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Abstract. Consensus is one of the most fundamental problems in distributed computing.
This paper studies the consensus problem in a synchronous dynamic directed network, in
which communication is controlled by an oblivious message adversary. The question when
consensus is possible in this model has already been studied thoroughly in the literature
from a combinatorial perspective, and is known to be challenging. This paper presents a
topological perspective on consensus solvability under oblivious message adversaries, which
provides interesting new insights.
Our main contribution is a topological characterization of consensus solvability, which also
leads to explicit decision procedures. Our approach is based on the novel notion of a commu-
nication pseudosphere, which can be seen as the message-passing analog of the well-known
standard chromatic subdivision for wait-free shared memory systems. We further push the
elegance and expressiveness of the “geometric” reasoning enabled by the topological approach
by dealing with uninterpreted complexes, which considerably reduce the size of the proto-
col complex, and by labeling facets with information flow arrows, which give an intuitive
meaning to the implicit epistemic status of the faces in a protocol complex.

Keywords: Dynamic networks · message adversary · consensus · combinatorial topology ·
uninterpreted complexes

1 Introduction

Consensus is a most fundamental problem in distributed computing, in which multiple processes
need to agree on some value, based on their local inputs. The problem has already been studied
for several decades and in various different models, yet in many distributed settings the question
of when and how fast consensus can be achieved continues to puzzle researchers.

This paper studies consensus in the fundamental setting where processes communicate over a
synchronous dynamic directed network, where communication is controlled by an oblivious message
adversary [2]. This model is appealing, because it is conceptually simple and still provides a highly
dynamic network model. In this model, fault-free processes communicate in a lock-step synchronous
fashion using message passing, and a message adversary may drop some messages sent by the
processes in each round. Viewed more abstractly, the message adversary provides a sequence of
directed communication graphs, whose edges indicate which process can successfully send a message
to which other process in that round. An oblivious message adversary is defined by a set D of
allowed communication graphs, from which it can pick one in each round [12], independently of its
picks in the previous rounds.

The model is practically motivated, as the communication topology of many large-scale dis-
tributed systems is dynamic (e.g., due to mobility, interference, or failures) and its links are often
asymmetric (e.g., in optical or in wireless networks) [31]. The model is also theoretically interesting,
as solving consensus in general dynamic directed networks is known to be difficult [6,12,34,36,42].

Prior work primarily focused on the circumstances under which consensus is actually solvable
under oblivious message adversaries [12]. Only recently, first insights have been obtained on the time
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complexity of reaching consensus in this model [39], using a combinatorial approach. The present
paper complements this by a topological perspective, which provides interesting new insights and
results.

Our contributions: Our main contribution is a topological characterization of consensus
solvability for synchronous dynamic networks under oblivious message adversaries. It provides
not only intuitive (“geometric”) explanations for the surprisingly intricate time complexity results
established in [39], both for the decision procedure (which allows to determine whether consensus
is solvable for a given oblivious message adversary or not) and, in particular, for the termination
time of any correct distributed consensus algorithm.

To this end, we introduce the novel notion of a communication pseudosphere, which can be
seen as the message-passing analog of the well-known standard chromatic subdivision for wait-free
shared memory systems. Moreover, we use uninterpreted complexes [38], which considerably reduce
the size and structure of our protocol complexes. And last but not least, following [19], we label
the edges in our protocol complexes by the information flow that they carry, which give a very
intuitive meaning to the the implicit epistemic status (regarding knowledge of initial values) of the
vertices/faces in a protocol complex. Together with the inherent beauty and expressiveness of the
topological approach, our tools facilitate an almost “geometric” reasoning, which provides simple
and intuitive explanations for the surprising results of [39], like the sometimes exponential gap
between decision complexity and consensus termination time. It also leads to a novel decision pro-
cedure for deciding whether consensus under a given oblivious message adversary can be achieved
in some k rounds.

In general, we believe that, unlike the combinatorial approaches considered in the literature
so far, our topological approach also has the potential for the almost immediate generalization to
other decision problems and other message adversaries, and may hence be of independent interest.

Related work: Consensus problems arise in various models, including shared memory archi-
tectures, message-passing systems, and blockchains, among others [1, 28, 33, 40]. The distributed
consensus problem in the message-passing model, as it is considered in this paper, where communi-
cation occurs over a dynamic network, has been studied for almost 40 years [7,10–12,16,22,35,36].
Already in 1989, Santoro and Widmayer [34] showed that consensus is impossible in this model if
up to n− 1 messages may be lost each round. Schmid, Weiss and Keidar [36] showed that if losses
do not isolate the processes, consensus can even be solved when a quadratic number of messages is
lost per round. Several other generalized models have been proposed in the literature [11, 17, 24],
like the heard-of model by Charron-Bost and Schiper [11], and also different agreement problems
like approximate and asymptotic consensus have been studied in these models [10,16]. In many of
these and similar works on consensus [5,6,9,14,32,37,42], a model is considered in which, in each
round, a digraph is picked from a set of possible communication graphs. Afek and Gafni coined
the term message adversary for this abstraction [2], and used it for relating problems solvable in
wait-free read-write shared memory systems to those solvable in message-passing systems. For a
detailed overview of the field, we refer to the recent survey by Winkler and Schmid [40].

An interesting alternative model for dynamic networks assumes a T -interval connectivity
guarantee, that is, a common subgraph in the communication graphs of every T consecutive
rounds [29, 30]. In contrast to our directional model, solving consensus is relatively simple here,
since the T -interval connectivity model relies on bidirectional links and always connected commu-
nication graphs. For example, 1-interval-connectivity, the weakest form of T -interval connectivity,
implies that all nodes are able to reach all the other nodes in the system in each of the graphs.
Solving consensus in undirected graphs that are always connected was also considered in the case
of a given (t + 1)-connected graph and at most t-node failures [8]. Using graph theoretical tools,
the authors extend the notion of a radius in a graph to determine the consensus termination time
in the presence of failures.

Coulouma, Godard, and Peters [12] showed an interesting equivalence relation, which cap-
tures the essence of consensus impossibility under oblivious message adversaries via the non-
broadcastability of one of the so-called beta equivalence classes, hence refining the results of [35].
Building upon some of these insights, Winkler et al. [39] studied of the time complexity of consen-
sus in this model. In particular, they presented an explicit decision procedure and analyzed both
its decision time complexity and the termination time of distributed consensus. It not only turned
out that consensus may take exponentially longer than broadcasting [13], but also that there is
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sometimes an exponential gap between decision time and termination time. Surprisingly, this gap
is not caused by properties related to broadcastability of the beta classes, but rather by the number
of those.

Whereas all the work discussed so far is combinatorial in nature, there is also some related
topological research, see [20] for an introduction and overview. Using topology in distributed com-
puting started out from wait-free computation in shared memory systems with immediate atomic
snapshots (the IIS model), see e.g. [3, 4, 18, 23, 26, 27]. The evolution of the protocol complex in
the IIS model is governed by the pivotal chromatic subdivision operation here. We will show that
the latter can alternatively be viewed as a specific oblivious message adversary, the set D of which
containins all transitively closed and unilaterally connected graphs.

Regarding topology in dynamic networks, Castañeda et al. [9] studied consensus and other
problems in both static and dynamic graphs, albeit under the assumption that all the nodes know
the graph sequence. That is, they focused on the question of information dissemination, and put
aside questions of indistinguishability between graph sequences. In contrast, in our paper, we
develop a topological model that captures both information dissemination and indistinguishability.
An adversarial model that falls into “our” class of models has been considered by Godard and
Perdereau [19], who studied general k-set agreement under the assumption that some maximum
number of (bidirectional) links could drop messages in a round. The authors also introduced the
idea to label edges in the protocol complex by arrows that give the direction of the information flow,
which we adopted. Shimi and Castañeda [38] studied k-set agreement under the restricted class
of oblivious message adversaries that are “closed-above” (with D containing, for every included
graph, also all graphs with more edges).

One of the challenges of applying topological tools in distributed settings is that the simplicial
complex representing the system grows dramatically with the number of rounds, as well as with
the number of processes and possible input values. In the case of colorless tasks, such as k-set
agreement, the attention can be restricted to colorless protocol complexes [20]. In the case of the
IIS model, its evolution is governed by the barycentric subdivision, which results in much smaller
protocol complexes than produced by the chromatic subdivision. Unfortunately, however, it is not
suitable for tracing indistinguishability in dynamic networks under message adversaries. The same
is true for the “local protocol complexes” introduced in [15]. By contrast, uninterpreted complexes,
as introduced in [38], are effective here and are hence also used in our paper.

Apart from consensus being a special case of k-set agreement (for k = 1), consensus has not
been the primary problem of interest for topology in distributed computing, in particular not for
dynamic networks under message adversaries. However, a point-set topological characterization of
when consensus is possible under general (both closed and non-closed) message adversaries has been
presented by Nowak, Schmid and Winkler in [32]. The resulting decision procedure is quite abstact,
though (it acts on infinite admissible executions), and so are some results on the termination time
for closed message adversaries that confirm [41].

The topology of message-passing models in general has been considered by Herlihy, Rajsbaum,
and Tuttle already in 2002 [22]. Herlihy and Rajsbaum [21] studied k-set agreement in models
leading to shellable complexes.

Paper organization: We introduce our model of distributed computation and the oblivious
message adversary in Section 2. In Section 3 we present a framework which will allow us to study
consensus on dynamic networks from a topological perspective. Our characterization of consensus
solvability/impossibility for the oblivious message adversary is presented in Section 4, where we also
describe an explicit decision procedure. In Section 5 we further explore the relationship between the
time complexity required by our decision procedure and the actual termination time of distributed
consensus. We conclude our contribution and discuss future research directions in Section 6.

2 System Model

We consider a synchronous dynamic network consisting of a set of n processes that do not fail, which
are fully-connected via point-to-point links that might drop messages. We identify the processes
solely by their unique ids, which are taken from the set Π = {p1, . . . , pn} and known to the
processes. Let [n] = {1, . . . , n}. Processes execute a deterministic full-information protocol P , using
broadcast (send-to-all) communication. Their execution proceeds in a sequence of lock-step rounds,
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where every process simultaneously broadcasts a message to every other process, without getting
immediately informed of a successful message reception, and then computes its next state based
on its current local state and the messages received in the round. The rounds are communication-
closed, i.e., messages not received in a specific round are lost and will not be delivered later.

Communication is hence unreliable, and in fact controlled by an oblivious message adversary
(MA) with non-empty graph set D = {D1, . . . , Dk}. All the graphs have Π as their set of nodes,
and an edge pi → pj represents a communication link from pi to pj . For every round r ≥ 1, the MA
arbitrarily picks some communication graph Gr from D, and a message from a process pi arrives
to process pj in this round if Gr contains the edge pi → pj , and otherwise it is lost. We assume
processes have persistent memory, i.e., every graph in D contains all self-loops pi → pi. An infinite
graph sequence G = (Gr)r≥1 picked by the message adversary is called a feasible graph sequence,
and Dω denotes the set of all feasible graph sequences for the oblivious message adversary with
graph set D. The processes know D, but they do not have a priori knowledge of the graph Gr for
any r (though they may infer it after the round occurred).

We consider a system where the global state is fully determined by the local states of each
process. Therefore, a configuration is just the vector of the local states (also called views) of the
processes. An admissible execution a of P is just the sequence of configurations a = (ar)r≥0 at the
end of the rounds r ≥ 1, induced by a feasible graph sequence G ∈ Dω starting out from a given
initial configuration a0. Since we will restrict our attention to deterministic protocols P , the graph
sequence G and the initial configuration a0 uniquely determine a. The view of process pi in ar at
the end of round r ≥ 1 is denoted as ar(pi); its initial view is denoted as a0(pi).

We restrict our attention to deterministic protocols for the consensus problem, defined as fol-
lows:

Definition 1 (Consensus). Every process pi ∈ Π has an input value xi ∈ VI taken from a finite
input domain VI , which is encoded in the initial state, and an output value yi ∈ VI ∪{⊥}, initially
yi = ⊥. In every admissible execution, a correct consensus protocol P must ensure the following
properties:

– Termination: Eventually, every pi ∈ Π must decide, i.e., change to yi 6= ⊥, exactly once.
– Agreement: If processes pi and pj have decided, then yi = yj.
– (Strong) Validity: If yi 6= ⊥, then yi = xj for some pj ∈ Π, i.e., must be the input value of

some process pj.

