
Search-based Testing for
Accurate Fault Localization in CPS

Ezio Bartocci
TU Wien

Vienna, Austria

ezio.bartocci@tuwien.ac.at

Leonardo Mariani
University of Milano-Bicocca

Milan, Italy

leonardo.mariani@unimib.it

Dejan Ničković
Austrian Institute of Technology

Vienna, Austria

Dejan.Nickovic@ait.ac.at

Drishti Yadav
TU Wien

Vienna, Austria

drishti.yadav@tuwien.ac.at

Abstract—Fault localization plays an important role in the
design, verification and debugging of cyber-physical systems
(CPS). Finding the exact location of a fault that triggered a failure
in a CPS model is however a challenging task, due to the complex
structure and data-flow nature of CPS models. In this paper, we
propose a method that uses formal specifications and search-
based testing to accurately localize faults. Given a CPS Simulink
model, a formalized requirement used as a test oracle, and a test
case that fails the formalized property, we develop a procedure
that uses search-based testing to generate another test case that
succeeds on the same formalized property. We then compare our
two similar test cases with opposite verdicts to find the accurate
location of the fault. We implement our approach and evaluate
it on three case studies from automotive and avionic domains.
We empirically compare our approach to a state-of-the-art fault
localization technique and demonstrate that our procedure (1)
is able to considerably narrow down the number of suspicious
model variables and blocks compared to the previous work, and
(2) remains robust to an increasing number of active faults in
the underlying models.

Index Terms—Cyber-Physical Systems, Model-based Develop-
ment, Debugging, Fault Localization, Equivalence Testing, Signal
Temporal Logic (STL), Simulink models

I. INTRODUCTION

The development of safety-critical Cyber–Physical Systems

(CPS) is a challenging activity. Model-based platforms are

increasingly used by the embedded software industry experts

to cope with the inherent complexity of CPS development

and facilitate cost-effective design. The MathWorks® MAT-

LAB/Simulink environment has emerged as a de-facto stan-

dard for the model-based design (MBD) of CPS [1].

While MBD facilitates many design tasks, debugging faulty

models remains a cumbersome and labour-intensive activity.

Precise identification of the fault location is tedious and

often demands considerable expertise from an engineer to

reveal the root cause of the resulting failure. Detecting and

diagnosing faults quickly and accurately is necessary to ensure

that the system is viable and fully operational at all times.

In particular, it is important to detect problems in the early

stages of CPS design, as undetected failures in safety-critical

CPS are not only costly but also have potentially catastrophic

consequences [2]–[4]. A precise localization of the detected

fault can significantly accelerate the model correction and

facilitate the design of safe CPS.

Simulation-based testing and its variants, such as falsifi-

cation testing, are practical approaches used to efficiently

identify bugs in CPS design. Falsification testing [5]–[8] uses

a specification expressed in a formal language, such as Signal

Temporal Logic (STL) [9] and its quantitative semantics, to

guide the search for tests that violate the specification.

While simulation-based testing allows to detect incorrect

behavior in the model, it typically provides only the witness

behavior as the explanation of the specification violation.

More recently, fault localization and explanation methods have

been proposed to facilitate debugging of MATLAB/Simulink

models [2], [4], [10]–[12]. These gray-box procedures use

various heuristics to localize the fault and thus reduce the

debugging scope. The common characteristics of the existing

localization methods is that they are all detached from the

testing activities. It follows that the accuracy of the localization

is highly dependent on the quality of the test suite.

In the context of procedural and object-oriented program-

ming, the problem of localizing a fault has been investigated

as the problem of comparing two similar test executions with

opposite verdicts [13], [14], one passing and the other failing.

However, these approaches use test generation strategies and

heuristics that cannot be trivially transferred to data-flow

oriented computational models, such as CPS Simulink models.

