

Bundesministerium Arbeit und Wirtschaft

Digital Twin Assisting AI for Sustainable Radio Access Networks

Agnes Fastenbauer, Lukas Eller, Mariam Mussbah, Philipp Svoboda, Bashar Tahir, Sonja Tripkovic Blickpunkt Forschung TU–Wien 2024 CD-Lab for Digital Twin Assisted AI for Sustainable Radio Access Networks October 9, 2024

Motivation: Future wireless networks will support a wide variety of servicesChallenge: Design for extreme flexibility while taming the inherent complexityGoal: Achieving flexibility through awareness, adaptation, and optimization based on AI

CD-Lab for Digital Twin Assisted AI for Sustainable Radio Access Networks

DT: Virtual replica of a physical object, service, or system

Challenges:

Large-scale, data modeling, real-time requirement, and model explainability

Requirements:

Accurate, relevant, up-to-date big-data

Digital Twin assisted AI

- Data-driven Digital Twin (DT) creation for centralized, local, and distributed AI
- Design and conduct large-scale measurement campaigns
- Distributed cooperative reinforcement learning for online resource optimization
- Preserve explainability across all DTs

CD-Lab for Digital Twin Assisted AI for Sustainable Radio Access Networks

Project in a Nutshell

Benefits for partners

- Local sensing AI
- Distributed control AI
- DT assisted AI in simulations
- Validation from data-set
- Cost reduction in infrastructure

Recent Work & Christian Doppler Laboratory

- CD-Lab for Digital Twin assisted AI for sustainable Radio Access Networks:
 - A1 Telekom Austria: Network automatization and radio planning
 - OEBB Personenverkehr : Optimizing connectivity along railways
 - Nokia Solutions and Network: Network sensing and MIMO modeling

A1

ØBB

VOVIA

^aEller, Lukas, et al. "Localizing basestations from end-user timing advance measurements." IEEE Access, 2022 ^bEller, Lukas, et al. "A Deep Learning Network Planner: Propagation Modeling Using Real-World Measurements

and a 3D City Model." IEEE Access, 2022

^cEller, Lukas, et al. "A Differentiable Throughput Model for Load-Aware Cellular Network Optimization through Gradient Descent." IEEE Access, 2023 (Submitted)

Recent Work & Christian Doppler Laboratory

- CD-Lab for Digital Twin assisted AI for sustainable Radio Access Networks:
 - A1 Telekom Austria: Network automatization and radio planning
 - OEBB Personenverkehr : Optimizing connectivity along railways
 - Nokia Solutions and Network: Network sensing and MIMO modeling
- Goal: Data-driven modeling of cellular networks that enables efficient and scalable optimization → radio planning, coverage & capacity, energy-efficiency...

^aEller, Lukas, et al. "Localizing basestations from end-user timing advance measurements." IEEE Access, 2022 ^bEller, Lukas, et al. "A Deep Learning Network Planner: Propagation Modeling Using Real-World Measurements and a 3D City Model." IEEE Access, 2022

^cEller, Lukas, et al. "A Differentiable Throughput Model for Load-Aware Cellular Network Optimization through Gradient Descent." IEEE Access, 2023 (Submitted)

CD-Lab for Digital Twin Assisted AI for Sustainable Radio Access Networks

Recent Work & Christian Doppler Laboratory

- CD-Lab for Digital Twin assisted AI for sustainable Radio Access Networks:
 - A1 Telekom Austria: Network automatization and radio planning
 - OEBB Personenverkehr : Optimizing connectivity along railways
 - Nokia Solutions and Network: Network sensing and MIMO modeling
- Goal: Data-driven modeling of cellular networks that enables efficient and scalable optimization → radio planning, coverage & capacity, energy-efficiency...

• Own Previous Work:

- Localization of base stations from crowdsourced measurements^a
- Learning a data-driven propagation model from drive-tests^b
- Troughput model for cellular network optimization via gradient descent^c

^aEller, Lukas, et al. "Localizing basestations from end-user timing advance measurements." IEEE Access, 2022 ^bEller, Lukas, et al. "A Deep Learning Network Planner: Propagation Modeling Using Real-World Measurements and a 3D City Model." IEEE Access, 2022

^cEller, Lukas, et al. "A Differentiable Throughput Model for Load-Aware Cellular Network Optimization through Gradient Descent." IEEE Access, 2023 (Submitted)

- Radio planning for optimal layout and antenna configurations
- Propagation modeling, cell-load, throughput $\ldots \rightarrow$ Abstractions
- Vast amount of "free" monitoring data available \rightarrow Data-Driven
- Publication^a: Drive-test RSRP measurements and 3D city model
- Substantially improved RSRP prediction \rightarrow physically sound
- Sketch a path for a comprehensive radio planning scheme:
 - 1. Extent the empirical validation to RS-SIR prediction
 - 2. Data-driven objective function and methods for optimization

Ray-Tracing

City Model

^aEller et al., "A Deep Learning Network Planner: Propagation Modeling Using Real-World Measurements and a 3D City Model," in IEEE Access, 2022

Sensing Digital Twins in Mobile Networks

- Current wireless systems focus on data transmission
- Channel in-between is estimated end-to-end
- Knowledge about the environment enables
 - Environment-aware transmission
 - Localization
 - Tracking

...

- ...

- Digital twin (RF) construction
- Future wireless systems integrate sensing / radar function
 - Integrated sensing and communications (ISAC)
 - Joint communications and sensing (JCAS)

Sensing Digital Twins in Mobile Networks

- Current wireless systems focus on data transmission
- Channel in-between is estimated end-to-end
- Knowledge about the environment enables
 - Environment-aware transmission
 - Localization
 - Tracking

...

- ...

- Digital twin (RF) construction
- Future wireless systems integrate sensing / radar function
 - Integrated sensing and communications (ISAC)
 - Joint communications and sensing (JCAS)

Outage reduction near real-time power and tilt optimization

Outage Ratio: $\mathcal{L}_{outage} = 0.46$

Outage Ratio: $\mathcal{L}_{outage} = 0.15$

1. Digital Twin Integration:

- Merge simulations with real-time data.
- Create dynamic models for wireless networks.

2. Network Management and Planning:

- Predict and optimize network behavior.
- Proactively address network issues.

3. Research at the Institute of Telecommunications:

- Vienna 5G Link Simulator
- Vienna 5G System Simulator
- RIS Measurements
- mm Indoor channel measurement
- ML network prediction (MDT, drive test, ...)
- Digital Twin Railroad networks
- Digital Twin for integrated communication and sensing

Bundesministerium Arbeit und Wirtschaft

Thank you for your attention! Questions?

Agnes Fastenbauer, Lukas Eller, Mariam Mussbah, Philipp Svoboda, Bashar Tahir, Sonja Tripkovic Blickpunkt Forschung TU–Wien 2024 first.last@tuwien.ac.at