In any given admissible execution a of P , induced by G ∈ Dω, for a process pi, let InG(pi, r)
be the set of processes pi has heard of in round r (see also [11]), i.e., the set of in-neighbors of
process pi in Gr, and InG(pi, 0) = {pi}. Since all graphs in D contain all self-loops, we have that
pi ∈ InG(pi, r) for all r ≥ 0 and pi ∈ Π. If the round r is clear from the context, we also abbreviate
InG(pi) = InG(pi, r).

The evolution of the local views of the processes in an admissible execution a, induced by G
and the initial configuration a0, can now be defined recursively as

ar(pi) =
{
(pj , r, ar−1(pj)) : pj ∈ InG(pi, r)

}
for r > 0. (1)

Note that we could drop the round number r from (pj , r, ar−1(pj)) in the above definition, since
it is implicitly contained in the structure of ar(pi); we included it explicitly for clarity only. The
set of all possible round-r views of pi, including all the initial views for r = 0, in any admissible
execution, is denoted by Ar(pi) = {ar(pi) | ∀ admissible executions a under MA}.

In any admissible execution a, every process must eventually reach a final view, where it can
take a decision on an output value which will not be changed later. Consequently, there is some
final round after which all processes have decided.

3 A Topological Framework for Consensus

In this section, we introduce the basic elements of combinatorial topology and specific concepts
needed in our context of synchronous message-passing networks.

Combinatorial topology in distributed computing [20] rests on simplicial input and output com-
plexes describing the feasible input and output values of a distributed decision task like consensus,
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and a carrier map that defines the allowed output value(s), i.e., output simplices, for a given input
simplex. A protocol that solves such a task in some computational model gives rise to another
simplicial complex, the protocol complex, which describes the evolution of the local views of the
processes in any execution. Protocol complexes traditionally model full information protocols in
round-based models, which ensures a well-organized structure: The processes execute a sequence
of communication operations, which disseminate their complete views, until they are able to make
a decision. Finally, a protocol induces a simplicial decision map, which maps each vertex in the
protocol complex to an output vertex in a way compatible with the carrier map.

3.1 Basic topological definitions

We start with the definitions of the basic vocabulary of combinatorial topology:

Definition 2 (Abstract simplicial complex). An abstract simplicial complex K is a pair
〈V (K), F (K)〉, where V (K) is a set, F (K) ⊆ 2V (K), and for any σ, τ ∈ 2V (K) such that σ ⊆ τ and
τ ∈ F (K), then σ ∈ F (K). V (K) is called the set of vertices, and F (K) is the set of faces or
simplices of K. We say that a simplex σ is a facet if it is maximal with respect to containment,
and a proper face otherwise. We use Fct(K) to denote the set of all facets of K, and note that for
a given V (K) we have that F (K) uniquely define Fct(K) and vice versa. A simplicial complex is
finite if its vertex set is finite, which will be the case for all the complexes in this paper.

All the simplicial complexes we consider in this work are abstract. For conciseness, we will usually
sloppily write σ ∈ K instead of σ ∈ F (K).

Definition 3 (Subcomplex). Let K and L be simplicial complexes. We say that L is a subcom-
plex of K, written as L ⊆ K, if V (L) ⊆ V (K) and F (L) ⊆ F (K).

Definition 4 (Dimension). Let K be a simplicial complex, and σ ∈ F (K) be a simplex. We
say that σ has dimension k, denoted by dim(σ) = k, if it has a cardinality of k + 1. A simplicial
complex K is of dimension k if every facet has dimension at most k, and it is pure if all its facets
have the same dimension.

We sometimes denote a simplex as σk in order to stress that its dimension is k.

Definition 5 (Skeletons and boundary complex). The k-skeleton skelk(K) of a simplicial
complex K is the subcomplex consisting of all simplices of dimension at most k. The boundary
complex ∂σ of a simplex σ, viewed as a complex, is the complex made up of all proper faces of σ.

Definition 6 (Simplicial maps). Let K and L be simplicial complexes. We say that a vertex
map µ : V (K)→ V (L) is a simplicial map if, for any σ ∈ F (K), µ(σ) ∈ F (L); here, µ(σ) = {µ(v) |
v ∈ σ}.

Definition 7 (Colorings and chromatic simplicial complexes). We say that a simplicial
complex K has a proper c-coloring χ, if there exists χ : V (K) → {p1, p2, . . . , pc} that is injective
at every face of K. If K has a proper (dim(K) + 1)-coloring, we say it is a chromatic simplicial
complex.

The range of χ is extended to sets of vertices S by defining χ(S) = {χ(v) | v ∈ S}, which
implies e.g. χ(σ) = χ(V (σ)).

Definition 8 (Carrier Map). Let K and L be simplicial complexes and Φ : F (K) → 2L. We
say that Φ is a carrier map, if Φ(σ) is a subcomplex of L for any σ ∈ K, and for any σ1, σ2 ∈ L,
Φ(σ1 ∩ σ2) ⊆ Φ(σ1) ∩ Φ(σ2).

We say that a carrier map is rigid if it maps every simplex σ ∈ K to a complex Φ(σ) which is
pure of dimension dim(σ). It is said to be strict if that for any two simplices σ, τ ∈ K, Φ(σ ∩ τ) =
Φ(σ) ∩ Φ(τ).

We say that a carrier map Φ : K → 2L carries a simplicial vertex map µ : V (K)→ V (L) if for
any σ ∈ K, µ(σ) ∈ Φ(σ).
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Having introduced our basic vocabulary, we can now define the main ingredients for the topo-
logical modeling of consensus in our setting.

Generally, a distributed task is defined by a tuple T = 〈I,O, ∆〉 consisting of chromatic simpli-
cial complexes I and O that model the valid input and output configurations respectively, for the
set Π of processes, and ∆ : I → 2O is a carrier map that maps valid input configurations to sets
of valid output configurations. Both complexes have vertices of the form (pi, x) with pi ∈ Π, and
they are chromatic with the coloring function χ((pi, x)) = pi. All the simplicial maps we consider
in this work are color preserving, in the sense that they map each vertex (pi, x) to a vertex (pi, y)
with the same process id pi.

Many interesting tasks have some degree of regularity (that is, symmetry) in the input complex.
In the case of consensus, in particular, any combination of input values from VI is a legitimate initial
configuration. Consequently, the input complex for consensus in the classic topological modeling
is a pseudosphere [22].

In this paper, we will exploit the fact that strong validity does not force us to individually trace
the evolution of every possible initial configuration of the protocol complex. We will therefore
restrict our attention to uninterpreted complexes [38]: Instead of providing different vertices for
every possible value of xi, we provide only one vertex labeled with {pi}, carrying the meaning of
“the actual input value xi of pi”. This way, we can abstract away the input domain VI as well
as the actual assignment of initial values xi ∈ VI to the processes. Topologically, uninterpreted
complexes thus correspond to a “flattening” of the standard complexes with respect to all input
and output values. The main advantages of resorting to uninterpreted protocol complexes is that
they are exponentially smaller than the standard protocol complex, even in the case of binary
consensus, and independent of the particular initial configuration. This can be compared with the
study of colorless tasks [20, Ch. 4], where a different form of “flattening” of the complexes is done
by omitting the process ids.

Definition 9 (Uninterpreted input complex for consensus). The uninterpreted input com-
plex I for consensus is just a single initial simplex σ0 = {(p1, {p1}), . . . , (pn, {pn})} and all its
faces, with the set of vertices V (I) = V (σ0) = {(pi, {pi}) | pi ∈ Π}, where the label {pi} represents
the “uninterpreted” (i.e., fixed but arbitrary) input value of pi.

We use σ0 throughout this paper to denote the above input simplex.
The uninterpreted output complex O for consensus just specifies the process whose input value

will determine the decision value.

Definition 10 (Uninterpreted output complex for consensus). The uninterpreted output
complex O for consensus is the union of n disjoint complexes O(pj), pj ∈ Π, each consisting of the
simplex {(p1, {pj}), . . . , (pn, {pj})} and all its faces. The label {pj} represents the “uninterpreted”
(i.e., fixed but arbitrary) input value of pj.

The carrier map ∆ for the consensus task maps any face ρ of the initial simplex σ0 ∈ I to
dim(ρ)-faces of O that all have a coloring equal to χ(ρ). Clearly, ∆ is rigid and strict.

The uninterpreted protocol complex PDω

r consists of vertices that are labeled by the heard-of
histories the corresponding process has been able to gather so far.

Definition 11 (Heard-of histories). For a feasible graph sequence G, the heard-of history
hGr (pi) of a process pi at the end of round r is defined as

hGr (pi) = {(pj , hGr−1(pj)) | pj ∈ InG(pi, r)} for r ≥ 1, (2)

hG0 (pi) = {pi}. (3)

The global heard-of history hGr at the end of round r is just the tuple (hGr (p1), . . . , h
G
r (pn)).

The set of processes pi has ever heard of up to hGr (pi), i.e., the end of round r, is denoted
∪hGr (pi) =

⋃
pj∈InG(pi,r) ∪h

G
r−1(pj) and ∪hG0 (pi) = hG0 (pi) = {pi}.

The set of all possible heard-of histories of pi (resp. the global ones) at the end of round r ≥ 0,
in every feasible graph sequence G ∈ Dω, is denoted by

Hr(pi) = {hGr (pi) | G ∈ Dω}, (4)
Hr = {(hGr (p1), . . . , hGr (pn)) | G ∈ Dω}. (5)
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The uninterpreted protocol complex PDω

r , which does not depend on the initial configuration
but only on Dω, is defined as follows:

Definition 12 (Uninterpreted protocol complex for Dω). The uninterpreted r-round pro-
tocol complex PDω

r = 〈V (PDω

r ), F (PDω

r )〉, r ≥ 0, for a given oblivious message adversary Dω, is
defined by its vertices and facets as follows:

V (PDω

r ) =
{
(pi, hr(pi)) | pi ∈ Π, hr(pi) ∈ Hr(pi)

}
,

F ct(PDω

r ) =
{
{(p1, hr(p1)), . . . , (pn, hr(pn))}|∀1 ≤ i ≤ n : pi ∈ Π, (hr(p1), . . . , hn(pn)) ∈ Hr

}
.

For conciseness, we will often omit the superscript Dω when the oblivious message adversary
considered is clear from the context.

The decision map µ : V (PDω

r )→ V (O) is a chromatic simplicial map that maps a final view of
a process pi at the end of round r to an output value pj such that pj ∈ ∪hGr (pi); it is not defined for
non-final views. Note that µ is uniquely determined by the images of the facets in PDω

r after any
round r were all processes have final views. We say that consensus is solvable if such a simplicial
map µ exists.

Remark. Standard topological modeling, which does not utilize uninterpreted complexes, also
requires an execution carrier map Ξ : I → 2P , which defines the subcomplex Ξ(σ) of the protocol
complex P that arises when the protocol starts from the initial simplex σ ∈ I. Solving a task
requires µ ◦Ξ to be carried by ∆, i.e., µ(Ξ(σ)) ∈ ∆(σ) for all σ ∈ I. In our setting, since we have
only one (uninterpreted) facet in our input complex σ0 and a protocol complex that can be written
as
⋃
r≥1 PDω

r =
⋃
r≥1 Pr(σ0) (i.e., the union of all iterated protocol complex construction operators

Pr given in Definition 14 below), both the execution carrier map Ξ and the carrier map ∆ are
independent of the actual initial values and hence quite simple: The former is just Ξ =

⋃
r≥1 Pr

(with every Pr viewed as a carrier map), the latter has been stated after Definition 10.

3.2 Communication pseudospheres

Rather than directly using Definition 12 for Pr, we will now introduce an alternative definition
based on communication pseudospheres. The latter can be seen as the the message-passing analogon
of the well-known standard chromatic subdivision (see Definition 16) for wait-free shared memory
systems. Topologically, it can be defined as follows:

Definition 13 (Communication pseudosphere). Let K be an (n− 1)-dimensional pure sim-
plicial complex with a proper coloring χ : V (K) → {p1, . . . , pn}. We define the communication
pseudosphere Ps(K) through its vertex set and facets as follows:

V (Ps(K)) =
{
(pi, σ) | σ ∈ F (K), pi ∈ χ(σ)

}
, (6)

Fct(Ps(K)) =
{
{(p1, σ1), (p2, σ2), . . . (pn, σn)} | ∀1 ≤ i ≤ n : σi ∈ F (K), pi ∈ χ(σi)

}
. (7)

Given an (n− 1)-dimensional simplex σn−1 = {(p1, h1), . . . , (pn, hn)} ∈ K, the communication
pseudosphere Ps(σn−1) contains a vertex (pi, σ) for every subset σ ⊆ {(p1, h1), . . . , (pn, hn)} that
satisfies {(pi, hi)} ∈ σ. Intuitively, σ represents the information of those processes pi could have
heard of in a round (recall that pi always hears of itself). Ps(σn−1) hence indeed matches the
definition of a pseudosphere [22].

