

Enabling Massive Connectivity via RIS-Assisted Code-Domain MIMO-NOMA

Bashar Tahir TU Wien

Internal Workshop of the Doctoral School 5G Internet of Things

September 2021

- Conventional systems are based on orthogonal multiple access (OMA), where users
 - are allocated disjoint sets of resources
 - wait for the BS to grant them access

- Conventional systems are based on orthogonal multiple access (OMA), where users
 - are allocated disjoint sets of resources
 - wait for the BS to grant them access
- With non-orthogonal multiple access (NOMA), users can contest the same resources

- Conventional systems are based on orthogonal multiple access (OMA), where users
 - are allocated disjoint sets of resources
 - wait for the BS to grant them access
- With non-orthogonal multiple access (NOMA), users can contest the same resources
 - Resources sharing \rightarrow improved spectral efficiency and fairness

- Conventional systems are based on orthogonal multiple access (OMA), where users
 - are allocated disjoint sets of resources
 - wait for the BS to grant them access
- With non-orthogonal multiple access (NOMA), users can contest the same resources
 - Resources sharing \rightarrow improved spectral efficiency and fairness
 - More users can transmit ightarrow massive connectivity

- Conventional systems are based on orthogonal multiple access (OMA), where users
 - are allocated disjoint sets of resources
 - wait for the BS to grant them access
- With non-orthogonal multiple access (NOMA), users can contest the same resources
 - Resources sharing \rightarrow improved spectral efficiency and fairness
 - More users can transmit \rightarrow massive connectivity
 - Frequent transmissions \rightarrow lower latency

- Conventional systems are based on orthogonal multiple access (OMA), where users
 - are allocated disjoint sets of resources
 - wait for the BS to grant them access
- With non-orthogonal multiple access (NOMA), users can contest the same resources
 - Resources sharing \rightarrow improved spectral efficiency and fairness
 - More users can transmit \rightarrow massive connectivity
 - Frequent transmissions \rightarrow lower latency
 - Multiuser interference \rightarrow higher detection complexity

TU

- The superposition can either be pure power-domain, or paired with code-domain signatures
- The signatures, e.g., spreading sequences, help with
 - interference suppression \rightarrow high user overloading
 - user activity detection \rightarrow grant-free access

WIEN

Introduction - RIS

- A reconfigurable intelligent surface (RIS) consists of a large number of adjustable elements
- Each element is controlled electrically to produce reflected waves with modified
 - amplitude
 - phase
 - polarization
 - frequency

Introduction - RIS

- A reconfigurable intelligent surface (RIS) consists of a large number of adjustable elements
- Each element is controlled electrically to produce reflected waves with modified
 - amplitude
 - phase
 - polarization
 - frequency
- By adjustment of the phases, passive beamforming can be achieved

Introduction - RIS

- A reconfigurable intelligent surface (RIS) consists of a large number of adjustable elements
- Each element is controlled electrically to produce reflected waves with modified
 - amplitude
 - phase
 - polarization
 - frequency
- By adjustment of the phases, passive beamforming can be achieved
 - E.g., boosting a user in blockage

- Consider an uplink cluster-based deployment, e.g., streets
 - The clusters are separated spatially
- RISs are installed in each cluster
 - The BS has LOS to the surface
 - Forms a beam towards it

- Consider an uplink cluster-based deployment, e.g., streets
 - The clusters are separated spatially
- RISs are installed in each cluster
 - The BS has LOS to the surface
 - Forms a beam towards it
- To support massive connectivity, code-domain NOMA is employed within each cluster

- Consider an uplink cluster-based deployment, e.g., streets
 - The clusters are separated spatially
- RISs are installed in each cluster
 - The BS has LOS to the surface
 - Forms a beam towards it
- To support massive connectivity, code-domain NOMA is employed within each cluster
- How to configure the phase-shifts at the RISs?

