

JOHANNES KEPLER UNIVERSITÄT LINZ

PHYSICAL TAMPER ATTACK DETECTION IN OFDM SYSTEMS WITH DEEP LEARNING APPROACHES

Eshagh Dehmollaian

Internal Workshop of the Doctoral School 5G Internet of Things

September 7-8, 2021

Zoom

Outline

■ Introduction

Physical Tamper Attack Detection

Conclusion & Future direction

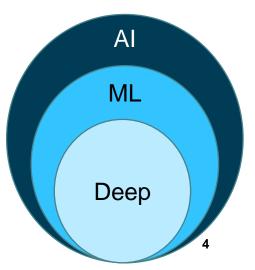
Introduction

critical structures need to be liable even when subjected to unforeseen threats or external attacks [1].

> Objectives:

• Attack detection, Mitigation, or even prevention

- Machine learning based anomaly detection
 - Using Deep Learning Approaches
 - Attack: kind of anomaly



Introduction

> WSN

- Motivation: change detection
- Anomalies are unusual measurements for various reasons:
 - faulty sensors
 - actual events
 - faulty communication system among sensors

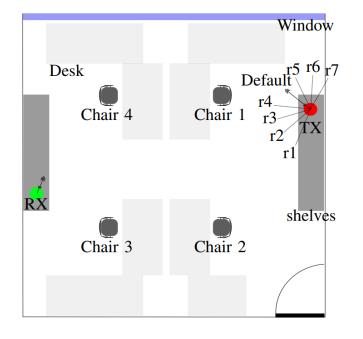
Network Security: Attack Detection

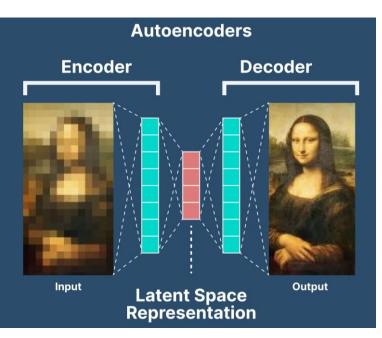
- o intrusion detection
 - modeling normality
 - any deviation from this model \rightarrow anomalous case

PHY Tamper Attack Detection

> Tamper Detection [2]

Using Autoencoders

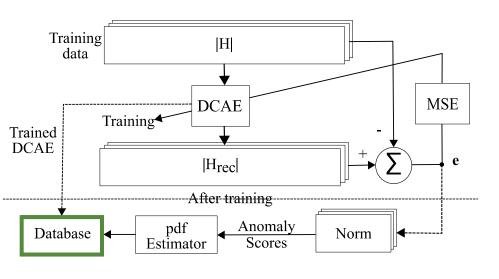


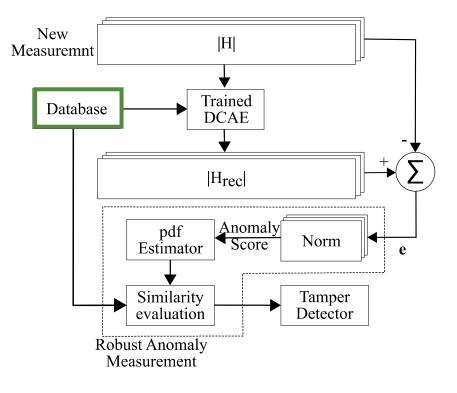


[3]