Since
∣∣{σ ⊆ {(p1, h1), . . . , (pn, hn)} \ {(pi, hi)}}∣∣ = 2n−1 for every pi, every communication

pseudosphere Ps(σn−1) consists of |V (Ps(σn−1))| = n2n−1 vertices: For every given vertex (pi, σ)
and every pj 6= pi, there are exactly 2n−1 differently labeled vertices (pj , ·). Since (pi, σ) has an
edge to each of those in the complex Ps(σn−1), its degree must hence be d = (n− 1)2n−1.

In the case of n = 2 or n = 3, let v = |V (Ps(σn−1))|, e = |E(Ps(σn−1))| and f =
|Fct(Ps(σn−1))| denote the numbers of vertices, edges and facets in Ps(σn−1), respectively. It
obviously holds that v · d = 2e and v · d = nf . Therefore, e = vd/2 = n(n − 1)22(n−1)−1 and
f = vd/n = (n− 1)22(n−1). For n = 2, we thus get v = 4, f = e = 4, d = 2 and hence the following
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communication pseudosphere Ps(σ1
0) for the initial simplex σ1

0 = {(pr, {pr}), (pw, {pw})}:

(pr, (pr, {pr})) (pw, {(pw, {pw})})(pr, {(pr, {pr}), (pw, {pw})})(pw, {(pw, {pw}), (pr, {pr})})
(8)

In the above figure, and throughout this paper, we use the labeling convention of the edges
proposed in [19], which indicates the information flow between the vertices in a simplex. For
example, in the middle simplex (connected with edge ↔), both processes have heard from each
other in round 1, so the connecting edge is denoted by ↔. An edge without any arrow means that
the two endpoints do not hear from each other. Note carefully that we will incorporporate these
arrows also when talking about facets and faces that are isomorphic: Throughout this paper, two
faces σ and κ arising in our protocol complexes will be considered isomorphic only if χ(σ) = χ(κ)
and if all edges have the same orientation.

We note also that the labeling of the vertices with the faces of σ1
0 is highly redundant. We will

hence condense vertex labels when we need to refer to them explicitly, and e.g. write (pr, {pr, pw})
instead of (pr, {(pr, {pr}), (pw, {pw})}).

The communication pseudosphere Ps(σ2
0) for the initial simplex σ2

0 =
{(pr, {pr}), (pg, {pg}), (pw, {pw})} for n = 3 is depicted in Fig. 1. It also highlights two
facets, corresponding to the graphs G1 (grey) and G2 (yellow):

Graph G1 Graph G2 (9)

Fig. 1. Communication pseudosphere Ps(σn−1) for n = 3 (where L = 4, V = 12, E = 48, F = 32
and d = 8), with the communication graphs of Eq. (9) highlighted. Thick edges represent the standard
chromatic subdivision Ch(σ2).

We will now recast the definition of the uninterpreted protocol complex for a given oblivious
message adversary Dω in terms of a communication pseudosphere. Recall from Definition 12 that
the uninterpreted initial protocol complex P0 = PDω

0 only consists of the single initial simplex σ0 =
σn−10 = {(p1, {p1}), . . . , (pn, {pn})} and all its faces. It represents the uninterpreted initial state,
where every process has heard only from itself. Here is an example for n = 3 and Π = {pw, pr, pg}:
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(pw, {pw})

(pg, {pg})

(pr, {pr})

(10)

Consequently, the single-round protocol complex P1 = PDω

1 is just the subcomplex of the
communication pseudosphere Ps(σ0) induced by the set D of possible graphs. For example, P1 for
D = {G1, G2} is the subcomplex of Ps(σ0) made up by the two highlighted facets corresponding
to the graphs G1 and G2 in Fig. 1. That is, rather than labeling the vertices of Ps(σ0) with all
the possible subsets of faces of σ0 as in Definition 13, only those faces that are communicated
via one of the graphs in D are used by the protocol complex construction operator P = PDω

for
generating P1 = P(σ0). Conversely, if one interprets D as an (n−1)-dimensional simplicial complex
D(σ0), consisting of one facet (and all its faces) per graph G ∈ D according to (7), one could write
PDω

(σ0) = Ps(σ0) ∩D(σ0).
This can be compactly summarized in the following definition:

Definition 14 (Protocol complex construction pseudosphere). Let K be an (n − 1)-
dimensional pure simplicial complex with a proper coloring χ : V (K) → {p1, . . . , pn}, and InG(pi)
be the set of processes that pi hears of in the communication graph G ∈ D. We define the protocol
complex construction pseudosphere P(K) for the message adversary Dω, induced by the operator
P : Fct(K) → P(K) that can be applied to the facets of K, through its vertex set and facets as
follows:

V (P(K)) =
{
(pi, σ) ∈ Π × F (K) | ∃G ∈ D : InG(pi) = χ(σ)

}
, (11)

Fct(P(K)) =
{
{(p1, σ1), . . . , (pn, σn)} | ∃G ∈ D,∀1 ≤ i ≤ n : InG(pi) = χ(σi)

}
. (12)

According to Definition 14, our operator P (as well as Ps) is actually defined only for the facets
in K, i.e., the dimension n − 1 is actually implicitly encoded in the operator. We will establish
below that this is sufficient for our purposes, since every P is boundary consistent : This property
will allow us to uniquely define P for proper faces in K as well. We will use the following simple
definition of boundary consistency, which makes use of the fact that the proper coloring of the
vertices of a chromatic simplicial complex defines a natural ordering of the vertices of any of its
faces.

Definition 15 (Boundary consistency). We say that a protocol complex construction operator
P according to Definition 14 is boundary consistent, if for all possible choices of three facets σ, κ
and τ from every simplicial complex on which P can be applied, it holds that

σ ∩ κ = σ ∩ τ =⇒ P(σ) ∩ P(κ) = P(σ) ∩ P(τ). (13)

The following Lemma 1 shows that every P is boundary consistent and that one can uniquely
define P(ρ) also for a non-maximal simplex ρ (taken as a complex). Moreover, it reveals that P,
viewed as a carrier map, is strict (but not necessarily rigid):

Lemma 1 (Boundary consistency of P). Every protocol construction operator P according to
Definition 14 is boundary consistent. It can be applied to any simplex ρ ∈ K, viewed as a complex,
and produces a unique (possibly impure) chromatic complex P(ρ) with dimension at most dim(ρ).
Moreover,

P(σ ∩ κ) = P(σ) ∩ P(κ) (14)

for any σ, κ ∈ K.

Proof. Using the notation from Definition 15, assume ρ = σ∩κ = σ∩ τ for 0 ≤ dim(ρ) < n−1; for
the remaining cases, Eq. (14) holds trivially. Consider the facet Fσ = {(p1, σ1), (p2, σ2), . . . (pn, σn)}
resp. Fκ = {(p1, κ1), (p2, κ2), . . . (pn, κn)} caused by the same graph G ∈ D in P(σ) resp. P(κ)
according to Eq. (12). Recall that σi resp. κi is a face of σ resp. κ that represents the information
pi receives from the processes in χ(σi) = χ(κi) via InG(pi).
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A vertex (pi, κi) appears in P(σ) ∩ P(κ) if and only if κi = σi, which, in turn, holds only if
χ(κi) ⊆ χ(ρ). Indeed, if κi would contain just one vertex v ∈ V (κ) with χ(v) ∈ χ(κ \ ρ), then
σi would contain the corresponding vertex v′ ∈ V (σ) with χ(v′) = χ(v) satisfying v′ 6= v since
(κ \ ρ) ∩ (σ \ ρ) = ∅, by the definition of ρ. This would contradict κi = σi, however. Note that,
since pi ∈ χ(σi) for every i, this also implies pi ∈ χ(ρ).

Consequently, it is precisely the maximal face in Fσ (and in Fκ) consisting only of identical
vertices (pi, κi) = (pi, σi) that appears in P(σ) ∩ P(κ). Since this holds for all graphs G ∈ D, it
follows that the subcomplex P(σ)∩P(κ), as the union of the resulting identical maximal faces, has
dimension at most dim(ρ). Now, since exactly the same reasoning also applies when κ is replaced
by τ , we get P(σ) ∩ P(κ) = P(σ) ∩ P(τ), so Eq. (13) and hence boundary consistency of P holds.

We can now just define P(ρ) = P(σ ∩ κ) := P(σ) ∩ P(κ), which secures Eq. (14) for facets
σ, κ ∈ K. For general simplices, assume for a contradiction that there are σ, κ with ρ = σ ∩ κ 6= ∅
but P(ρ) 6= P(σ) ∩ P(κ). Choose facets σ′, κ′ and σ′′, κ′′ satisfying ρ = σ′ ∩ κ′, ρ = σ′′ ∩ κ′′,
σ = σ′ ∩ σ′′ and κ = κ′ ∩ κ′′, which is always possible. Applying Eq. (14) to all these pairs results
in P(ρ) = P(σ′) ∩ P(κ′) = P(σ′′) ∩ P(κ′′), P(σ) = P(σ′) ∩ P(σ′′) and P(κ) = P(κ′) ∩ P(κ′′). We
hence find

P(ρ) 6= P(σ) ∩ P(κ) = P(σ′) ∩ P(σ′′) ∩ P(κ′) ∩ P(κ′′) = P(ρ) ∩ P(σ′′) ∩ P(κ′′) = P(ρ),

which is a contradiction. ut

Note that P can hence indeed be interpreted as a carrier map, according to Definition 8, which is
strict. It is well known that strictness implies that, for any simplex ρ ∈ P(K), there is a unique
simplex σ with smallest dimension in K, called the carrier of ρ, such that ρ ∈ P(σ).

A comparison with Definition 12 reveals that P1 = P(σ0) as given in Definition 14 is indeed just
the uninterpreted 1-round protocol complex. The general r-round uninterpreted protocol complex
Pr, r ≥ 1, is defined as P(Pr−1), i.e., as the union of P applied to every facet σ of Pr−1, formally
Pr =

⋃
σ∈Pr−1

P(σ). Boundary consistency ensures that Pr = Pr(σ0) for the initial simplex σ0 =

{(p1, {p1}), . . . , (pn, {pn})} is well-defined for any r ≥ 0. An example for r = 2 can be found in the
bottom part of Fig. 3. Note that the arrows of the in-edges of a vertex (pi, hr(pi)) in a facet in Pr
represent the outermost level in Definition 11; the labeling of the in-edges of pi in earlier rounds
< r is no longer visible here. However, given the simplex ρ = {(p1, hr(p1)), . . . , (pn, hr(pn))} ∈ Pr,
the labeling of the vertices (pj , hr−1(pj)) ∈ V (σ) of the carrier σ ∈ Pr−1 of ρ, i.e., the unique
simplex satisfying ρ ∈ P1(σ), can be used to recover the arrows for round r − 1.

We note that Pr = Pr−1(P(σ0)) = P(Pr−1(σ0)) allows to view the construction of Pr equiva-
lently as applying the one-round construction P to every facet Fr−1 of Pr−1 or else as applying the
(r − 1)-round construction Pr−1 to every facet F of P1. Boundary consistency of P again ensures
that this results in exactly the same protocol complex. Our decision procedure for consensus solv-
ability/impossibility provided in Section 4 will benefit from the different views provided by this
construction.

In the remainder of this section, we will discuss some consequences of the fact that the carrier
map corresponding to a general protocol complex construction operator P is always strict but need
not be rigid (recall Lemma 1). This is actually a consequence of the asymmetry in the protocol
complex construction caused by graphs D that do not treat all processes alike.