• The received signal is given by

$$\mathbf{y} = \sum_{k=1}^{K} \sqrt{\ell_{\mathrm{BS}} \ell_{h_k} P_k L} \left(\mathbf{H}_{\mathrm{BS}} \mathbf{\Phi} \mathbf{h}_k \otimes \mathbf{s}_k
ight) x_k + \mathbf{z} + \mathbf{n}$$

• The received signal is given by

$$\mathbf{y} = \sum_{k=1}^{K} \sqrt{\ell_{\mathrm{BS}} \ell_{h_k} P_k L} \left(\mathbf{H}_{\mathrm{BS}} \mathbf{\Phi} \mathbf{h}_k \otimes \mathbf{s}_k \right) x_k + \mathbf{z} + \mathbf{n}$$

• LOS BS-RIS channels: $\mathbf{H}_{\mathrm{BS}} = \mathbf{a}\mathbf{b}^{H}$, and we have

$$\mathbf{y} = (\mathbf{a} \otimes \mathbf{I}_L) \sum_{k=1}^K \sqrt{\ell_{\mathrm{BS}} \ell_{h_k} P_k L} \left(\mathbf{b}^H \mathbf{\Phi} \mathbf{h}_k \otimes \mathbf{s}_k
ight) x_k + \mathbf{z} + \mathbf{n}$$

• The received signal is given by

$$\mathbf{y} = \sum_{k=1}^{K} \sqrt{\ell_{\mathrm{BS}} \ell_{h_k} P_k L} \left(\mathbf{H}_{\mathrm{BS}} \mathbf{\Phi} \mathbf{h}_k \otimes \mathbf{s}_k \right) x_k + \mathbf{z} + \mathbf{n}$$

• LOS BS-RIS channels: $\mathbf{H}_{\mathrm{BS}} = \mathbf{a}\mathbf{b}^{H}$, and we have

$$\mathbf{y} = (\mathbf{a} \otimes \mathbf{I}_L) \sum_{k=1}^K \sqrt{\ell_{\mathrm{BS}} \ell_{h_k} P_k L} \left(\mathbf{b}^H \mathbf{\Phi} \mathbf{h}_k \otimes \mathbf{s}_k \right) x_k + \mathbf{z} + \mathbf{n}$$

• Under MRC spatial filtering

$$\begin{aligned} (\mathbf{a}^{H} \otimes \mathbf{I}_{L})\mathbf{y} &= (\mathbf{a}^{H}\mathbf{a} \otimes \mathbf{I}_{L}) \sum_{k=1}^{K} \sqrt{\ell_{\mathrm{BS}}\ell_{h_{k}}P_{k}L} \left(\mathbf{b}^{H}\mathbf{\Phi}\mathbf{h}_{k} \otimes \mathbf{s}_{k}\right)x_{k} + (\mathbf{a}^{H} \otimes \mathbf{I}_{L})\mathbf{z} + (\mathbf{a}^{H} \otimes \mathbf{I}_{L})\mathbf{n}, \\ \tilde{\mathbf{y}} &= \sum_{k=1}^{K} \sqrt{N_{r}^{2}\ell_{\mathrm{BS}}\ell_{h_{k}}P_{k}L} \left(\mathbf{b}^{H}\mathbf{\Phi}\mathbf{h}_{k} \otimes \mathbf{s}_{k}\right)x_{k} + \tilde{\mathbf{n}} \end{aligned}$$

• Let
$$\beta_k = \sqrt{N_r^2 \ell_{\text{BS}} \ell_{h_k} P_k L}$$
, $\mathbf{w} = \text{diag}(\mathbf{\Phi}^H)$, $\hat{\mathbf{h}}_k = \mathbf{b}^* \circ \mathbf{h}_k$, we finally have

$$\tilde{\mathbf{y}} = \sum_{k=1}^{K} \beta_k(\mathbf{w}^H \hat{\mathbf{h}}_k) \, \mathbf{s}_k x_k + \tilde{\mathbf{n}}$$

