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Convex and Non-Convex Optimization

minimize f (x) (1)

subject to: x ∈ X

Convex optimization problems:

I Convex objective function f (x) : Rn → R, convex feasible set X ⊆ Rn

I Efficient solvers for many classes have become a technology

Non-convex optimization problems:

I Either the objective function or the feasible set is non-convex

I No effective general methods: local/global optimization

I Implicit consideration of feasible set structure – manifold optimization

I Convex relaxation – upper bound, approximation quality
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Problem Motivation1

transmitter receiverchannel
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I We describe the MIMO channel by a linear transformation H ∈ CNr×Nt

H = UΣVH, U ∈ CNr×r ,Σ ∈ Rr×r ,V ∈ CNt×r (2)

I Channel subspace information span (V): Grassmann manifold

I Matrix of right singular vectors V: compact Stiefel manifold

I Channel Gramian VΣ2VH: cone of positive semidefinite matrices

⇒ Predictive quantization on smooth Riemannian manifolds

1
Limited Feedback for 4G and Beyond, S. Schwarz, in Advances in Mobile Computing and

Communications: 4G and Beyond, CRC Press Taylor & Francis Group, 2016
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Manifold Prediction

M

m[k-2]

m[k]
trajectory
of {m[k]}

m[k-1]

I Consider a trajectory on the manifold m(t) ∈M

I We observe m at sampling time-instants m[k] = m(kTs)

I Goal: predict m[k] from prior observations m[k − 1],m[k − 2], . . .

min
P

d2M (m[k], m̂[k]) , (3)

m̂[k] = P (m[k − 1],m[k − 2], . . .) (4)

I Non-linear distortion metric, non-linear prediction
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General Ideas of Manifold Optimization

M

f(m)

I Goal: minimize a function f (m) with m ∈M

I Gradient optimization on embedding space + projection onto M

I Implicit formulation on the manifold [Absil et al., 2008]

I Charts ϕ map the manifold locally to the Euclidean space

I Smooth manifold: charts ϕ and transition maps ψ are C∞

I Riemannian manifold: inner product, length, angle, distance
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Manifold Prediction (II)

M

m[k-2]

m[k]

m[k-1]

T m  [k-1]

t[k]

T m  [k-2]

t[k-1]

I Utilize the linear tangent vector space associated with points on the manifold2

t = L (m1,m2) ∈ TM(m1), m2 = R (m1, t) ∈M (5)

I Compatible lifting/retraction pairs, e.g., exponential/logarithmic map (geodesic)

⇒ bijection between curves on the manifold and tangent vectors

I Perform linear prediction in the tangent space

min
ap

∥∥∥∥∥∥t[k]−
Np∑
p=1

ap t̄[k − p]

∥∥∥∥∥∥
2

(6)

2
Adaptive Quantization on a Grassmann-Manifold for Limited Feedback Beamforming Systems,

S. Schwarz et al., IEEE Transactions on Signal Processing, vol 61, no 18, 2013
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Evaluation of Multi-User MIMO Rate with Limited Feedback
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I Achievable transmission rate with limited feedback3

I (Regularized) block-diag. [Spencer et al., 2004, Stankovic and Haardt, 2008]

3
Advanced Multi User MIMO Concepts, S. Schwarz, in The Vienna LTE-Advanced Simulators:

Up and Downlink, Link and System Level Simulation, Springer 2016
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Further Extensions

I Feedback overhead reduction through excess antennas

→ subspace quantization based combining4

min
G∈CL×Nr ,Qi∈Q

d2G (GH,Qi ) (7)

I Extension to multicarrier transmission and distributed antenna systems5

min
Qi∈Q

d2G,w
(
V̄,Qj , Λ̄

)
, (8)

V̄Λ̄V̄H = R̄, R̄ =
1

N

N∑
n=1

V[n]V[n]H (9)

4
Subspace Quantization Based Combining for Limited Feedback Block-Diagonalization, S. Schwarz et al.,

Transactions on Wireless Communications, vol 12, no 11, 2013
5

Evaluation of Distributed Multi-User MIMO-OFDM with Limited Feedback, S. Schwarz et al.,
Transactions on Wireless Communications, vol 13, no 11, 2014
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Multi-User MISO Multicast Interference Channel