Consider the complete communication pseudosphere shown in Fig. 1, which corresponds to D
containing all possible graphs with n vertices (recall Definition 13). It does treat all processes alike,
which also implies that its outer border, which is defined by P(∂σ0) (see Definition 17 below), has a
very regular structure: For example, the four white and green vertices aligned on the bottom side of
the outer triangle of Fig. 1 are actually an instance of the 2-process communication pseudosphere
shown in (8). Its corresponding carrier map is rigid. By contrast, the protocol complex for the
message adversary D = {G1, G2} depicted by the two highlighted facets corresponding to the
graphs G1 and G2 in Fig. 1 has a very irregular border shown in Fig. 2.

It is worth mentioning, though, that there are other instances of protocol complex construction
operators that also have a rigid equivalent carrier map. One important example is the popular
standard chromatic subdivision [20,25], which characterizes the iterated immediate snapshot (IIS)
model of shared memory [23]:
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Fig. 2. Border Bd(P1) of the simple message adversary shown in Fig. 1.

Definition 16 (Chromatic subdivision). Let K be an (n− 1)-dimensional simplicial complex
with a proper coloring χ : V (K) → {p1, . . . , pn}. We define the chromatic subdivision through its
vertex set and facets as follows:

V (Ch(K)) =
{
(pi, σ) ∈ Π × F (K) | pi ∈ χ(σ)

}
, (15)

Fct(Ch(K)) =
{
{(p1, σ1), . . . , (pn, σn)} | ∃π : [n]→ [n] permutation σπ(1) ⊆ . . . ⊆ σπ(n),
∀1 ≤ i, j ≤ n : χ(σi) ∧ (pi ∈ χ(σj)⇒ σi ⊆ σj)

}
. (16)

It is immediately apparent from comparing Definition 13 and Definition 16 that V (Ps(σn−1)) =
V (Ch(σn−1)) and Ch(σn−1) ⊆ Ps(σn−1), i.e., Ch(σn−1) is indeed a subcomplex of Ps(σn−1).
In Fig. 1, we have highlighted, via thick edges and arrows, the protocol complex Ch(σ0) for
the corresponding message adversary. In fact, the chromatic subdivision and hence the IIS
model is just a special case of our oblivious message adversary, the set D of which con-
sists of all the directed graphs that are unilaterally connected (∀G ∈ D, a, b 6= a ∈ V (G) :
∃ directed path from a to b or from b to a in G) and transitively closed (∀G ∈ D : (a, b), (b, c) ∈
E(G)⇒ (a, c) ∈ E(G)).

Lemma 2 (Equivalent message adversary for chromatic subdivision). Let σ0 be the un-
interpreted input complex with process set Π = {p1, . . . , pn}, and D be the set of all unilaterally
connected and transitively closed graphs on Π. Then, P(σ0) = Ch(σ0).

Proof. Notice first that for any face σ ∈ σ0 such that pi ∈ χ(σ), there exists a graph Gσ ∈ D such
that InGσ (pi) = χ(σ): simply consider E(Gσ) = {(u, v) | u ∈ χ(σ)∧v ∈ Π}∪{(w, y) | w, y /∈ χ(σ)}.
By construction, Gσ is both transitively closed and unilaterally connected. Therefore, V (Ch(σ0)) ⊆
V (P(σ0)). On the other hand, from Definition 14 of the protocol complex pseudosphere construc-
tion, it follows that V (P(σ0)) ⊆ V (Ch(σ0)). Consequently, V (P(σ0)) = V (Ch(σ0)).

Let σ = {(p1, σ1), . . . , (pn, σn)} be a facet of Ch(σ0), and consider the graph Gσ with edges
E(Gσ) = {(pj , pi) | pj ∈ χ(σi)}. Assume that (pi, pj), (pj , pk) ∈ E(Gσ). By Definition 16, it holds
that pi ∈ χ(σj), which implies σi ⊆ σj . Analogously, σj ⊆ σk and therefore σi ⊆ σk. It hence
follows that pi ∈ χ(σk), and by construction of Gσ, that (pi, pk) ∈ E(Gσ). This shows that Gσ is
transitively closed.

Now consider pi, pj ∈ Π. Since π is a permutation, pi = pπ(i′) and pj = pπ(j′) for some
i′, j′ ∈ [n]. Let us assume w.l.o.g that i′ ≤ j′. Then σi = σπ(i′) ⊆ σπ(j′) = σj , which implies that
pi ∈ χ(σj). From the definition of Gσ, it follows that (pi, pj) ∈ E(Gσ). This shows that Gσ is also
unilaterally connected. Therefore, σ must also be a facet of P(σ0), i.e., Fct(Ch(σ0)) ⊆ Fct(P(σ0)).

Conversely, let σ = {(p1, σ1), . . . , (pn, σn)} be a facet of P(σ0). Let Gσ be the graph from D
that induces σ. Recall that Gσ is unilaterally connected and transitively closed. Let Si denote
the strongly connected component containing pi. Since Gσ is transitively closed, Si is in fact
a directed clique. Therefore, Si ⊆ χ(σi) = InGσ (pi). Consider the component graph G∗ where
V (G∗) = {Si | i ∈ [n]}, and E(G∗) = {(Si, Sj) | (pi, pj) ∈ E(Gσ)}. Since Gσ is transitively closed
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and unilaterally connected, G∗ is a transitive tournament (where (a, b) or (b, a) must be present for
all a, b ∈ V (G∗)). Therefore, G∗ has a directed Hamiltonian path Sπ(1), . . . , Sπ(s) for s = |V (G∗)|;
note that s ≤ n since Si = Sj may be the same for different processes pi and pj .

Clearly, the permutation from the Hamiltonian path of connected components, extended by
ordering processes leading to the same connected component according to their ids, induces a
complete ordering of the process indices: i � j if Si = Sπ(i′) and Sj = Sπ(j′) with i′ ≤ j′ and
i ≤ j, i.e., first we order each index i according to the order of their connected component in
the Hamiltonian path in G∗, and break ties according to their process ids. Therefore, � is a total
ordering on [n], and thus induces a permutation π′ with the property that if i ≤ j, then either
Sπ′(i) = Sπ′(j), or there exists an edge from Sπ′(i) to Sπ′(j).

From the transitive closure of Gσ and the construction of π′, we get InGσ (π′(pi)) =
i⋃

j=1

Sπ′(i).

Therefore, π′ is also a permutation of the σi in σ that satisfies the conditions for being a facet of
Ch(σ0). It follows that σ ∈ Fct(Ch(σ0)). Therefore Fct(P(σ0)) ⊆ Fct(Ch(σ0)), which completes
the proof that Fct(P(σ0)) = Fct(Ch(σ0)) and thus P(σ0) = Ch(σ0). ut

For any pair of simplices σ, κ ∈ K, it hence holds by Eq. (14) that Ch(σ)∩Ch(κ) = Ch(σ∩κ), i.e.,
subdivided simplices that share a face intersect precisely in the subdivision of that face in Ch(K).
Lemma 1 thus ensures that the iterated standard chromatic subdivision Chr(K) is well-defined.

Thanks to its regular structure, the equivalent carrier map is also rigid. As is the case for the
communication pseudosphere in Fig. 1, the four white and green vertices aligned on the bottom side
of the outer triangle connected by thick arrows are actually an instance of a 2-process chromatic
subdivision. Indeed, the standard chromatic subdivision Ch(σ`) of a simplex σ` of dimension ` can
be constructed iteratively [20]: Starting out from the vertices V (σ`), i.e., the 0-dimensional faces
σ0 of σ`, where Ch(σ0) = σ0, one builds Ch(σ1) for the edge σ1 by placing 2 new vertices in its
interior and connecting them to each other and to the vertices of σ1. For constructing Ch(σ3), one
places 3 new vertices in its interior and connects them to each other and to the vertices constructed
before, etc.

Corollary 1. Let K be an arbitrary simplicial complex, then Ch(K) = P(K) with D as the set of
allowed graphs.

Proof. Follows immediately from Lemma 2 and boundary consistency of P(K).

3.3 Classification of facets of protocol complexes

We first define the important concept of the border of a protocol complex.

Definition 17 (Border). The border Bd(P1) of a 1-round protocol complex P1 = P(σ0) is
defined as Bd(P1) = P(∂σ0). The border Bd(Pr) (resp. the border Bd(C) of some subcomplex
C ⊆ Pr) of the general r-round complex Pr = Pr(σ0) is Bd(Pr) = Pr(∂σ0).

Due to the boundary consistency property of P (Lemma 1), the border is just the “outermost”
part of Pr, i.e., the part that is carried by ∂σ0; the dimension of every facet F ∈ Bd(Pr) is at most
dim(σ0) − 1 = n − 2. Recall that it may also be smaller than n − 2, since P viewed as a carrier
map need not be rigid. Obviously, however, F is always a face of some facet in Pr. In the case of
Fig. 1, where P1 = {G1, G2} with the graphs G1, G2 given in Eqn. (9), Bd(P1) only consists of the
three edges and the vertices shown in Fig. 2. Observe that the processes of the vertices V (ρ) of a
face ρ ∈ Bd(Pr) may possibly have heard from each other, but not from processes in Π \ V (ρ), in
any round 1, . . . , r.

For a more elaborate running example, consider the RAS message adversary shown in Fig. 3: Its
1-round uninterpreted complex PRAS1 (top left part) is reminiscent of the well-known radioactivity
sign, hence its name. Its 2-round uninterpreted complex PRAS2 is shown in the bottom part of the
figure. It is constructed by taking the union of the 1-round uninterpreted complexes P(F ) for every
facet F ∈ P1. Its border Bd(PRAS2 ) is formed by all the vertices and edges of the faces that lie on
the (dotted and partly dash-dotted) borders of the outermost triangle.

For classifying the facets in a protocol complex, the root components of the graphs in D will
turn out to be crucial.
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Fig. 3. Protocol complex PRAS
1 for one round (top) and PRAS

2 for two rounds (bottom) of the RAS message
adversary. The top right figure also shows the border root components of PRAS

1 .
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Definition 18 (Root components). Given any facet F in the protocol complex Pr, r ≥ 1, let
σ ∈ Pr−1 be its carrier, i.e., the unique facet such that F ∈ P(σ), and G ∈ D be the corresponding
graph leading to F in P(σ). A root component R(F ) of F is the face of F corresponding to a
strongly connected component R in G without incoming edges from G \R.

It is well-known that every directed graph with n vertices has at least one and at most n
root components, and that every process in G is reachable from every member of at least one root
component via some directed path in G. Graphs with a single root component are called rooted, and
it is easy to see that just one graph in D that is not rooted makes consensus trivially impossible:
The adversary might repeat this graph forever, preventing the different root components from
coordinating the output value. In the sequel, we will therefore restrict our attention to message
adversaries where D is made up of rooted graphs only, and will denote by R(G) = R(F ) the face
representing the root component of F . Note that R(G) is a face and hence includes the edges of the
interconnect and their orientation; its set of vertices is denoted by V (R(F )) = {(pi, hr(pi)) | pi ∈
χ(R(F ))}. Recall from Definition 11 that the set of processes that pi has actually heard of in some
vertex v = (pi, hr(pi)) ∈ V (ρ) is denoted ∪hr(pi).

Definition 19 (Border facets). A facet F ∈ Pr is a border facet, if the subcomplex F ∩Bd(Pr)
is non-empty. The subcomplex F ∩ Bd(Pr) will be called facet borders of F . A border facet F
is proper if the members of the root component did not collectively hear from all processes, i.e.,⋃

(pi,hr(pi))∈V (R(F )) ∪hr(pi) 6= Π.

Intuitively, a border facet F ∈ Pr has at least one vertex v ∈ Bd(Pr). It is immediately apparent
that v may have heard at most from processes in some face ρ ∈ Bd(Pr), which has dimension at
most n− 2, but not from processes outside ρ (so, in particular, not from all processes).

The facet borders F ∩Bd(Pr) of a border facet F form indeed a subcomplex in general, rather
than a single face, as is the case in, e.g., the left part of Fig. 2 (generated by F that represents
the graph G2) shows. Moreover, F ∩ Bd(Pr) does not even need to be connected. For example,
if the message adversary of Fig. 2 would also include the graph G3 = {r → g → w}, i.e., a
chain (with root component r), we observe F3 ∩ Bd(P1) = {r → g, w} for the corresponding facet
F3. Finally, it need not even be the case that F ∩ Bd(Pr) contains the entire root component
R(F ): Since dim(Bd(Pr)) = n − 2, this is inevitable if F is not a proper border facet, i.e., if
the members of R(F ) have collectively heard from all processes. For instance, if the message
adversary of Fig. 2 also contained the cycle G4 = {r → g → w → r} (with root component
R(F4) = F4 = {r → g → w → r} consisting of all processes), then the (improper) border facet
F4 ∩ Bd(P1) = {r, g, w} obviously cannot contain R(F4).