• Let
$$\beta_k = \sqrt{N_r^2 \ell_{\text{BS}} \ell_{h_k} P_k L}$$
, $\mathbf{w} = \text{diag}(\mathbf{\Phi}^H)$, $\hat{\mathbf{h}}_k = \mathbf{b}^* \circ \mathbf{h}_k$, we finally have
 $\tilde{\mathbf{y}} = \sum_{k=1}^K \beta_k (\mathbf{w}^H \hat{\mathbf{h}}_k) \mathbf{s}_k x_k + \tilde{\mathbf{n}}$

• Assuming a cancellation order of UE1, UE2, ..., UEK

$$\operatorname{SINR}_{k} = \frac{|\beta_{k} \left(\mathbf{w}^{H} \hat{\mathbf{h}}_{k} \right) \mathbf{v}_{k}^{H} \mathbf{s}_{k}|^{2}}{\sum_{l=k+1}^{K} |\beta_{l} \left(\mathbf{w}^{H} \hat{\mathbf{h}}_{l} \right) \mathbf{v}_{k}^{H} \mathbf{s}_{l}|^{2} + \sigma_{\hat{\mathbf{n}}}^{2} \|\mathbf{v}_{k}\|^{2}}, \qquad k = 1, 2, \dots, K$$

• Let
$$\beta_k = \sqrt{N_r^2 \ell_{\text{BS}} \ell_{h_k} P_k L}$$
, $\mathbf{w} = \text{diag}(\Phi^H)$, $\hat{\mathbf{h}}_k = \mathbf{b}^* \circ \mathbf{h}_k$, we finally have
 $\tilde{\mathbf{y}} = \sum_{k=1}^K \beta_k (\mathbf{w}^H \hat{\mathbf{h}}_k) \mathbf{s}_k x_k + \tilde{\mathbf{n}}$

• Assuming a cancellation order of UE1, UE2, ..., UEK

$$\operatorname{SINR}_{k} = \frac{|\beta_{k} (\mathbf{w}^{H} \hat{\mathbf{h}}_{k}) \mathbf{v}_{k}^{H} \mathbf{s}_{k}|^{2}}{\sum_{l=k+1}^{K} |\beta_{l} (\mathbf{w}^{H} \hat{\mathbf{h}}_{l}) \mathbf{v}_{k}^{H} \mathbf{s}_{l}|^{2} + \sigma_{\hat{\mathbf{n}}}^{2} \|\mathbf{v}_{k}\|^{2}}, \qquad k = 1, 2, \dots, K$$

• The goal now is to design w such that

$$\operatorname{SINR}_k \ge \epsilon_k, \quad \forall k, \ k = 1, 2, \dots, K$$

WIEN

Slide 7 / 18

- Not easy to solve
 - The detection order and the MMSE filters are coupled with the RIS weights
 - Even if we know them separately, how to solve such a system of inequalities?

• From MIMO/CDMA, we know that MMSE-IC is sum-rate optimal

- From MIMO/CDMA, we know that MMSE-IC is sum-rate optimal
- Sum-rate is given by

$$R_{\text{sum}} = \frac{1}{L} \log_2 \det \left(\mathbf{I}_L + \frac{1}{\sigma_{\hat{\mathbf{n}}}^2} \sum_{k=1}^K \beta_k^2 (\mathbf{w}^H \hat{\mathbf{h}}_k) \mathbf{s}_k \mathbf{s}_k^H (\hat{\mathbf{h}}_k^H \mathbf{w}) \right)$$

- From MIMO/CDMA, we know that MMSE-IC is sum-rate optimal
- Sum-rate is given by

$$R_{\text{sum}} = \frac{1}{L} \log_2 \det \left(\mathbf{I}_L + \frac{1}{\sigma_{\hat{\mathbf{n}}}^2} \sum_{k=1}^K \beta_k^2 (\mathbf{w}^H \hat{\mathbf{h}}_k) \mathbf{s}_k \mathbf{s}_k^H (\hat{\mathbf{h}}_k^H \mathbf{w}) \right)$$

