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Dependable Wireless Connectivity for the Society in Motion

Studying 3D channel models

I Channel models on system-level tools commonly 2-dimensional (2D)

I 3GPP Spatial Channel Model (SCM)
I A geometric stochastic model
I Only linear antenna arrays can be inspected with 2D channel models

I Three-Dimensional (3D) channel model enable investigations on
I Full-dimension MIMO
I 3D Beamforming
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Modeling the wireless channel in 3-dimensions

The 3GPP 3D channel model in Vienna LTE-A system-level simulator

I Considers elevation and azimuth

I Incorporates planar antenna arrays
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Dependable Wireless Connectivity for the Society in Motion

Reduction in complexity

I The 3GPP 3D model imposes high complexity

I Complexity reduction by:
I Partition the scenario into equally sized cubes
I Within a cube UE experiences the same propagation conditions

I Spatial resolution 1 m
I Temporal resolution 1 ms
I UE speed v = [7.5, 0, 0] km/h

I Change the cube each 36 sub-frames

Temporal resolution refers to the length of one LTE sub-frame
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Dependable Wireless Connectivity for the Society in Motion

Calibration: Zenith spread

I Comparing system-level simulations and 3GPP TR 36.873 results
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Dependable Wireless Connectivity for the Society in Motion

Simulation run times

I A network of seven hexagonally arranged macro-sites, each employing three
eNodeB sectors

I Evaluate the simulation complexity [Ademaj et al., a]:
I Number of interfering links Nsector = {2, 8, 14, 20}
I Number of UEs per sector K = {2, 20, 50}
I Number of antenna elements M = {8, 24, 40, 80}
I Simulation length NTTI = {10, 50, 100}
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Dependable Wireless Connectivity for the Society in Motion

Simulation run times: Varying the size of antenna array
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Dependable Wireless Connectivity for the Society in Motion

Throughput performance: Rayleigh versus 3GPP 3D model

I Desired channel modeled by 3GPP 3D model
I Interfering channels modeled as

I A noise-limited network
I Rayleigh fading
I The 3GPP 3D model
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Spatial resolution of planar antenna arrays

I How does the channel impacts the spatial resolution of an antenna array?
I What is the spatial separation of narrow beams in LOS and NLOS, outdoors and

indoors [Ademaj et al., b]?
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Dependable Wireless Connectivity for the Society in Motion

Resolution of a uniform vertical linear array

Antenna array radiation pattern in elevation
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Dependable Wireless Connectivity for the Society in Motion

2D Antenna array structure

I Antenna port configuration: NTx × NRx = 4× 2
I Antenna array geometry at eNodeB: NTx ×M
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Dependable Wireless Connectivity for the Society in Motion

Indoor UE: Channel energy and UE throughput

I UE height hUE = 1.5 m
I UE distance dUE = 150 m
I M = {1, 10, 100}
I Steering angle θs = {0◦, 10◦, 20◦, · · · , 180◦}
I Target angle θs = 98.9◦
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Conclusion

I Incorporation of the elevation dimension increases the computational complexity
by more than three times

I The complexity grows roughly linearly with the number of antenna elements per
antenna array

I A more optimistic view on performance observed by 3D model: simple channel
models may underestimate the achievable performance

I In terms of spatial resolution, doubling the number of antenna elements in
elevation does not double the received channel energy

I The optimal number of antenna elements - ?
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Outlook: 5G System Level
The 3GPP 3D channel model

I Reduce the model complexity by pruning the multipath components
I Adapt the model for moving scenarios: spatial correlation and channel transitions
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Dependable Wireless Connectivity for the Society in Motion

Outlook: 5G System Level
3D Channel models > 6 GHz

I 3GPP TR 38.900: Channel models for carrier frequencies 6 GHz− 100 GHz

I Covering many scenarios (rural, urban, street canyons, open area, indoor
scenarios, D2D and V2V)

I Three-dimensional beamforming

Slide 16 / 19



Dependable Wireless Connectivity for the Society in Motion

Outlook: Full-dimension MIMO

I Antenna configurations for 2-dimensional antenna arrays
I New transmitter architectures: TXRU modeling and two-layer mapping
I New precoding strategies to support the element-level antenna structure

TXRU Transceiver Unit
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Outlook: Full-dimension MIMO in moving scenarios

I Beam alignment schemes for efficient UE tracking
I Cars and high speed trains

http://www.profheath.org/research/millimeter-wave-cellular-systems/mmwave-
for-vehicular-communications-2/
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