Definition 20 (Border components and border root components). For every proper bor-
der facet F ∈ Pr, the border component B(F ) is the smallest face of F whose members did not
hear from processes outside of B(F ), that is,

⋃
(pi,hr(pi))∈V (B(F )) ∪hr(pi) ⊆ χ(B(F )). For a facet F

that is not a proper border facet, we use the convention B(F ) = F for completeness. The set of all
proper border components of Pr is denoted as BdC(Pr) (with the appropriate restriction BdC(C)
for a subcomplex C ⊆ Pr).

The root component R(F ) of a proper border facet F is called border root component; it neces-
sarily satisfies R(F ) 6= F . The set of all border root components of Pr resp. a subcomplex C ⊆ Pr
is denoted BdR(Pr) resp. BdR(C).

Lemma 3 below will assert that the border component of a facet is unique and contains its root
component.

Definition 21 (Border component carrier). The border component carrier β(F ) of a proper
border facet F is the smallest face of the initial simplex σ0 = {(p1, {p1}), . . . , (pn, {pn})} that
carries B(F ). For a facet F that is not proper, we use the convention β(F ) = σ0 for consistency.

Since χ
(
β(F )

)
= χ(B(F )), it is apparent that β(F ) implicitly also characterizes the heard-

of sets of the processes in B(F ): According to Definition 20, its members may have heard from
processes in β(F ) but not from other processes. Note carefully that this also tells something about
the knowledge of the processes regarding the initial values of other processes, as the members of
B(F ) can at most know the initial values of the processes in β(F ).
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For an illustration, consider the top right part of Fig. 3, which shows the border root components
of border facets of PRAS1 for the RAS message adversary, represented by square nodes with fat
borders. BdRRAS2 depicted in the bottom part of Fig. 3 consists of all faces B(F ) of border facets F
touching the outer border: Going in clockwise direction, starting with the bottom-leftmost border
face, we obtain the following pairs (border root component, border component carrier) representing
B(F ) of a border facet: (w, {w}), (r ↔ w, {r, w}), (r ↔ w, {r, w}), (w, {w, r}), (r ↔ g, {r, g}),
(w, {w, g}), (w ↔ g, {w, g}). It is apparent that the members of the border root component w ↔ g
in the last pair (w ↔ g, {w, g}) (representing the border facet on the bottom) only know their own
initial values, but not the initial value of the red process.

Lemma 3 (Properties of border component of a proper border facet). The border com-
ponent B(F ) of a proper border facet F ∈ Pr satisfies the following properties:

(i) B(F ) is unique,
(ii) R(F ) ⊆ B(F ) ⊆ F ∩ Bd(Pr), which also implies B(F ) 6= F ,
(iii) B(F ) = R(F ) for r = 1, but possibly R(F ) ( B(F ) for r ≥ 2.

Proof. As for (i), assume for a contradiction that there is some alternative B′(F ) of the same size.
Due to Definition 18, both R(F ) ⊆ B(F ) and R(F ) ⊆ B′(F ) must hold, since some process in
B(F ) would have heard from a process in R(F ) \B(F ) otherwise, and, analogously, for B′(F ). As
B(F ) 6= B′(F ), there is a v′ = (p′i, hr(p

′
i)) ∈ B′(F ) \ B(F ) that is present in B′(F ) because some

v ∈ B(F ) ∩B′(F ) has heard from p′i earlier. But then, v′ is also present in B(F ), a contradiction.
For (ii), besides R(F ) ⊆ B(F ), we also have σ = R(F ) ∩ Bd(Pr) 6= ∅, since R(F ) of a proper
border facet according to Definition 19 does not encompass all processes. Now assume first that
R(F ) 6⊆ F ∩ Bd(Pr), i.e., R(F ) 6⊆ Bd(Pr) (since R(F ) ⊆ F obviously always holds). For every
facet σ ∈ Bd(Pr), there is hence some v = (pi, hr(pi)) ∈ R(F ) \ σ 6= ∅. However, by the properties
of root components, some process pj ∈ χ(σ) must have heard from pi 6∈ χ(σ), which would
contradict pj ∈ χ(σ). Therefore, we must have R(F ) ⊆ Bd(Pr). For the final contradiction, by
the same token, assume that B(F ) \ Bd(Pr) 6= ∅, i.e., for any facet σ ∈ Bd(Pr), there is some
v = (pi, hr(pi)) ∈ B(F ) \ σ. By the definition of border components according to Definition 20,
however, such a v exists only if some process pj ∈ χ(σ) has already heard from pi 6∈ χ(σ), which
would contradict pj ∈ χ(σ). Thus, B(F ) ⊆ F ∩ Bd(Pr). Finally, B(F ) 6= F follows from the fact
that B(F ) ⊆ Bd(Pr) imposes a maximum dimension of n− 2 for B(F ).

As for (iii), B(F ) = R(F ) for r = 1 follows immediately from Definition 20. For r ≥ 2, it is of
course possible that some process in R(F ) has already heard from a process outside R(F ) in some
earlier round, see the bottom-left facet F l2 in Fig. 4 for an example. ut

We point out that the facet borders F ∩Bd(Pr) of a proper border facet F ∈ Pr for r ≥ 2 may
also contain (small) faces in Bd(Pr) that are disjoint from B(F ), albeit they are of course always
contained in a larger face of F that also contains B(F ). Examples can be found in the left part of
Fig. 2, where B(F ) = {w} is disjoint from the single vertex {g} ∈ F ∩ Bd(P), or in the top-left
facet F l1 in Fig. 4, where B(F l1) = w is disjoint from the single vertex {g} ∈ F l1 ∩ Bd(P1).

We conclude this section by stressing that border facets and border (root) components in Pr for
r ≥ 2 implicitly represent sequences of faces: A single border facet F and the corresponding R(F ) ∈
BdR(Pr) resp. B(F ) ∈ BdC(Pr) actually represent all the border facets F1, . . . , Fr in rounds
1, . . . , r that carry F = Fr, and their corresponding R(F1), . . . , R(Fr) resp. B(F1), . . . , B(Fr).
Note carefully that, although β(Fi+k), k ≥ 1, is typically not smaller than β(Fi), in particular, if
χ
(
R(Fi+k)

)
= χ

(
R(Fi)

)
, this need not always be the case, since a process present in B(Fi) may

have heard from all other processes in Fi+k, so that it is no longer present in Bd(Fi+k) and hence
in β(Fi+k). Fig. 4 provides some additional illustrating examples of border component carriers and
border root components.

4 Consensus Solvability/Impossibility

In this section, we will characterize consensus solvability/impossibility under an oblivious message
adversary Dω by means of the topological tools introduced in Section 3. Due to its “geometrical”
flavor, our topological view not only provides interesting additional insights, but also prepares the
ground for additional results provided in Section 5.
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{w, r}

{w, r, y}

{w}

{w, r}

{w, r, y}

{w, r}

R(F l
1) = {w}

R(F l
2) = {r}

β(F l
1) = {w}

β(F l
2) = {w, r}

{w, r}

{r, y}

{w, y}

{w, r, y, g}

{w, r, y, g}

{w, y}

R(F r
1 ) = {w → r → y → w}

R(F r
2 ) = {w}

β(F r
1 ) = {w, r, y}

β(F r
2 ) = {w, y}

{r, g}

{w, r, g}

{r, g}

{w, r, g}

B(F l
1) = {w}

B(F l
2) = {r → w}

B(F r
1 ) = {w → r → y → w}

B(F r
2 ) = {w}

Fig. 4. Illustration of border components and border root components, for two different examples (left,
right column) for n = 4 processes. Faded nodes represent vertices outside B(F ); squared nodes represent
members of the border root component. The first row shows the respective border facets in P1, the second
row shows the border facets in P2. The labels provide the heard-of set of the nearby process, assuming
that the round-2 facet is applied to the round-1 facet atop of it. Observe that the red and yellow process
in the bottom-right facet F r

2 have heard from everybody and are hence removed from Bd(F r
2 ) and β(F r

2 ).

The key insight of Section 4.1 is that one cannot solve consensus in r rounds if the r-round
protocol complex Pr comprises a connected component that contains incompatible proper border
facets (defined as having a set of border components with an empty intersection). In Section 4.2,
we focus on paths connecting pairs of incompatible proper border facets in Pr−1, and exhaustively
characterize what happens to such a path when Pr−1 evolves to Pr: It may either break, in which
case consensus might be solvable in Pr (unless some other path still prevents it), or it may be lifted,
in which it still prohibits consensus. In Section 4.3, we recast our path-centric characterization in
terms of its effect on the connected components in the evolution from Pr−1 to Pr. A suite of
examples in Section 4.4 illustrates all the different cases. Finally, Section 4.5 presents a alternative
(and sometimes more efficient) formulation of the consensus decision procedure given in [39], which
follows right away from the topological characterization of consensus solvability developed in the
previous subsections.

4.1 Incompatibility of border components

Consensus is impossible to solve in r rounds if the r-round protocol complex Pr has a connected
component C that contains k ≥ 1 proper border facets F̂1, . . . , F̂k with incompatible border compo-
nents B(F̂1), . . . , B(F̂k) ∈ Bd(Pr), where incompatibility means

⋂k
i=1 β(F̂i) = ∅: Since no vertex of

B(F̂i) could have had incoming edges from processes outside B(F̂i), in any of the rounds 1, . . . , r,
their corresponding processes cannot decide on anything but one of their own initial values. As all
vertices in a connected component must decide on the same value, however, this is impossible.

Incompatible border components occur, in particular, when F̂1, . . . , F̂k have incompatible border
root components R(F̂1), . . . , R(F̂k) ∈ BdR(Pr). An instance of this situation can be seen in the top
right part of Fig. 3: Since there is a path from the bottom-left white vertex (shown as a fat squared
node that represents the border root component consisting only of this vertex) to the border root
component consisting of the red and green square on the right edge of the outer triangle, consensus
cannot be solved in one round.

4.2 Characterizing solvability via paths connecting incompatible border components

In this subsection, we will characterize the possible evolutions of a path that connects facets with
incompatible border components in some protocol complex Pr−1, for some r ≥ 1, which may either
break or may lead to a lifted path connecting incompatible border components in Pr.
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Consider two border facets F̂x 6= F̂y taken from a set of k ≥ 2 incompatible proper border
facets F̂1, . . . , F̂k ∈ C ⊆ Pr−1, r ≥ 2, i.e., belonging to the connected component C and having
incompatible border components B(F̂1), . . . , B(F̂k) (see Fig. 5 for an illustration). Since Pr−1 is the
result of repeatedly applying P to the single facet σ0, there must be some smallest round number
1 ≤ r ≤ r−1 and two facets τx 6= τy with B(τx) 6= B(τy) in Pr that carry F̂x and F̂y, respectively,
i.e., F̂x ∈ Pr−1−r(τx) and F̂y ∈ Pr−1−r(τy). Note that, as r is minimal, τx and τy are facets
obtained by applying P to the same facet F ∈ Pr−1 (see Fig. 6). For simplicity of exposition,
we will assume below that r = 1, as otherwise we would have to introduce the definition of a
“generalized border” that does not start from P1 but rather from Pr. We will hence subsequently
just write P1, Pr−1 and Pr−2 instead of Pr, Pr−r, and Pr−1−r, respectively. Fortunately, this
assumption can be made without loss of generality, as all the scenarios that can occur in the case
of r > 1 will also occur when r = 1.

Fig. 5. Pr−1

Fig. 6. P0 and P1

Since F̂x and F̂y are connected in C ⊆ Pr−1, τx and τy must be connected via one or more paths
of adjacent facets in P1 as well. Consider an arbitrary, fixed path connecting the proper border
facets F̂x and F̂y in Pr−1, and its unique corresponding path connecting τx and τy in P1. Let τ1
and τ2 be any two adjacent facets on the path in P1, and τ12 = τ1 ∩ τ2 6= ∅. In Pr−1, the facets
τ1 and τ2 induce connected subcomplexes S1 = Pr−2(τ1) and S2 = Pr−2(τ2) with a non-empty
intersection S1 ∩ S2 6= ∅. The path from F̂x to F̂y in Pr−1 must enter S1 at some facet F̂1 and
exit S2 at some facet F̂2, i.e., there is a path connecting F̂x to F̂1 and a path connecting F̂y to F̂2,
and cross the border between S1 and S2 via adjacent facets F1 ∈ S1 ⊆ Pr−1 and F2 ∈ S2 ⊆ Pr−1
with ∅ 6= F12 = F1 ∩ F2 ∈ S1 ∩ S2. Note that F12, as the intersection of two facets in the protocol
complex Pr−1, is of course a face.