• To simplify matters, we drop the spreading (L = 1)

$$R_{\mathrm{sum}}^{(\mathrm{no \ spread.})} = \log_2 \left(1 + \frac{1}{\sigma_{\tilde{\mathbf{n}}}^2} \sum_{k=1}^K \beta_k^2 \mathbf{w}^H \hat{\mathbf{h}}_k \hat{\mathbf{h}}_k^H \mathbf{w} \right)$$

- From MIMO/CDMA, we know that MMSE-IC is sum-rate optimal
- Sum-rate is given by

$$R_{\text{sum}} = \frac{1}{L} \log_2 \det \left(\mathbf{I}_L + \frac{1}{\sigma_{\hat{\mathbf{n}}}^2} \sum_{k=1}^K \beta_k^2 (\mathbf{w}^H \hat{\mathbf{h}}_k) \mathbf{s}_k \mathbf{s}_k^H (\hat{\mathbf{h}}_k^H \mathbf{w}) \right)$$

• To simplify matters, we drop the spreading (L=1)

$$R_{\mathrm{sum}}^{(\mathrm{no \ spread.})} = \log_2 \left(1 + \frac{1}{\sigma_{\hat{\mathbf{n}}}^2} \sum_{k=1}^K \beta_k^2 \mathbf{w}^H \hat{\mathbf{h}}_k \hat{\mathbf{h}}_k^H \mathbf{w} \right)$$

• Let $\mathbf{H}=\sum_{k=1}^{K}\beta_{k}^{2}\hat{\mathbf{h}}_{k}\hat{\mathbf{h}}_{k}^{H}$, the sum-rate maximizer is given by

$$\begin{aligned} \mathbf{w}_{\text{sum}} &= \underset{\mathbf{w}}{\arg\max} \ \mathbf{w}^{H} \mathbf{H} \mathbf{w} \\ & \mathbf{s.t.} \quad |[\mathbf{w}]_{n}| = 1, \quad n = 1, 2, \dots, N_{s} \end{aligned}$$

- From MIMO/CDMA, we know that MMSE-IC is sum-rate optimal
- Sum-rate is given by

$$R_{\text{sum}} = \frac{1}{L} \log_2 \det \left(\mathbf{I}_L + \frac{1}{\sigma_{\hat{\mathbf{n}}}^2} \sum_{k=1}^K \beta_k^2 (\mathbf{w}^H \hat{\mathbf{h}}_k) \mathbf{s}_k \mathbf{s}_k^H (\hat{\mathbf{h}}_k^H \mathbf{w}) \right)$$

• To simplify matters, we drop the spreading (L=1)

$$R_{\mathrm{sum}}^{(\mathrm{no \ spread.})} = \log_2 \left(1 + \frac{1}{\sigma_{\hat{\mathbf{n}}}^2} \sum_{k=1}^K \beta_k^2 \mathbf{w}^H \hat{\mathbf{h}}_k \hat{\mathbf{h}}_k^H \mathbf{w} \right)$$

• Let
$$\mathbf{H} = \sum_{k=1}^{K} eta_k^2 \hat{\mathbf{h}}_k \hat{\mathbf{h}}_k^H$$
, the sum-rate maximizer is given by

$$\mathbf{w}_{sum} = \underset{\mathbf{w}}{\arg \max} \ \mathbf{w}^{H} \mathbf{H} \mathbf{w}$$

s.t. $|[\mathbf{w}]_{n}| = 1, \quad n = 1, 2, \dots, N_{s},$

• We relax it to a conventional quadratic problem, and set

$$[\mathbf{w}_{sum}]_n = \exp(j\angle[\mathbf{u}_{max}]_n), \quad n = 1, 2, \dots, N_s$$

WIEN

Slide 8 / 18

• Using the sum-rate optimized phase-shifts, we determine the detection order and filters