Contributions. We propose an accurate fault localization

method that is tightly coupled with (falsification) testing. We

consider CPS Simulink models with either explicit or implicit

specifications. We adopt STL as formal language for specify-

ing CPS requirements. In absence of explicit specifications, we

assume a correct reference model and define its equivalence
to the model-under-test as our implicit specification. In both

cases, we use the formal specification as a test oracle. Given

a test case that fails according to the formalized property, we

develop a procedure that generates an alternative passing test

that can be used to extract accurate information about the fault

location once compared to the failing test. In essence, we use a

global optimizer to perform search-based testing and generate

a new passing test case that is close to the original failing test,

according to some distance measure. We then exploit our two

similar test cases with opposite verdicts to generate accurate

information about the fault location, decreasing debugging

scope and effort. Our technique characterizes and orders

suspicious variables by their time and degree of violation,

145

2022 IEEE 33rd International Symposium on Software Reliability Engineering (ISSRE)

2332-6549/22/$31.00 ©2022 IEEE
DOI 10.1109/ISSRE55969.2022.00024

20
22

 IE
EE

 3
3r

d
In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n

So
ft

w
ar

e
Re

lia
bi

lit
y

En
gi

ne
er

in
g

(IS
SR

E)
 |

 9
78

-1
-6

65
4-

51
32

-1
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IS

SR
E5

59
69

.2
02

2.
00

02
4

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 22,2023 at 14:11:02 UTC from IEEE Xplore. Restrictions apply.

presenting them together with their associated model blocks.

The list of suspicious blocks helps the engineer to localize in

the model multiple (and possibly large number of) faults of

possibly different types.

In summary, as our main contributions, we propose (1) a

method for the automated generation of a passing test that is

close to a failing test for (data-flow) Simulink models using

a new search-based approach, and (2) a method for localizing

faults in Simulink models based on a failing test and its

associated close passing test.

We demonstrate our approach on three case studies from dif-

ferent application domains. We instantiate our approach both

with explicit STL specifications and with implicit equivalence

checking, and evaluate it on 240 faulty variants of the case

study models with multiple faults. We compare its perfor-

mance to CPSDebug [10], [12] a state-of-the-art fault local-

ization technique for CPS. The experimental results show that

compared to the baseline, our approach (1) efficiently narrows

down the number of suspicious variables and consequently,

the number of blocks to be inspected to localize the faults,

and (2) correctly identifies the fault locations for multi-fault

models. In particular, with multiple faults in the underlying

models, the baseline exhibits degraded performance in terms

of localization accuracy.

Paper Organization. In Section II, we briefly discuss the

preliminary concepts required in the remainder of the paper.

We present our fault localization approach in Sections III

and IV. In Section V, we provide the empirical evaluation and

summarize the results. Section VI presents a refined review of

related works. We conclude in Section VII.

II. BACKGROUND

In this section, we present some preliminaries, fix our

notations and briefly review the terminology that we will use in

this paper. We provide the necessary background information

on STL and key features of Simulink models.

A. Signal Temporal Logic

Functional properties and safety requirements in CPS are

usually captured by complex timing relations of their hy-

brid (discrete/continuous) behaviors. Signal Temporal Logic

(STL) [9] is a well-established specification language to ex-

press CPS temporal requirements over dense-time and real-

valued behaviors. An STL specification can be evaluated

against an execution trace of a CPS according to a qualitative

or quantitative semantics. The qualitative semantics returns a

Boolean value witnessing whether the system under test (SUT)

satisfies (true) or violates (false) the specification, while the

quantitative semantics [15] provides a real value representing

how robustly a property (formula) is satisfied or violated.

The syntax of an STL formula Φ defined over a set X of

variables is given by the grammar:

Φ := true | f(x1, . . . , xm) > 0 | ¬Φ | Φ1 ∨ Φ2 | Φ1UIΦ2

where {x1, . . . , xm} ⊆ X , f : Xm → R is a function

mapping m variables to a real, and I ⊆ R≥0 is an arbitrary

interval. The operators ¬ and ∨ indicate logical negation and

logical disjunction. UI is the until operator, meaning that at

some time j (j ∈ I), Φ2 becomes true and Φ1 must remain

true until Φ2 becomes true. From the basic set of operators,

we can derive two other temporal operators: eventually (♦I)

and always (�I). We use the temporal operators U , ♦, and �
to denote UI , ♦I , and �I with I = [0,∞).

The semantics of STL is defined using the satisfiability
relation (w, j) |= Φ, implying that the signal w satisfies Φ
at time j. The quantitative robust semantics of STL provides

a robustness degree as the distance between the observed

behavior (a signal w) and the set of behaviors defined by

the specification Φ. Given an STL formula Φ, the robustness
is the measure of satisfaction of w with respect to Φ. It is

defined as a real-valued quantity denoted by ρ : R(w,Φ) s.t.

(1) ρ > 0 ⇒ w |= Φ, and (2) ρ < 0 ⇒ w |= ¬Φ. We refer

the reader to work by Donze & Maler [15] for deeper insights

into the quantitative robust semantics of STL properties.

