Finite Elements for Multiphysics
The Simulation Software openCFS
The modelling of mechatronic systems leads to so-called multifield problems, which are described by a system of nonlinear partial differential equations. The complexity consists of the simultaneous computation of the involved single fields as well as in the coupling terms, which introduce in most cases additional nonlinearities, e.g. moving/deforming conductive bodies within an electromagnetic field.
For the efficient solution of these multifield problems, we have developed within the last years the simulation software openCFS, opens an external URL in a new window (Coupled Field Simulation) based on the finite element (FE) method, which is continuously improved by new numerical schemes, advanced material models and coupling strategies. With a special focus on structural mechanics, acoustics, electromagnetics and heat transfer, CFS++ allows high-end computations of the following coupled fields:
- electromagnetics-mechanics-acoustics
- piezoelectrics-acoustics
- electro-thermo-mechanics
- electrostatic-mechanics-acoustics
- aeroacoustics.
Benefit of the Simulation Software openCFS
1. Higher Order Finite Elements
In addition to standard FE methods (isoparametric approximation) openCFS allows for high order elements, which guarantee optimal convergence rates and therefore computational efficiency
2. Flexible Diskretisierung
Nonconforming grid techniques can handle computational grids being considerably different in adjacent subdomains. Thereby, not only the numerical error can be strongly reduced, but also the pre-processing of complex structures is significantly simplified.
3. Coupling Stretegies
The software openCFS allows for both volume as well as surface coupling between different physical fields and performs a simultaneous solution of the coupled fields. Further openCFS is an integral part in almost all our industrial research projects and allows for efficient virtual prototyping.
More Research Focus in our Institute
Contact