- Using the sum-rate optimized phase-shifts, we determine the detection order and filters
- Detection order:
 - The received signal strength $|eta_k \mathbf{w}^H_{ ext{sum}} \hat{\mathbf{h}}_k|$ is used
 - To simplify notation, the following resultant ordering is assumed

$$|\beta_1 \mathbf{w}_{\mathrm{sum}}^H \hat{\mathbf{h}}_1| \ge |\beta_2 \mathbf{w}_{\mathrm{sum}}^H \hat{\mathbf{h}}_2| \ge \cdots \ge |\beta_K \mathbf{w}_{\mathrm{sum}}^H \hat{\mathbf{h}}_K|$$

- Using the sum-rate optimized phase-shifts, we determine the detection order and filters
- Detection order:
 - The received signal strength $|eta_k \mathbf{w}^H_{ ext{sum}} \hat{\mathbf{h}}_k|$ is used
 - To simplify notation, the following resultant ordering is assumed

$$|\beta_1 \mathbf{w}_{\mathrm{sum}}^H \hat{\mathbf{h}}_1| \ge |\beta_2 \mathbf{w}_{\mathrm{sum}}^H \hat{\mathbf{h}}_2| \ge \cdots \ge |\beta_K \mathbf{w}_{\mathrm{sum}}^H \hat{\mathbf{h}}_K|$$

- MMSE filters:
 - The applied MMSE filter per stage is given by

$$\mathbf{v}_{k} = \mathbf{g}_{k}^{H} \left(\sum_{l=k}^{K} \mathbf{g}_{l} \mathbf{g}_{l}^{H} + \mathbf{I}_{L} \sigma_{\tilde{\mathbf{n}}}^{2} \right)^{-1},$$

where
$$\mathbf{g}_k = \beta_k (\mathbf{w}_{sum}^H \hat{\mathbf{h}}_k) \, \mathbf{s}_k$$

• Having the detection order and the filters, our optimization is

$$\begin{array}{ll} \text{find} \quad \mathbf{w} \\ \text{s.t.} \quad & \frac{|\beta_k \left(\mathbf{w}^H \hat{\mathbf{h}}_k\right) \mathbf{v}_k^H \mathbf{s}_k|^2}{\sum_{l=k+1}^K |\beta_l \left(\mathbf{w}^H \hat{\mathbf{h}}_l\right) \mathbf{v}_k^H \mathbf{s}_l|^2 + \sigma_{\hat{\mathbf{n}}}^2 \|\mathbf{v}_k\|^2} \geq \epsilon_k, \quad k = 1, \, 2, \, \dots, \, K, \\ |[\mathbf{w}]_n| = 1, \qquad n = 1, \, 2, \, \dots, \, N_s. \end{array}$$

• Having the detection order and the filters, our optimization is

$$\begin{array}{ll} \text{find} & \mathbf{w} \\ \text{s.t.} & \frac{|\beta_k \left(\mathbf{w}^H \hat{\mathbf{h}}_k\right) \mathbf{v}_k^H \mathbf{s}_k|^2}{\sum_{l=k+1}^K |\beta_l \left(\mathbf{w}^H \hat{\mathbf{h}}_l\right) \mathbf{v}_k^H \mathbf{s}_l|^2 + \sigma_{\hat{\mathbf{n}}}^2 \|\mathbf{v}_k\|^2} \geq \epsilon_k, \quad k = 1, \, 2, \, \dots, \, K, \\ |[\mathbf{w}]_n| = 1, \qquad n = 1, \, 2, \, \dots, \, N_s. \end{array}$$

• To find a solution, we relax it into a semidefinite program (SDP)

• Having the detection order and the filters, our optimization is

$$\begin{array}{ll} \text{find} \quad \mathbf{w} \\ \text{s.t.} \quad & \frac{|\beta_k \left(\mathbf{w}^H \hat{\mathbf{h}}_k\right) \mathbf{v}_k^H \mathbf{s}_k|^2}{\sum_{l=k+1}^K |\beta_l \left(\mathbf{w}^H \hat{\mathbf{h}}_l\right) \mathbf{v}_k^H \mathbf{s}_l|^2 + \sigma_{\hat{\mathbf{n}}}^2 \|\mathbf{v}_k\|^2} \geq \epsilon_k, \quad k = 1, \, 2, \, \dots, \, K, \\ |[\mathbf{w}]_n| = 1, \qquad n = 1, \, 2, \, \dots, \, N_s. \end{array}$$