B. Simulink models

During the model-based design of CPS using the Math-

Works™ Simulink environment, an engineer designs a

Simulink model M as a block diagram representation of the

actual system. Fig. 1 illustrates an example of Simulink model

with its essential elements.

Fig. 1. Example of a Simulink model. Black nodes indicate input ports
while white nodes indicate output ports. Blocks b4, b8, b12 are hierarchical;
remaining blocks are atomic.

A Simulink model M consists of the following elements:

• A set of blocks B: These are the basic building units of

a Simulink model. The input-output (I/O) behavior of a

block represents the cause-effect relationship, characterizing

its functionality.

• A set of ports P: A block receives data via its input ports
and transmits the data via its output ports. Note that a

block may also consist of trigger, action, enable, reset ports,

which we exclude from our analysis.

• A set of lines L: These are connections which indicate data

flow or propagation of signals from one block to the other.

The block which transmits data is the source block while

the one which receives the data is the target block. Each

146

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 22,2023 at 14:11:02 UTC from IEEE Xplore. Restrictions apply.

line l ∈ L is uniquely identified by the output ports of the

source block and the input ports of the target block.

Each of the above three elements has a unique numeric

identifier in the model, known as its handle. The handle is, in

fact, a pointer to the element that can be accessed to modify

and update the model. Typically, a model M acquires inputs

from a set of input blocks or sources (such as Fig. 1’s In1 and

In2 blocks) and yields the output via a set of output blocks or

sinks (such as Fig. 1’s Out1, Out2 and Out3 blocks). M also

contains a set of input-output-internal state variables V and a

set of signals S, defined as the mapping S : L → V .

Further, there are two types of blocks: atomic and hierar-
chical. An atomic block does not encapsulate any other block

within it, while a hierarchical block includes atomic blocks

and other hierarchical blocks. A block is parent of one or

more blocks when it includes them as its own subsystems. In

Fig. 1, the top-level model M has hierarchy level 1. Further,

b1 − b3, b8, b9 − b11 are M’s child at hierarchy level (depth)

2, while b5 − b7 are M’s child at hierarchy level 3.

In addition, Simulink offers several libraries of built-in

blocks facilitating the design and the fast development of CPS.

A user can also create and add custom libraries and blocks with

user-specific functionalities and user-configurable parameters.

After designing the CPS in Simulink, users compile and

simulate the model M against a given test case t, i.e., an input

signal. We define a function Simulate that takes M and t as

inputs, simulates M and returns traces of all input-internal-

output (IIO) signals as the final model simulation output.

We assume that the model applies fixed-length sampling that

represents a large class of useful Simulink models. Hence,

a trace is a sequence of (timestamp, value) pairs, where the

distance between any two consecutive samples corresponds to

a fixed period. We denote all the traces generated for M for

some test case t by out(M, t). Mathematically, out(M, t) =
Simulate(M, t). In general, a trace refers to the sequence

of states of M evolving with discrete time steps (from time

q = 0 to q = qT , where the finite time horizon qT > 0). The

values in a simulation trace are stored in the same order in

which the signal evolves i.e., from q = 0 to q = qT .

III. STL-GUIDED FAULT LOCALIZATION

In this section, we describe how our specification-guided

fault localization approach, namely STL-FL, works. Fig. 2

visually illustrates the two main phases that compose the fault

localization workflow:

1) Testing, which first evaluates the SUT against an initial

test suite to find the failing test cases and then uses a

global optimizer to generate a new passing test case for

each failed test case, guided by the STL specification φ.

The new passing test case is searched to be as similar as

possible to its corresponding failing test;

2) Localizing, which uses the simulation outputs for a pair of

failed and passing test cases to identify the precise location

of the faulty component(s).

A. Testing

The testing phase aims to identify a set of representative

pairs composed of a failing and a passing test case that can be

used for fault localization. Each pair must include two similar

executions whose difference is likely exclusively caused by the

activation of the fault to be localized. In such a way, the point-

to-point comparison of these executions can reveal insights

useful to accurately localize the fault.

The testing phase identifies these pairs by first detecting the

failing tests (i.e., the tests that fail to satisfy the available STL

specification) among the available ones, and then proactively

generating new (passing) test cases that are incrementally

closer to the failing one until determining the best candidate

for fault localization.