TX1

TXJ

RX11

RXK1

RX1J

RXKJ

I Limits of beamforming in the multi-user multicast interference channel

Rkj = log2

1 +
hH
kjjCjhkjj

σ2
n +

∑J
`=1
` 6=j

hH
kj`C`hkj`

 , Cj = fj f
H
j , (10)

Rj = min
k∈{1,...,K}

Rkj (11)
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Achievable Multicast Rate Region

I Achievable rate tuples [R1, . . . ,RJ ]

I Weighted sum-rate optimization

max
{C1,...,CJ}

J∑
j=1

wjRj , (12)

subject to: rank(Cj ) = 1

I Non-convex due to

I Objective function: mutual interference coupling in Rkj

I Feasible set: rank-one constraint on input covariance matrices Cj = fj f
H
j

⇒ semi-definite relaxation [Luo et al., 2010]: unconstrained Cj � 0
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Distributed Optimization6

I Consider transmitter j and assume all others as fixed

{C∗1 , . . . ,C∗j−1,C
∗
j+1, . . . ,C

∗
J } (13)

I Interference to users of base station j : Γkj` = tr
(

C∗`hkj`hH
kj`

)
I Decoupled per transmitter optimization

C#
j (Γ) = arg max

Cj∈CNt×Nt ,Cj�0

wjRj , (14)

subject to: tr
(

Cjhi`jh
H
i`j

)
≤ Γi`j , ∀i , `

I C#
j (Γ) = C∗j provided Γi`j = tr

(
C∗j hi`jh

H
i`j

)

6
Transmit Optimization for the MISO Multicast Interference Channel, S. Schwarz et al.,

IEEE Transactions on Communications, vol 63, no 12, 2015
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Local Distributed Optimization6

I Initial guess of the leakage parameters Γkj`

I Solve the decoupled optimization problem C#
j (Γ)

I Determine local ascent directions ∇ΓLj (Γ)

⇒ Dual-gradient approach [Zhang and Cui, 2010]

I Share local ascent directions and determine a global
ascent direction (consensus)

I Iterate until vanishing improvement

TX1

TXJ

C1 (Γ)
#

CJ (Γ)
#

L1(Γ)
Δ

LJ(Γ)
Δ

6
Transmit Optimization for the MISO Multicast Interference Channel, S. Schwarz et al.,

IEEE Transactions on Communications, vol 63, no 12, 2015
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Numerical Example: Achievable Multicast Rate Region
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I Two transmitters serving six users each from Nt = 8 antennas

I Transmission with rank-unconstrained input-covariance matrix
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Probabilistic Analysis of SDR

I Beamformer randomization: f
(m)
j ∼ CN

(
0,C∗j

)
, m = 1, . . . ,M

I Analysis of the worst-case approximation ratio7

SINRBF

SINRSDR
≥
µ(K)

γ(N)
∝

1

K log(N)
(15)

I This holds with probability → 1 as M →∞

I Upper bound on the rank of the optimal solution: rank(C∗j ) ≤
√
K + N + 1

7
Probabilistic Analysis of Semidefinite Relaxation for Leakage-Based Multicasting, S. Schwarz,

IEEE Signal Processing Letters, vol 23, no 5, 2016
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CD-Lab Dependable Wireless Connectivity for the Society in Motion

Module 1: 

PHY Enhancements
Module 2: 
Innovative Technologies

Module 3: 

Network Architectures

I Wireless technologies to support very large numbers of mobile users8

I Human users as well as autonomous machine-type communication

I Efficiency, adaptability and dependability (reliability and timeliness)

I Ranging from low-mobility (pedestrians) to very high-mobility (trains)

8
Society in Motion: Challenges for LTE and Beyond Mobile Communications, S. Schwarz et al.,

IEEE Communications Magazine, Feature Topic: LTE Evolution, vol 54, no 5, 2016
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Measurements

mmWave TechnologyHeterogeneous Nets

Full-Dimension MIMO

Vehicular Networks

Multicarrier Schemes
FBMC/UFMC
Flexibility and adaptibility
E�ciency and robustness

Small cells
Distributed antennas
Stochastic geometry
System level

V2X communications
Cellular assisted
Dependability
Stochastic geometry

Transceiver architectures
Directionality
Joint communication
and Radar

3D beamforming
Antenna coupling
Link and system level

Extreme velocity emulation
MIMO and mmWave
Repeatability at
high mobility

CD-Lab Dependable Wireless Connectivity for the Society in Motion
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