- To find a solution, we relax it into a semidefinite program (SDP)
- First, we rewrite the SINR condition as

$$-\frac{\mathbf{w}^{H}\left(\beta_{k}^{2}|\mathbf{v}_{k}^{H}\mathbf{s}_{k}|^{2}\,\hat{\mathbf{h}}_{k}\hat{\mathbf{h}}_{k}^{H}\right)\mathbf{w}}{\mathbf{w}^{H}\left(\sum_{l=k+1}^{K}\beta_{l}^{2}|\mathbf{v}_{k}^{H}\mathbf{s}_{l}|^{2}\,\hat{\mathbf{h}}_{l}\hat{\mathbf{h}}_{l}^{H}+\frac{\sigma_{\bar{\mathbf{n}}}^{2}\|\mathbf{v}_{k}\|^{2}}{N_{s}}\mathbf{I}_{N_{s}}\right)\mathbf{w}}\geq\epsilon_{k}$$

• Having the detection order and the filters, our optimization is

$$\begin{array}{ll} \text{find} \quad \mathbf{w} \\ \text{s.t.} \quad & \frac{|\beta_k \left(\mathbf{w}^H \hat{\mathbf{h}}_k\right) \mathbf{v}_k^H \mathbf{s}_k|^2}{\sum_{l=k+1}^K |\beta_l \left(\mathbf{w}^H \hat{\mathbf{h}}_l\right) \mathbf{v}_k^H \mathbf{s}_l|^2 + \sigma_{\hat{\mathbf{n}}}^2 \|\mathbf{v}_k\|^2} \geq \epsilon_k, \quad k = 1, \ 2, \ \dots, \ K, \\ |[\mathbf{w}]_n| = 1, \qquad n = 1, \ 2, \ \dots, \ N_s. \end{array}$$

- To find a solution, we relax it into a semidefinite program (SDP)
- First, we rewrite the SINR condition as

$$\frac{\mathbf{w}^{H} \Big(\beta_{k}^{2} |\mathbf{v}_{k}^{H} \mathbf{s}_{k}|^{2} \hat{\mathbf{h}}_{k} \hat{\mathbf{h}}_{k}^{H} \Big) \mathbf{w}}{\mathbf{w}^{H} \Big(\sum_{l=k+1}^{K} \beta_{l}^{2} |\mathbf{v}_{k}^{H} \mathbf{s}_{l}|^{2} \hat{\mathbf{h}}_{l} \hat{\mathbf{h}}_{l}^{H} + \frac{\sigma_{\tilde{\mathbf{n}}}^{2} \|\mathbf{v}_{k}\|^{2}}{N_{s}} \mathbf{I}_{N_{s}} \Big) \mathbf{w}} \geq \epsilon_{k}$$

Let

$$\mathbf{A}_{k} = \beta_{k}^{2} |\mathbf{v}_{k}^{H} \mathbf{s}_{k}|^{2} \, \hat{\mathbf{h}}_{k} \hat{\mathbf{h}}_{k}^{H}, \qquad \mathbf{B}_{k} = \sum_{l=k+1}^{K} \beta_{l}^{2} |\mathbf{v}_{k}^{H} \mathbf{s}_{l}|^{2} \, \hat{\mathbf{h}}_{l} \hat{\mathbf{h}}_{l}^{H} + \frac{\sigma_{\hat{\mathbf{n}}}^{2} \|\mathbf{v}_{k}\|^{2}}{N_{s}} \mathbf{I}_{N_{s}}$$

WIEN

Slide 10 / 18

• The SINR condition is then

$$\frac{\mathbf{w}^H \mathbf{A}_k \mathbf{w}}{\mathbf{w}^H \mathbf{B}_k \mathbf{w}} \ge \epsilon_k$$