Now consider the outcome of applying P again to all the facets in Pr−1, which of course
gives Pr (see Fig. 7). In particular, this results in the subcomplexes S ′1 = P

(
Pr−2(τ1)

)
= Pr−1(τ1)

and analogously S ′2 = Pr−1(τ2), which may or may not have a non-empty intersection. We will be
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Fig. 7. Part of Pr

interested in the part of this possible intersection created by the application of P to F1 and F2,
i.e., in P(F1) ∩ P(F2) ⊆ S ′1 ∩ S ′2. Note that both S ′1 and S ′2 are isomorphic to Pr−1. Clearly, the
application of P to the facets F1, F2 ∈ Pr−1 typically creates many pairs of intersecting border
facets F ′1 ∈ P(F1) ⊆ S ′1 ⊆ Pr and F ′2 ∈ P(F2) ⊆ S ′2 ⊆ Pr, such that each pair shares some
non-empty face ∅ 6= F ′12 = F ′1 ∩ F ′2 ⊆ S ′1 ∩ S ′2. The shared faces F ′12 together form the subcomplex
FC ′12 ⊆ P(F1) ∩ P(F2) (see Fig. 8, left part, for two different examples).

Fig. 8. The subcomplex FC′12 ⊆ P(F1) ∩ P(F2) in Pr and the corresponding subcomplex MF12 in P1.
Case (1) top and Case (2) bottom.

Any such F ′12 is not completely arbitrary, though: First of all, since FC ′12 ⊆ P(F1) ∩ P(F2)
implies that its colors can only be drawn from χ(F12) due to boundary consistency, we have

χ(F ′12) ⊆ χ(FC ′12) ⊆ χ(F12). (17)

Moreover, every pair of properly intersecting facets F ′1 and F ′2 is actually created by two unique
matching border facets MF1,MF2 ∈ P1: the adjacent facets F ′1 ∈ P(F1) and F ′2 ∈ P(F2) are
isomorphic to some intersecting border facets MF1 ∈ P1 and MF2 ∈ P1, respectively, which
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match at the boundary (see Fig. 8, right part). This actually leaves only two possibilities for their
intersection MF12 =MF1 ∩MF2 6= ∅:

(1) MF1 and MF2 are proper border facets with the same root component R(MF1) = R(MF2) ∈
MF12 (possibly MF12 \ R(MF1) 6= ∅, though). Two instances are shown in the top part of
Fig. 8.

(2) MF1 and MF2 are proper border facets with different root components, or improper border
facets, with R(MF1) ∪ R(MF2) 6⊆ MF12 (taken as a complex). An instance is shown in the
bottom part of Fig. 8.

Note that these are all possibilities, since our single-rootedness assumption rules out R(MF1) ∪
R(MF2) ⊆ MF12: After all, every v ∈ R(MF1) \ R(MF2) 6= ∅ (w.l.o.g.) would need to have an
outgoing path to every vertex in R(MF2), which is not allowed for the root component R(MF2) by
Definition 18. Keep in mind, for case (2) below, that every vertex in MF12 must have an incoming
path from every member of R(MF1) in MF1 and from every member of R(MF2) in MF2.

Now, given any pair of facets F ′1 and F ′2, we will consider conditions ensuring the lifting/breaking
of paths that run over their intersection F ′12. Not surprisingly, we will need to distinguish the two
cases (1) and (2) introduced above. To support the detailed description of the different situations
that can happen here, we recall the path in C ⊆ Pr−1 that forms our starting point (Fig. 5):
It starts out from the proper border facet F̂x and leads to F̂1, where it enters the subcomplex
S1 = Pr−2(τ1). Within S1, the path continues to F1. The latter has a non-empty intersection F12

with F2, which belongs to the subcomplex S2 = Pr−2(τ2). The path continues within S2 and exits
it at F̂2, from where it finally leads to the proper border facet F̂y.

(0) If F ′12 = ∅, i.e., the border facets F ′1 and F ′2 do not intersect at all, there obviously cannot be
any path in Pr that connects F̂ ′1 and F̂ ′2 via F ′12.

(1) If F ′12 6= ∅ is caused by proper border facets F ′1 and F ′2 ∈ Pr with the same border root
component R(F ′1) = R(F ′2), then both F ′1 ∈ Pr and MF1 ∈ P1 are isomorphic to some proper
border facet BF1 ∈ Pr−1; analogously, F ′2 ∈ Pr and MF2 ∈ P1 are both isomorphic to some
proper border facet BF2 ∈ Pr−1. This holds since S ′1 = Pr−1(τ1) and S ′2 = Pr−1(τ2) are
both isomorphic to Pr−1. Note carefully, though, that BF12 = BF1 ∩ BF2 is isomorphic to
F ′12 (but not necessarily to MF12, as can be seen in the top of Fig. 8), so χ(R(BF1)) =
χ(R(BF2)) ⊆ χ(BF12) ⊆ χ(F ′12) ⊆ χ(F12) by Eq. (17). Note that Definition 20 immediately
implies B(BF1) = B(BF2) ⊆ BF12 for the respective border components as well.
Depending on BF1 and BF2 (actually, depending on BF12 and, ultimately, on R(BF1) =
R(BF2), which we will say to protect F12), all paths running over R(F ′1) = R(F ′2) will either (a)
be lifted or else (b) break:
(a) We say that R(BF1) = R(BF2) successfully protects F12 (see Fig. 9) if BF12 ∈ C, i.e., if

both BF1 and BF2 are within the same connected component C as F1 and F2 (which also
implies that there are paths in C connecting F̂1 to BF1 and F̂2 to BF2). In this case, there
is a lifted path in Pr connecting some border facets F̂ ′1 ∈ P(F̂1) and F̂ ′2 ∈ P(F̂2) via BF12,
carried by the one in Pr−1 that connected the proper border facets F̂1 and F̂2 via F12: It
exists, since both S ′1 = Pr−1(τ1) and S ′2 = Pr−1(τ2) are isomorphic to Pr−1. By applying
P to all remaining facets on the path that connected F̂x and F̂y in Pr−1 as well, a path in
Pr may be created that connects some incompatible proper border facets F̂ ′x, F̂ ′y ∈ Pr; of
course, this requires a successful lifting everywhere along the original path, not just at the
intersection between F1 and F2.

(b) We say that R(BF1) = R(BF2) unsuccessfully protects F12 if BF12 6∈ C. In this case, there
cannot be a path connecting the border facets F̂ ′1 and F̂ ′2 in Pr running via BF12, i.e., the
connecting path in Pr−1 cannot be lifted to Pr and thus breaks!

(2) If F ′12 6= ∅ is not caused by proper border facets F ′1 ∈ Pr and F ′2 ∈ Pr with common border root
components R(F ′1) = R(F ′2), we know from (2) above that R(MF1) ∪ R(MF2) 6⊆ MF12, i.e.,
at least one of the root components, say, R(F ′1), has a vertex v′1 ∈ F ′1 outside F ′12. Clearly, the
corresponding vertex v′2 ∈ F ′2 with χ(v′1) = χ(v′2) is also outside F ′12 and hence different from
v′1. Since there is a path from v′1 to every vertex in F ′1, at least one member in the intersection
F12 will be gone in F ′12, so

|V (F ′12)| < |V (F12)|. (18)
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P(F1) and P(F2) in Pr, and the corresponding subcomplexes MF1 and MF2 in P1

Pr−1

Pr with the images of C in S1 and S2 marked

Fig. 9. Lifting — Case 1(a)
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This completes the (exhaustive) list of cases that need to be considered w.r.t. a single pair of facets
F ′1 and F ′2. Clearly, in order for a lifted path connecting F̂ ′x and F̂ ′y in Pr to break, it suffices that it
breaks for just one pair of adjacent facets. On the other hand, for a given pair F1, F2 ∈ Pr−1, many
paths are potentially created simultaneously in Pr, each corresponding to a possible selection of
F ′1 and F ′2 and the particular intersection facet F ′12, which all need to break eventually. Moreover,
there are different paths in Pr−1 connecting F̂x and F̂y via different pairs F1, F2 that need to be
considered. In Section 5, we will show that there is even another subtle complication caused by case
(1.b), the case where there is no lifted path in Pr: It will turn out that “bypassing” may create a
new path connecting some incompatible proper border facets in Pr when the path in Pr−1 breaks;
see Fig. 16 for an example.

Finally, for consensus to be solvable, no connected component C containing all border facets
F̂1, . . . , F̂k ∈ C with incompatible border components B̂1, . . . , B̂k may exist. In other words, there
must be some r such that none of the connected components of Pr contains facets with incompatible
border components. If this is ensured, the processes in any facet F ∈ C ⊆ Pr can eventually decide
on the initial value of a deterministically chosen process in

⋂
F∈C,B(F )6=∅ β(F ) 6= ∅. Note carefully,

however, that this also requires that all connections between incompatible borders that are caused
by facet borders different from the border component B(F ) have disappeared. Since this is solely
a matter of case (2), Eq. (18) reveals that this must happen after at most n− 1 additional rounds.

4.3 Characterizing consensus solvability via connected components

It is enlightening to view cases (0)–(2) introduced before w.r.t. the effect that they cause on the
connected component C ⊆ Pr−1 that connects incompatible border facets: Reconsider the two
adjacent facets F1, F2 ∈ C with intersection F12, and assume, for clarity of the exposition, that
C would fall apart if the path running over F12 would break. We will now discuss what happens
w.r.t. the connected component(s) in Pr when going to F ′1 ∈ P(F1) and F ′2 ∈ P(F2), under the
assumption that F ′12 is the only intersecting facet in Pr, according to our three cases:

(0) If F ′12 = ∅, then Pr would contain two separate connected components C′1 and C′2 with F ′1 ∈ C′1
and F ′2 ∈ C′2, i.e., the connected component(s) in Pr resulting from C are separated by what
is generated from F12, namely, F ′12 = ∅. A nice example is the (shaded) green center node in
PRAS2 of the RAS message adversary shown in Fig. 3.

(1) If F ′12 6= ∅ is caused by proper border facets F ′1 ∈ Pr and F ′2 ∈ Pr (isomorphic to BF1 resp.
BF2) with the same border root component R(F ′1) = R(F ′2) = F ′12 that successfully protects
F12, we have our two subcases:
(a) If BF12 ∈ C, then Pr would contain a single connected component C′ (resulting from
C) that connects incompatible border facets. An instance of such a successful protection
can be found in Fig. 10 of PiRAS2 for the iRAS message adversary, where consensus is
impossible. Note that just one communication graph has been added to RAS here, namely,
the additional triangle that connects the bottom left white vertex to the central triangle in
the 1-round uninterpreted complex PiRAS1 in the top left part of Fig. 10. Consider the left
border of the dash-dotted central triangle, for example, where two adjacent facets intersect
in the common root r ↔ g. It results from the fact that the border root component r ↔ g
of the proper border facet on the right outermost border of the protocol complex PiRAS1

protects the intersection r ↔ g of the central facet and the facet left to it in PiRAS1 .
(b) If BF12 6∈ C, then Pr would contain two connected components C′1 and C′2 with F ′1 ∈ C′1 and

F ′2 ∈ C′2. Unlike in case (0), however, they are separated by a third connected component
C′12 that contains F ′1 and F ′2. It can be viewed as an “island” that develops around F ′12.
A nice example of such an unsuccessful protection is the connected component containing
the red process in the center of Fig. 11 for P2C

2 for the two-chain message adversary, which
now separates the single connected component containing this process in P2C

1 .
We note that the bypassing effect already mentioned (and discussed in detail in Section 5)
can also be easily explained via this view: It could happen that the “island” C ′12 is such that
it connects some other incompatible proper border facets in Pr (see Fig. 16 for an example).
So whereas it successfully separates C′1 and C′2, it creates a new path that prohibits the
termination of consensus in round r.
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Fig. 10. Protocol complex for one round (P = PiRAS
1 , top) and two rounds (PiRAS

2 , bottom) of the iRAS
message adversary. The top right figure also shows the border root components of P.
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(2) If F ′12 6= ∅ is not caused by a proper border facet F ′1 ∈ Pr and F ′2 ∈ Pr with common border
root component R(F ′1) = R(F ′2) = F ′12, Pr would contain a single connected component C′
(resulting from C) that still connects incompatible border facets.

