Data, big and small

Data has huge power to make our lives better
The Challenges of Good Data

Good decisions need good data

... but data is not always ready for use!

- Incompleteness
- Diversity / heterogeneity
- Inconsistency

Knowledge can help us bridge the gap between the data we have and the data we want
Data incompleteness

Patient P3 has pneumonia
Patient P1 has bronchitis
Patient P6 has hepatitis

Pneumonia is an inflammation of the lungs
Bronchitis is an inflammation of the bronchi
Hepatitis is an inflammation of the liver
Lungs and the bronchi are part of the respiratory system

Find patients suffering an inflammation that affects the respiratory system
Heterogenous and Distributed Data

Find countries in risk of famine and their staple roots and grains

Poor drought-hit countries have high risk
Countries with food insecurity have high risk
A food providing >30% of caloric intake is staple
Rice, teff, and maize are grains. Yam is a root

<table>
<thead>
<tr>
<th>Country</th>
<th>Element Code</th>
<th>Element</th>
<th>Item Code</th>
<th>Item</th>
<th>Year Code</th>
<th>Year</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sudan</td>
<td>664</td>
<td>Food supply (kcal/capita/day)</td>
<td>2905</td>
<td>Cereals - Excluding Beer</td>
<td>2013</td>
<td>2013</td>
<td>kcal/capita/day</td>
<td>877</td>
</tr>
<tr>
<td>Sudan</td>
<td>664</td>
<td>Food supply (kcal/capita/day)</td>
<td>2907</td>
<td>Starchy Roots</td>
<td>2013</td>
<td>2013</td>
<td>kcal/capita/day</td>
<td>48</td>
</tr>
</tbody>
</table>
Leveraging Knowledge

Data access is **costly**
Needs **knowledge** about the **domain** and knowledge about the **data**

Can we automate the use of knowledge?

- Make access faster, easier, less costly
- Question posed in simple, familiar terms
- Complete and integrated answers automatic
Patient P3 has pneumonia
Patient P1 has bronchitis
Patient P6 has hepatitis

Find patients suffering an inflammation that affects the respiratory system

Answer: P1, P3

Automated reasoning to infer implicit facts
Find countries in risk of famine and their staple roots and grains

(Somalia; teff, rice, yam),
(Yemen; sorghum, wheat),…
Research Goals

1. Representing knowledge
 - Formal languages with well-defined meaning
 - sharable and easy to use

2. Using knowledge
 - Different kinds of questions
 - Scalable automation of services
Domain Knowledge and Ontologies

We want our domain knowledge to be

• sharable
• accurate and non-ambiguous
• readable by humans and machines

We use ontologies

An ontology is a sharable description of a domain conceptualisation
What can we express in an ontology?

store and communicate
general medical knowledge
and patient-related
information efficiently

http://www.openclinical.org/ontologies.html

describe, manage and exchange data related
to geopolitical entities such as countries,
territories, and regions

http://www.fao.org/countryprofiles/geoinfo/geopolitical//
What can we express in an ontology?

Food ontology

A harmonized food ontology to increase global food traceability, quality control and data integration

http://foodon.org
Ontology Languages

Standards for writing sharable ontologies

Web Ontology Languages OWL

- Human and machine readable syntax
- Online repositories with thousands of ontologies

```
<ns4:NCIT_NHC0>C12727</ns4:NCIT_NHC0>
<oboInOwl:hasExactSynonym>Heart</oboInOwl:hasExactSynonym>
<ns4:NCIT_P322>CDISC</ns4:NCIT_P322>
<oboInOwl:hasExactSynonym>Cardiac</oboInOwl:hasExactSynonym>
<ns4:NCIT_P106>Body Part, Organ, or Organ Component</ns4:NCIT_P106>
<ns4:NCIT_P366>Heart</ns4:NCIT_P366>
<ns4:NCIT_P108>Heart</ns4:NCIT_P108>
<oboInOwl:hasExactSynonym>HEART</oboInOwl:hasExactSynonym>
```

- Pneumonia ⊆ Inflammation ⊆ ∃affects.Lung
- Bronchitis ⊆ Inflammation ⊆ ∃affects.Bronchi
- Lung ⊆ ∃partOf.RespirSyst
- Bronchi ⊆ ∃partOf.RespirSyst
A basis for ontology languages
Solid foundation to guide the standards

Description Logics

• family of formal logics
• tailored to represent knowledge
• allows us to use reasoning to reach conclusions
• No one-size-fits-all, toolbox: domain specific choice, understanding computational cost

One of the oldest sciences can help us solve one of our most timely problems
What do we need to realise this view?

1. How do we build good ontologies?
 - also by reusing existing ones
 module extraction, revision, repair, forgetting, ...

2. How do we connect sources to the ontology?
 - query/view based approach

3. How do we formulate questions?
 - database-inspired query languages
 - flexible, high-level
Query Answering

the main challenge

Answering questions is now reasoning computationally expensive!

- reuse existing technologies
- reason off-line, compilation

Some challenges we work on:

- query optimisation
- dynamic algorithms
- explanations
- inconsistent management
Knowledge-enriched Data Management

Knowledge, semantics and reasoning are a mighty tool

We can make information systems smarter

- not only AI
- also IA (intelligence augmentation)

A lot has been achieved, much work lies ahead