PHY Tamper Attack Detection

> The Proposed Approach





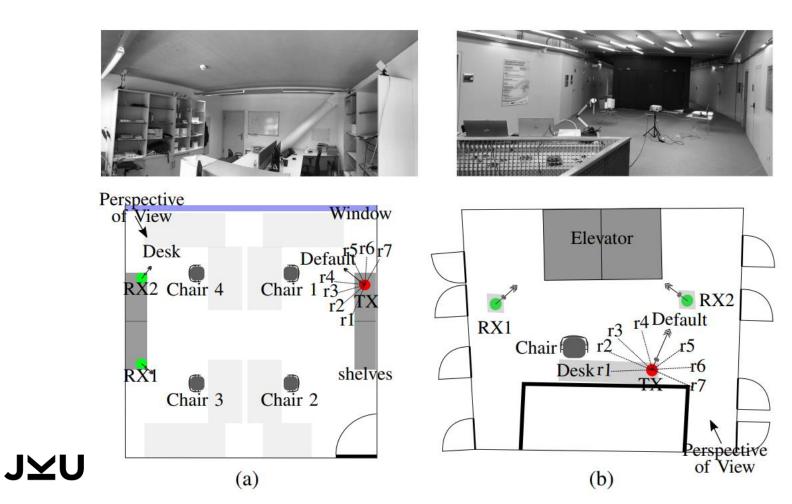
Online Phase

Offline Phase

J⊻U

Results

Layout

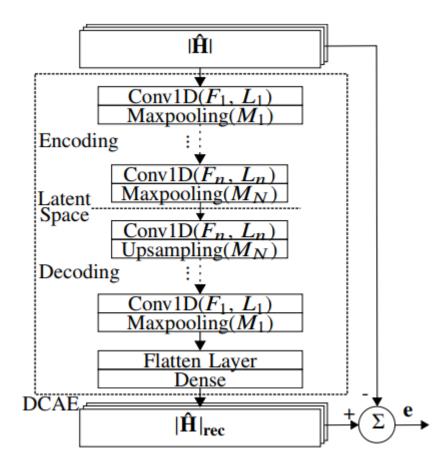


8

Results

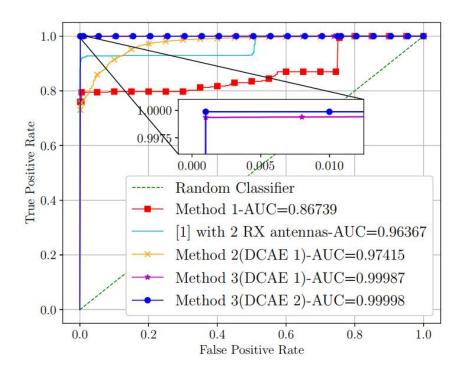
Table I: DCAE parameters

Description				Value		
Optimizer				Adam		
Batch Size				100		
Number of Epochs				20		
Learning Rate				0.001		
DCAE1=	F_1	L_1	M_1	10	52	2
	F_2	L_2	M_2	10	26	2
	F_3	L_3	M_3	10	1	2
DCAE2=	F_1	L_1	M_1	10	104	2
	F_2	L_2	M_2	10	52	
	F_3	L_3	M_3	10	26	2
	F_4	L_4	$ \begin{array}{c} M_1 \\ M_2 \\ M_3 \\ M_4 \end{array} $	10	1	2



Results

- Method 1: Euclidean threshold detection
- > Method 2: DCAE with no post processing unit
- Method 3: DCAE with post processing unit



Conclusion & Future Direction

> Suitable Detection Performance compared to the literature

- Fully deep approaches (Deep SVDD)
- Enhanced the proposed method for multiple receivers
- > Time and memory complexity

Conclusion & Future Direction

Fully deep approaches (Deep SVDD) [4]

$$\min_{\substack{\|x_i-a\|^2 \le R^2 + \zeta_i^2, i=1, \dots, n \\ R \in \mathbb{R}, a \in \mathbb{R}^d, \zeta_i \ge 0}} \left\{ R^2 + \frac{1}{\nu n} \sum_{i=1}^n \max\{0, \| \phi(x_i, \mathcal{W}) - a \|^2 - R^2\} \right\}$$

References

[1] I. E. Bagci et al., "Using Channel State Information for Tamper Detection in the Internet of Things," in Proc. Computer Security Applications Conf. (ACSAC), New York, USA, pp. 131–140, Association for Computing Machinery, Dec. 2015.

[2] E. Dehmollaian, *et al.*," Using Channel State Information for Physical Tamper Attack Detection in OFDM Systems: A Deep Learning Approach," IEEE Wireless Comm. Letters, Apr. 2021.

[3] v7labs, <u>https://www.v7labs.com/blog/autoencoders-guide</u>, available on 03.09.2021.

[4] L. Ruff *et al.*, "Deep One-Class Classification," in *Proc*. 35th International Conference on Machine Learning, Stockholm, Sweden, pp. 4393-4402, 2018.

J⊻U

THANK YOU

JOHANNES KEPLER UNIVERSITÄT LINZ Altenberger Straße 69 4040 Linz, Österreich www.jku.at