

Vienna 5G Link Level Simulator v1.3 -List of Features

The Vienna 5G Link Level Simula- tor evaluates the average PHY layer performance by means of Monte Carlo simulations.	 simulate a wide range of wireless tec nologies for 5G and beyond choose parameters individually for ea node in your simulation scenario
Channels and Links	
FDD and TDD frame structure are supported.	 Uplink data channel Downlink data channel flexible subcarrier spacing (5G Numeroogy)
Intermediate Nodes	
Intermediate nodes assisted simula- tions are supported.	 reconfigurable intelligent surfaces (RIS
Channel Coding	
Different channel coding schemes may be chosen for different cells to investigate their co-existence.	 Turbo coding TB convolutional coding Polar coding LDPC coding
Feedback	
Quantized feedback to adapt the transmission parameters to the channel conditions.	 CQI, RI and PMI feedback selectable codebook: LTE-A compliant (up 4 antennas), 5G compliant (up to antennas), and user defined (arbitranumber of antennas) variable feedback delay (in multiples the frame duration)

Channel Models	
Doubly-fading channel model	 parameterizable from 500 MHz to 100 GHz time selectivity via sum of sinusoids (Jakes) frequency selectivity via tap delay models (pedestrian, vehicular, etc.) spatial correlation via Kronecker model TDL models with adjustable RMS delay spread correlated time selectivity via sum of sinusoids TWDP and Rican fading (static)
Spatial channel model	 based on TR38.901 artificially defines geometry via angles between users includes time, frequency and spatial correlation spatially consistent correlation
Geometric layout	 distance-based path loss (free space, urban, etc.) geometry-based LOS angle of arrival
Channel Estimation	
Pilot based channel estimation	 LTE/5G compliant diamond pattern rectangular or diamond shaped pilot patterns LS channel estimation perfect channel knowledge symbol domain orthogonal pilot symbols for multi-user MIMO mode
Power Amplifier Models	
Non-linear power amplifier models for downlink transmissions	Rapp modeladjustable amplifier back-off

Modulation	
Different modulation schemes and waveforms may be chosen for dif- ferent cells to investigate their co- existence.	 OFDM f-OFDM WOLA FBMC UFMC single carrier
Transmission Modes	
MIMO modes	 transmit or receive diversity open loop spatial multiplexing closed loop spatial multiplexing downlink multi-user MIMO (MRT, ZF, block diagonalization) uplink mulit-user MIMO (MRC, ZF, MMSE) uplink CRC-based IC
Non-orthogonal multiple access	 3GPP MUST (Downlink) uplink NOMA
Equalization and Detection	
One-tap equalization with MIMO detection schemes	 ZF MMSE Sphere Decoder Maximum likelihood
Performance Evaluation	
Simulation results for up- and downlink:	 throughput per user cell sum throughput coded and uncoded Bit Error Ratio Frame Error Ratio channel estimation MSE transmit signal peak-to-average power ratio Peak-to-Average power ratio ECDF