Secure architecture for smart grid operation

Distributed generation, volatile renewable energy, market attendance, data privacy and cyber security are serious challenges to the hierarchical operation of a power system. A decentralized overall model of power systems (Ilo, A., Energy supply chain net, 2013) created the fundament of the novel architecture. Three major components are designed: “Link”, “Producer_Complex” and “Storage_Complex”. Their interfaces are defined for all power system posturing processes like load-generation balance, n-1 security, demand response (Fig.1). The generic, base element is the “Link”. Being a standardized structure, defined by secondary control, the Link can be applied to any partition of the power grid, as a subset of a high, a medium or low voltage grid part, or simply a customer power plant.

Technology

The technical-functional model for the operation of a decentralized smart grid comprises:
- Links are grid parts defined by secondary control area and operating independently
- Links have contractual arrangements with other Links and are communicating through well-defined interfaces, minimizing the number of data to be exchanged

Advantages

- Security and privacy of data inside the Link
- Low IT costs and enhanced cyber security by minimizing data exchange
- All power system posturing processes (the (n-1) security, the active power balance, angular and voltage stability calculation, demand response, etc.) can be performed for each link

Fig. 1: Demand response process: line overload on high voltage grid