• Let $\mathbf{W} = \mathbf{w}\mathbf{w}^H$; we have

$$\mathbf{w}^H \mathbf{A}_k \mathbf{w} = \mathrm{tr} ig(\mathbf{A}_k \mathbf{W} ig),$$
 $\mathbf{w}^H \mathbf{B}_k \mathbf{w} = \mathrm{tr} ig(\mathbf{B}_k \mathbf{W} ig),$

and the SINR condition becomes

$$\operatorname{tr}(\mathbf{A}_{k}\mathbf{W}) - \epsilon_{k}\operatorname{tr}(\mathbf{B}_{k}\mathbf{W}) \geq 0$$
$$\operatorname{tr}([\mathbf{A}_{k} - \epsilon_{k}\mathbf{B}_{k}]\mathbf{W}) \geq 0$$

• The SDP-relaxed problem is finally given by

find
$$\mathbf{W}$$

s.t. $\operatorname{tr}([\mathbf{A}_k - \epsilon_k \mathbf{B}_k] \mathbf{W}) \ge 0, \quad k = 1, 2, \dots, K,$
 $\mathbf{W} \succcurlyeq 0, [\mathbf{W}]_{n,n} = 1, \qquad n = 1, 2, \dots, N_s,$

- We apply a rank-1 approximation based on the strongest eigenvector of ${f W}$
 - If no solution is feasible, the sum-rate solution is used

Example Simulation Scenario

• Simulation parameters

Parameter	Value
#users per cluster	K = 1 to 16
Signature length	L = 4
# BS antennas	$N_r = 32$
#RIS elements	$N_s = 32$
NOMA codebook	4 imes 16 Grassmannian
BS-RIS channel	LOS; 65 dB pathloss
RIS-UE channel	Rayleigh; $65 \mathrm{dB}$ mean pathloss $+$ spread of $[-s,s] \mathrm{dB}$
Transmit power	$P_k=30\mathrm{dBm}$ (all users equal)
Noise power	$\sigma_{\mathbf{n}}^2 = -110\mathrm{dBm}$
Receiver	MMSE-IC

- The RIS-UE channels have a pathloss spread of $[-s,\,s]\,\mathrm{dB},\,\mathrm{e.g},$
 - -~ when s=0, all users have equal RIS-UE pathloss of $65\,\mathrm{dB}$
 - -~ when s=3, the users pathloss is uniformly drawn from the range $[62,\,68]\,\mathrm{dB}$

Example Scenario - User Detectability

• $N_s = 32$, pathloss spread is [-3, 3] dB

WIEN

Slide 14 / 18

Example Scenario - User Detectability

• $N_s = 32$, pathloss spread is [-3, 3] dB

WIEN

Slide 14 / 18

Example Scenario - User Detectability

• $N_s = 32$, pathloss spread is [-3, 3] dB

WIEN

Slide 14 / 18

Example Scenario - Impact of Pathloss Spread

• $N_s = 32, K = 12, \epsilon = 4 \, \text{dB}$

Example Scenario - Impact of P and N_s

• Pathloss spread is [0, 0] dB, K = 12, $\epsilon = 3 dB$

• We consider a cluster-based RIS-assisted MIMO-NOMA setup

Summary

- We consider a cluster-based RIS-assisted MIMO-NOMA setup
- In order to handle the coupling of the different variables, sum-rate optimized phase-shifts are used an initial solution
- Once the variables are decoupled, we solve for the final phase-shifts by a convex relaxation of the problem

Summary

- We consider a cluster-based RIS-assisted MIMO-NOMA setup
- In order to handle the coupling of the different variables, sum-rate optimized phase-shifts are used an initial solution
- Once the variables are decoupled, we solve for the final phase-shifts by a convex relaxation of the problem
- Substantial gain can be observed for the number of correctly detected users

Thank you Questions?

Bashar Tahir bashar.tahir@tuwien.ac.at

Backup Slides