4.4 Examples

An example of an unsuccessful protection (a breaking path, case (1.b)) can be found in the 1-
round uninterpreted complex PRAS1 for the RAS message adversary in the top-right part of Fig. 3,
where the facets F̂x and F̂y containing the border root components R̂x (the single white vertex in
the bottom-left corner) and R̂y (the bidirectionally connected red and green vertices on the right
border) are connected by a path that runs over the bottom leftmost triangle F1 = F̂x and the
central triangle F2, in a joint connected component C ⊆ PRAS1 . Note that F1 and F2 intersect in
the single green central vertex F12 = F1 ∩ F2 = {g}, and that there is no facet with a border
(root) component consisting only of the green vertex in P1 and hence in C. Consequently, it follows
that PRAS2 cannot contain a corresponding path connecting F̂ ′x with border root component R̂′x
(the single white vertex in the bottom-left corner in the bottom part of Fig. 3) and R̂′y (the
bidirectionally connected red and green vertices on the right outer border) running over the faded
central vertex F ′12 = {g}, as is confirmed by our figure.

For an example of a successful protection (a non-breaking path, case (1.a)), consider the path
connecting the border facets F̂x and F̂z containing the border root components R̂x (the single white
vertex in the bottom-left corner) and R̂z (the bidirectionally connected red and white vertices on
the left border) in the top-right part of Fig. 3. This path only consists of the bottom leftmost
triangle F1 = F̂x and the triangle F2 = F̂z in a joint connected component C ⊆ PRAS1 . Note that
F1 and F2 intersect in a red-green edge F12 = F1 ∩ F2 = {r → g} here, and that there is the
border facet F̂y ∈ C with a border root component R̂y = {g ↔ r} on the rightmost outer border.
According to our considerations above, PRAS2 contains a corresponding path connecting F̂ ′x with
border root component R̂′x (the single white vertex in the bottom-left corner in the bottom part
of Fig. 3) and the border facet F̂ ′z with border root component R̂′z (the bidirectionally connected
red and white vertices on the leftmost outer border) running via F ′12 = {g ↔ r}, as is confirmed
by our figure.

To further illustrate the issue of successful/unsuccessful protection, consider the modified RAS
message adversary iRAS depicted in Fig. 10, where consensus is impossible. The border facets
F̂w (the additional triangle) resp. F̂y containing the border root component R̂w (the single white
vertex in the bottom-left corner) resp. R̂y (the bidirectionally connected red and green vertices on
the right border) are connected by a path that runs over the central bidirectional red-green edge
F12 = F1 ∩F2 = {g ↔ r} in C here. In sharp contrast to RAS, the border facet F̂y with the border
root component R̂y = {g ↔ r} on the right outer border is now also in C, however. Consequently,
PRAS2 contains a corresponding path connecting F̂ ′w with border root component R̂′w (the single
white vertex in the bottom-left corner in the bottom part of Fig. 10) and F̂ ′y with border root
component R̂′y (the bidirectionally connected red and green vertices on the right outer border)
running via F ′12 = {g ↔ r}, as is confirmed by our figure. Note that this situation recurs also in
all further rounds, making consensus impossible.

To illustrate the issue of delayed path breaking (case (2)), consider another message adversary,
called the 2-chain message adversary (2C), shown for n = 4 processes in Fig. 11 (top part). It
consists of three graphs, a chain G1 = y → g → w → r, another chain G2 = g → y → w → r, and
a star G3 = r → {y, w, g}. In P1, the facets F1 and F2, corresponding to G1 and G2, respectively,
are connected by a path running over the intersection F12 = {r} in a joint connected component C.
There is also a border root component R = {r} in the facet F3 resulting from G3, which, however,
lies in a different connected component C′ 6= C in P. According to our considerations (case (1.b),
the path (potentially) connecting F ′1 (the border facet representing G1 both in round 1 and 2) and
F ′2 (the border facet representing G2 both in round 1 and 2) via F ′12 = {r} in P2C

2 breaks: As is
apparent from the bottom part of Fig. 11, there is no single red vertex shared by these two facets.

If one adds another process p (pink) to 2C for n = 5, denoted by the message adversary 2C+,
such that G1 = y → g → w → p → r, G2 = g → y → w → p → r, and G3 = r → {y, w, g, p},
then F12 = {p → r} is in P2C+

1 . Now there is a path in P2C+
2 connecting F ′1 (the border facet

representing G1 both in round 1 and 2) and F ′2 (the border facet representing G2 both in round 1
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and 2) running via F ′12 = F ′1 ∩ F ′2 = {r}: Whereas the pink vertex has learned in round 2 where
it belongs to, i.e., either F ′1 and F ′2, from the respective root component, this is not (yet) the case
for the red vertex. However, whereas the corresponding path did not break in P2C+

2 , it will finally
break in P2C

3 since the red vertex will also learn where it belongs to.

Fig. 11. Protocol complex for one round (P = P2C
1 , top) and two rounds (P2C

2 , bottom) of the two-chain
message adversary for n = 4 processes. The top right figure also shows the border root components of P.

4.5 A decision procedure for consensus solvability

Revisiting the different cases (0)–(2) that can occur w.r.t. lifting/breaking a path connecting in-
compatible border facets in Pr−1 to Pr, it is apparent that the only case that might lead to a path
that never breaks, i.e., in no round r ≥ 1, is case (1.a): In case (0) and (1.b), there cannot be a
lifted path running via F ′12 in Pr, i.e., the path in Pr−1 breaks immediately. In case (2), it follows
from Eq. (18) that this type of lifting could re-occur in at most n − 2 consecutive rounds after a
path running over F12 is lifted to a path running over F ′12 in Pr for the first time. Since these are
all possibilities, after the “exhaustion” of case (2), F ′12 = ∅ and hence case (0) necessarily applies.

In order to decide whether consensus is solvable for a given message adversary Dω at all, it
hence suffices to keep track of case (1.a) over rounds 1, 2, . . . . If one finds that case (1.a) does not
occur for any path in Pr−1 for some r, there is no need for iterating further. On the other hand, if
one finds that case (1.a) re-occurs for some path forever, consensus is impossible. Since the facets
BF1 and BF2, where the common root component R(BF1) = R(BF2) successfully protects F12 in
case (1.a), leads to χ(F ′12) ⊆ χ(F12) according to Eq. (17), the infinite re-occurence of case (1.a) for
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some path implies that there is some round r0 such that χ(F ′12) = χ(F12) = I ⊂ Π for all r ≥ r0.
If this holds true, then case (1.a) must also re-occur perpetually in the lifted paths obtained by
using the same BF1 and BF2 with χ(BF12) = I in all rounds r ≥ r0.

For keeping track of possibly infinite re-occurrences of case (1.a), it is hence sufficient to deter-
mine, for every pair of facets MF1 ∈ P1 and MF2 ∈ P1, MF2 6= MF1, intersecting in MF12 6= ∅,
the set of proper border facets MF 1, . . . ,MF ` ∈ P1 with border root components Rj = R(MF j)
satisfying χ(Rj) ⊆ χ(MF12) for all 1 ≤ j ≤ `. Clearly, every choice of MF j , MF k is a possible
candidate for the isomorphic re-occurring protecting facets BF1 = BF j and BF2 = BF k for case
(1.a) in some Pr−1, provided (i) R(MF j) = R(MF k) and (ii) both BF j and BF k are in the
connected component C ⊆ Pr−1 containing F1 and F2. If (ii) does not hold, one can safely drop
MF j ,MF k from the set of candidates for infinitely re-occurring protecting facets in all subsequent
rounds.

This can be operationalized in an elegant and efficient decision procedure by using an appro-
priately labeled and weighted version of the facets’ nerve graph N of the 1-round uninterpreted
complex P1. It is a topological version of the combinatorial decision procedure given in [39, Alg. 1]
that works as follows: Every facet in P1 is a node F in N and labeled by w(F ) = R(F ), its root
component in P1. Two nodes F 1, F 2 in N are joined by an (undirected) edge (F 1, F 2), if they
intersect in a simplex ∅ 6= F 12 = F 1∩F 2 in P1. The edge is labeled by w((F 1, F 2)) = {R1, . . . , R`}
(possibly empty), which is the maximal set of (necessarily: border) root components that satisfy
the property χ(F 12) ⊇ χ(Ri). Recall that the member sets of different border root components
may satisfy χ(Ri)∩ χ(Rj) 6= ∅ and even χ(Ri) = χ(Rj), albeit Ri ∩Rj 6= ∅ when taken as faces is
impossible.

The procedure for deciding on consensus solvability proceeds in iterations, starting from N0 =
N , and defining Ni+1 from Ni as follows. Let V (Ni+1) := V (Ni) with the same node labels
w(F ), initialize E(Ni+1) to be the empty set, and add to it each edge (F 1, F 2) ∈ E(Ni) with
a label wi+1((F

1, F 2)) defined next, but only if this label is not empty. For a potential edge
(F 1, F 2) ∈ E(Ni), set R ∈ wi+1((F

1, F 2)) if the (unique) connected component Cji of Ni with
(F 1, F 2) ∈ E(Cji ) contains some F ′ ∈ V (Cji ) with w(F ′) = R ∈ wi((F

1, F 2)). The construction
stops when either (i) none of the connected components of Ni contains nodes representing facets
with incompatible root components (consensus is solvable), or else (ii) if Ni+1 = Ni but there
is at least one connected component containing nodes representing facets with incompatible root
components (consensus is impossible).

For example, Fig. 12 shows the labeling of the facets with their root components for the RAS
message adversary, where consensus can be solved. The sequence of nerve graphs N , N0 and N1 is
illustrated in Fig. 13. On the other hand, Fig. 14 and Fig. 15 show the same for the iRAS message
adversary, where consensus cannot be solved.

Fig. 12. Results of labeling the faces of the 1-layer protocol complex P1 of the RAS message adversary
(left) by their root component (right).

Note that there is a small difference between the decision procedure [39, Alg. 1] and our topolog-
ical version: Whereas the latter uses sets of border root components wi((F 1, F 2)) = {R1, . . . , R`}
as the label of an edge (F 1, F 2), the size of which may decrease during the iterations, the
former uses the fixed set of processes that cannot distinguish F 1 and F 2 in P1 as its label
`((F 1, F 2)). The latter does not change during the iterations, and can in fact be written as
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Fig. 13. Construction of the initial nerve graph N0 of the 1-layer protocol complex P1 of the RAS message
adversary: After replacing the facets by their corresponding nodes (colored by their root component)
and labeling all the edges (left), nerve graph N0 obtained by removing edges without a protecting root
component (middle), nerve graph N1 (right). Note that N1 already reveals that consensus is solvable.

Fig. 14. Results of labeling the faces of the 1-layer protocol complex P1 of the iRAS message adversary
(left) by their root component (right).

Fig. 15. Construction of the initial nerve graph N0 of the 1-layer protocol complex P1 of the iRAS message
adversary: After replacing all facets by their corresponding nodes (colored by their root component) and
labeling all the edges (left), nerve graph N0 obtained by removing edges without a protecting root com-
ponent (middle), nerve graph N1 (right). Since N2 = N1, which still contains a component that connects
incompatible root components, consensus is impossible.
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`((F 1, F 2)) = χ(w0((F
1, F 2))) = χ({R1, . . . , R`}). Whereas these different labeling schemes are

equivalent in terms of correctly deciding consensus solvability/impossibility, ours might facilitate
a more efficient data encoding and thus some advantages in computational complexity for cer-
tain message adversaries. On the other hand, we could of course also use the original labeling
of [39, Alg. 1] in our decision procedure and detect successfully protecting border root components
via proper inclusion of the member sets.

5 Consensus Termination Time

In this section, we will shift our attention from the principal question of whether consensus is
solvable under a given message adversary Dω to the question of how long a distributed consensus
algorithm may take to terminate.

