidebrut, kein Unterschied zwischen Wasser- und Ethanol Extraktion

Schlussfolgerungen

 (Ethanol) Extraktion als Vorbehandlung hat minimal positive Auswirkung auf Pilzwachstum

- Nährstoffzusammensetzung ist wesentlich entscheidender für intensives Wachstum
 - Holz ist sehr gute Kohlenstoffquelle, es fehlt aber an weiteren
 Nährstoffen, insbesondere Stickstoff (sehr hohes C/N Verhältnis)

Flüssigkultur mit Weizenkleie

Supplementieren der Späne mit weiteren Nährstoffen ermöglicht
 Verwendung von Flüssigkultur, auch auf unbehandelten Spänen

möglich

Use case: Formverpackung

Angesetzt in 3D gedruckten Negativformen

Tag 1

Nach einer Woche

Use case: Formverpackung

Nach Entformung

Nach Trocknung

Use case: Einblasdämmung

Vorzerkleinertes Mycomaterial

Mittels Hammermühle granuliert

Mechanische Charakterisierung

Für die erfolgreiche Anwendung müssen bestimmte

Anforderungen erfüllt werden

Biegetest

Drucktest

Zugtest

Charakterisierung als Einblasdämung

Einblasversuch

Setzungstest

Nächste Schritte

- Weitere Charakterisierungen
- Verbesserung der Materialeigenschaften
 - Zugabe von Naturfasern
 - Zugabe von natürlichen Weichmachern (z.B. Glycerol)
 - Variation der Partikelgröße

