

Vienna 5G Link Level Simulator v1.2 - List of Features

General Functionality

The Vienna 5G Link Level Simulator evaluates the average PHY layer performance by means of Monte Carlo simulations.

- no explicit geometry supported, defined by links
- simulate a multitude of multicarrier systems
- choose parameters individually for each node

Channels and Links

FDD and TDD frame structure are supported.

- Uplink data channel
- Downlink data channel
- flexible subcarrier spacing (5G Numerology)

Channel Coding

Different channel coding schemes may be chosen for different cells to investigate their co-existence.

- Turbo coding
- TB convolutional coding
- Polar coding
- LDPC coding

Feedback

Quantized feedback to adapt the transmission parameters to the channel conditions.

- CQI, RI and PMI feedback selectable
- LTE-A compliant codebook (up to 4 antennas)
- 5G compliant codebook (up to 32 antennas)
- user defined codebook (arbitrary number of antennas)
- variable feedback delay (in multiples of the frame duration)

Channel Models Doubly-fading channel model parameterizable from $500\,\mathrm{MHz}$ 100 **GHz** • time selectivity via sum of sinusoids (Jakes) • frequency selectivity via tap delay models (pedestrian, vehicular, etc.) spatial correlation via Kronecker model • TDL models with adjustable RMS delay • correlated time selectivity via sum of sinusoids • TWDP and Rican fading (static) Spatial Channel Model • based on TR38.901 • artificially defines geometry via angles between users • includes time, frequency and spatial correlation spatially consistent correlation **Channel Estimation** Pilot based channel estimation • LTE/5G compliant diamond pattern rectangular or diamond shaped pilot patterns LS channel estimation • perfect channel knowledge symbol domain orthogonal pilot symbols for multi-user MIMO mode Modulation

Different modulation schemes and waveforms may be chosen for different cells to investigate their coexistence.

- OFDM
- f-OFDM
- WOLA
- FBMC
- UFMC

Transmission Modes	
MIMO modes	 transmit or receive diversity open loop spatial multiplexing closed loop spatial multiplexing downlink multi-user MIMO (MRT, ZF, block diagonalization) uplink mulit-user MIMO (MRC, ZF, MMSE)
Non-orthogonal multiple access	• 3GPP MUST
Equalization and Detection	
One-tap equalization with MIMO detection schemes	 ZF MMSE Sphere Decoder Maximum likelihood
Power Amplifier Models	
Non-linear power amplifier models for downlink transmissions	Rapp modeladjustable amplifier back-off
Performance Evaluation	
Simulation results for up- and downlink:	 throughput per user cell sum throughput coded and uncoded Bit Error Ratio Frame Error Ratio channel estimation MSE transmit signal peak-to-average power ratio Peak-to-Average power ratio ECDF