Whereas it is immediately apparent that the number of iterations of the decision procedure
in Section 4.5 is a lower bound for the consensus termination time, their exact relation is not
clear: Case (2) of our classification for path lifting/breaking in Section 4 revealed an instance
where the actual breaking of a path may happen up to n − 1 rounds after detecting that it will
eventually break. An interesting question is whether there are other effects that may even increase
this gap between iteration complexity of the decision procedure and consensus termination time.
And indeed, [39] provided an example that shows that this gap may even be exponential in n. In
Section 5.1, we will provide an intuitive topological explanation of this gap, which is caused by the
possibility of “bypassing”. In Section 5.2, we finally propose a decision procedure, which allows to
answer the question whether distributed consensus is solvable in k rounds under a given message
adversary Dω.

5.1 Delayed path breaking due to bypassing

We mentioned already in Section 4.2 that in order for some incompatible border components to
become disconnected, all paths connecting those must break. Consider the situation illustrated in
Fig. 16, for the case of a system of n = 5 processes (r, g, w, p, y), and a message adversary that
comprises only 5 graphs, according to the uninterpreted 1-round protocol complex P1 illustrated
in the top part of the figure. There are two paths Pa ∈ Ca and Pb ∈ Cb in P1 that connect the
same incompatible border facets (touching upon the {y, g} resp. upon the {p, w} border component
carrier), lying in different connected components Ca and Cb. The left path Pa consists of facets F1

(with R(F1) = {y}) and F2 (with R(F2) = {w}), sharing the face F12 = {r}. The right path Pb
consists of H1, H0 and H2 and involves the facet H0 with border root component R(H0) = {r}.
According to case (1.b), both corresponding lifted paths in P2 break, since the shared faces F12

between any two facets are (unsuccessfully) protected by the common root component of proper
border facets in P1 lying in a different connected component only.

Surprisingly, however, the {y, g} and {p, w} borders themselves are not separated in P2. Ac-
tually, it happens that the right path Pb in Cb ⊆ P1 gives rise to a new lifted path connecting
facets with proper border components in the {y, g} resp. {p, w} borders in P2. This effect, called
bypassing, is illustrated in the bottom part of Fig. 16: By applying P to both F1, F2, leading to
P(F1),P(F2) ⊆ P2, one observes that Pb now leads to a new lifted path connecting the incom-
patible border (root) components R(H ′1) = {g} (in the facet H ′1 corresponding to H1 in P(F1))
and R(H ′′2 ) = {p, w} (in the facet H ′′2 corresponding to H2 in P(F2)) via the intersection of
H ′0∩H ′′0 = {r}. In fact, the island created in P2 around the latter, due to case (1.b), which consists
of H ′1, H ′2, H ′0, H ′′0 , H ′′1 and H ′′2 and nicely separates the connected components consisting of F ′1
and F ′2 from F ′′1 and F ′′2 , is not an island, but rather connects two other incompatible border root
components, namely {g} ∈ H ′1 and {w} ∈ H ′′2 . Whereas it can be inferred already in P1 that this
new lifted path in P2 will eventually break as well, consensus cannot be solved in just two rounds
here.

Even worse, for larger n, it is possible to iterate this construction: An additional path Pc in a
separate connected component Cc ⊆ P1 could bypass both the shared face {w} between H1 and H0

and {y} between H2 and H0 in Pb, in the same way as the shared face {r} in Pa is bypassed. More
specifically, if these shared faces in Pb are (unsuccessfully) protected by the border root components
of proper border facets in Pc ∈ Cc, which connect proper border facets touching the incompatible



28 H. Rincon, U. Schmid, K. Winkler, A. Paz, S. Schmid

{g, y} border

{w, p} border

r border
F1

F2

H1

H2

H0

P1

R

R1

R2

F12

F1

F ′1

F ′2
H ′1

H ′2 H ′0

F2

F ′′1

F ′′2

H ′′1

H ′′2

H ′′0

H1

H2

H0

r border

{g, y} border

{w, p} border

Fig. 16. Illustration of delayed path creation in the evolution of a protocol complex, for n = 5. The top
part shows P1, which consists of two paths Pa and Pb connecting incompatible border (root) components
(on the {y, g} resp. {p, w} border), lying in different connected components Ca and Cb. The left path Pa

consists of facets F1 and F2, sharing F12 = {r}. The right path Pb consists of H0–H2 and involves also a
facet H0 with border (root) component R(H0) = {r}. Note that our restriction to n = 5 implies that the
pink vertices in F1 and in F2 are actually the same, and so are the red vertices in H1 and H2. The bottom
part shows P2: Whereas the corresponding paths for both Pa and Pb break in round 2 according to case
(1.b), it also happens that Pb creates a lifted path in P2 (running within P(F1) and P(F2)) that connects
“new” incompatible proper border components there. This lifted path will break only in P3.
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{g, y} border to the {w} border, to the {r} border, to the {y} border, and finally to the {w, p}
border, one gets a path connecting the {g, y} and the {w, p} borders in P2, carried by Pb in P1,
in exactly the same way as we got the path carried by Pa described above. Note carefully that the
border root component of the proper border facet touching the {r} border in Pc must be different
from the one touching the {r} border in Pb, since Cb 6= Cc. Since P3 = P(P2), this finally causes
the creation of a new path in P3 that also connects the incompatible {g, y} and {w, p} borders,
carried by Pa in P1.

Whereas successive bypassing cannot go on forever, it stops only if there are no “new” connected
components in P1 that allow to bypass shared faces. Indeed, there are natural limits of the number
of such bypassing connected components:

(1) The bypassing connected components C1, C2, . . . in P1 must connect incompatible borders, but
must be disjoint. The root components of the facets that touch some specific border in different
components must hence all be different (when taken as faces) as well. However, the example
worked out in [39] demonstrates that there can be exponentially (in n) many of those.

(2) A connected component Cx+1 that contains a border root component R that unsuccessfully
protects a shared face F12 in the connected component Cx to accomplish bypassing must be
such that it connects both the incompatible borders of Cx and some border containing R. Since
each such F12 must be protected by some proper border facet in Cx+1, the length of the paths
connecting two particular borders must be strictly increasing.

This ultimately provides a very intuitive “geometric” explanation of the quite unexpected ex-
ponential blowup of the gap between the iteration complexity of the decision procedure and the
termination time of distributed consensus. In particular, (1) explains the surprising fact that the
number of connected components in P1 plays a major role here.

5.2 A decision procedure for k-round distributed consensus

Reviewing the decision procedure of Section 4.5 in the light of bypassing as described in Section 5.1,
it is apparent that the nerve graph based approach removes edges/labels eagerly. Regarding decision
time, this is of course most advantageous: In the example of Fig. 16, it would terminate already
after one iteration, telling that consensus is solvable.

There is a less eager alternative decision procedure, which builds a sequence of (border) root
reachability graphs RRGi, i ≥ 0, that tell which proper border facets are reachable from each other
in Pi+1. First, it builds the initial root reachability graph RRG0, the vertices of which (represented
as square nodes in our illustrating figures) are the border root components (which are the same
as the border components for all proper border facets) of the 1-round uninterpreted complex P1,
see Fig. 3 (top right), and where two such vertices are connected by an undirected edge if they are
connected via a path in P1 (irrespectively of the type of edges in P1), see Fig. 17 (top left). We
obtain RRG1 by replacing every facet F in P1 by an instance of RRG0, in such a way that the
replacements of two facets F1, F2 that intersect in a simplex F12 (case (1.a) in Section 4.2) that
is protected by the common root R(MF1) = R(MF2) of the proper border facets MF1 and MF2

in P1, i.e., χ(R(MF1)) = χ(R(MF2)) ⊆ χ(F12), share a node labeled χ(R(MF1)) = χ(R(MF2)).
Note that an actual root component is represented by a fat square node in our figures, whereas
the node representing an intersection is displayed by a non-fat square node.

Fig. 17 shows RRG0 (top left part), obtained directly from the top-right part of Fig. 3, and
RRG1 (top right part), which consists of several connected components. It is apparent, however,
that it no longer connects incompatible border components. In particular, the bottom left border
root component consisting of the white fat square node is no longer connected by a path to the
red-green fat square node on the right side of the outer triangle in RRG1. That is, the connection
between these two border root components (present in RRG0) has disappeared!

This immediately gives us a recursive procedure for deciding consensus solvability: Rather than
starting from the initial RRG0 = RRG(0)0 , we start inductively from the previously constructed
RRG(i)0 , i ≥ 0, and plug it into P1 exactly as before to construct RRG(i+1)

1 . Note that, for i ≥ 1,
RRG(i+1)

1 has at most the same number of edges than RRG(i)1 . This process can be repeated until
RRG(m+1)

1 = RRG(m)
1 for some m ≥ 0. Consensus is possible if and only if RRG(m)

1 contains no
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component that connects incompatible fat square nodes. In the example of Fig. 17, already RRG(1)1

does not connect incompatible fat square nodes, so consensus is solvable under RAS.
This recursive RRG construction is equivalent to the the following iterative procedure, which

operates directly on the root reachability graphs: Starting out from RRGi, initially RRG1, con-
struct RRGi+1 by removing every edge incident to a node (= a non-fat square node) where the
common border root component (= the fat square node R(BF1) = R(BF2)) of the protecting
matching border facets is not in the same connected component. The procedure stops if either
the resulting RRGi contains no component that connects incompatible fat square nodes (in which
case consensus is solvable), or else if RRGi+1 = RRGi (in which case consensus is not solvable if
incompatible fat square nodes are still connected).

Fig. 17. Construction of the root components reachability graphs RRG0–RRG3 from the 1-layer protocol
complex for RAS: Initial root reachability graph RRG0 (top left) and RRG1 (top right). Since RRG1
already partitions into several connected components that no longer contain incompatible border root
components, one can already decide here that consensus is solvable. For completeness, we also show RRG2
(bottom left) and RRG3 (bottom right), where all edges have finally been removed.

Fig. 18 and Fig. 14 show the RRG construction for the iRAS message adversary, where consensus
is impossible, as introduced in Fig. 10. The case of the 2-chain message adversary 2C is illustrated
in in Fig. 19.

Returning to the example of Fig. 16, it is apparent that the root reachability graph based
decision would not terminate as early as the nerve graph based procedure, since it explicitly keeps
track of all paths between border root components. More specifically, whereas the path Pa between
the root components R1 = {y} and R2 = {w} in P1 in the top part of Fig. 16 has vanished in P2,
and hence also in RRG1, the path Pb connecting the border root components {g} and {p, w} is
lifted to P2 and hence still present in RRG1. Consequently, the decision procedure would proceed
to RRG2 before it can decide that consensus is solvable. In general, it would faithfully track
paths/connected components that bypass each other until they have been exhausted.

It follows that the RRG-based decision procedure would be a natural candidate for developing a
decision procedure that can tell whether distributed consensus is solvable within k rounds. However,
like the nerve graph based procedure, it does not cover delayed path breaking due to case (2).
Whereas a simple way to also accommodate this would be to scale the number of rounds required
for termination by a factor of n − 1, i.e., to infer from a number of iterations k of the decision
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Fig. 18. Construction of the root components reachability graphs RRG0–RRG3 from the 1-layer protocol
complex for the iRAS message adversary: Initial root reachability graph RRG0 (top left) and RRG1 (top
right). Since RRG1 partitions into several connected components containing incompatible border root
components, one has to construct RRG2 (bottom left). As incompatible border root compenents are still
connected RRG2, another iteration finally provides RRG3 = RRG2, so consensus is not solvable here.

Fig. 19. Construction of the root components reachability graphs RRG0 and RRG1 from the 1-layer
protocol complex for the 2-chain message adversary 2C. Since RRG1 already partitions into connected
components containing only compatible border root components, consensus is solvable here. Note that one
additional iteration even removes all edges in RRG2.
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procedure a consensus termination time bound of k(n − 1), this is quite conservative. The major
disadvantage of the RRG-based decision procedure is its computational complexity, however: After
all, the number of different border root components is exponential in n and thus makes the initial
root reachability graph RRG1 exponentially larger than the initial nerve graph N0.

6 Conclusion

We presented a topological view on deciding consensus solvability in dynamic graphs controlled
by oblivious message adversaries. Compared to the purely combinatorial approach [39], it not only
provides additional insights into the roots of the possible exponential blowup of both the iteration
complexity of the decision procedure and the termination time of distributed consensus, but also
results in a decision procedure for consensus termination within k rounds. Thanks to our novel
concept of a communication pseudosphere, which can be viewed as the message passing analogon
of the chromatic subdivision, it is also a promising basis for further generalizations, e.g., for other
decision problems and other message adversaries.
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