We assume that an initial test suite T S is given, and

that it contains at least one test case that results in the

violation of a formalized requirement. The test suite T S can

be manually provided by the tester or created using automated

test generation tools. The automated test generation methods

can rely on coverage-based methods [16] (taking into account

input, output and/or structural coverage). They can also target

efficient generation of failing test cases, such as falsification

testing methods [17].

Algorithm 1 outlines the procedure for selecting the test

pairs. Given an initial Test Suite T S , the available test cases

are then evaluated against a faulty model. For each test case

t ∈ T S , we simulate the faulty model to obtain the results

of the model simulation (Line 4). We then evaluate the output

traces against the STL specification φ by a Monitor to assign

a pass or fail verdict to the test case (Lines 5-7). The Monitor
takes care of ‘Trace evaluation’ (see Fig. 2) and produces a

robustness measure of the trace with respect to φ (Line 5). The

aim is to identify all the test cases that lead to the violation of

the property φ: the algorithm groups all the failing test cases

that lead to observable failures in the model (Line 7).

For each failing test case, the algorithm finds a close

passing test case that could be used to support localization.

In particular, for each failing test tf ∈ T SNew, the algorithm

searches for a passing test case tp which is close (or more

similar) to the failing test case tf (Line 11). Our SEARCHPT()

subroutine is shown in Algorithm 2. The search is cast as an

optimization problem of finding a passing test tp which is

close to the failing test tf s.t. the distance between tp and tf
is minimum. This problem is formulated as:

Close passing test case search problem

INPUT: a faulty Simulink model MF with a failing

test case tf and a formula φ s.t. out(MF , tf) �|= φ.

PROBLEM: Find tp s.t. out(MF , tp) |= φ, and

D(tf , tp) is minimum.

In this work, we employ the recently developed BCA [18]

optimizer for the search task. The key to the criterion for

selection of the most similar passing test is the definition of

the distance D(tf , tp) between the failing and passing test

147

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 22,2023 at 14:11:02 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. An overview of STL-guided fault localization procedure (STL-FL).

Algorithm 1: Test Suite Selection for localizing faults.

Input : T S : An initial test suite.

MF : A faulty model.

φ : An STL specification.

Output: T SFL : Set of failing-passing test case pairs.

1 T SNew = []
2 T SFL = []
3 for each item t ∈ T S do
4 out(MF , t) = Simulate(MF , t)
5 R(out(MF , t), φ) = Monitor(out(MF , t), φ)
6 if R(out(MF , t), φ) < 0 then
7 T SNew = T SNew ∪ {t}
8 end if
9 end for

10 for each item tf ∈ T SNew do
11 tp ← SEARCHPT(tf ,MF , φ)
12 T SFL = T SFL ∪ {(tf , tp)}
13 end for
14 return T SFL

cases for the faulty model MF . We compute the distance

D(tf , tp) as the Euclidean distance (aka Euclidean norm or

L2 norm) between the signals that correspond to the test cases

tf and tp. Euclidean distance is one of the most prevalent

distance metrics on real vector space that offers the advantage

of measuring similarities by computing the regular distance

between data points. Since CPS models frequently deal with

continuous real-valued variables, the Euclidean distance is a

good choice for our analysis. Formally, the Euclidean distance

D between two signals y and z is expressed as:

D(y, z) = ||y − z||2 =

√√√√ g∑
i=1

(yi − zi)2

where y and z are finite-length signals with g samples s.t.

y = (y1, · · · , yg) and z = (z1, · · · , zg). In general, the number

of samples of a signal is a property of the simulation that

depends on the step-size aka sample time of the model. Since

the simulations for test cases tf and tp are on the same faulty

model, the timestamps (and the signal length) are guaranteed

to match among the two executions. The final output of the

testing phase is T SFL, a set of pairs of failing test case/close

passing test case for the faulty model MF (Line 14).

We now describe the SEARCHPT() subroutine outlined in

Algorithm 2 that presents BCA adapted to solve the formulated

‘Close passing test case search’ problem. Given the availability

of a plethora of optimization algorithms, we chose BCA over

other optimizers because of its (1) intuitive interpretation of

parameters and no tuning effort, (2) straightforward implemen-

tation, and (3) high computational efficiency. We also tested

the performance of BCA against some other state-of-the-art

148

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 22,2023 at 14:11:02 UTC from IEEE Xplore. Restrictions apply.

optimizers (including Particle Swarm Optimizer, Harmony

Search, Water Cycle Algorithm and Imperialist Competitive

Algorithm) for our optimization problem and observed that

BCA outperforms others in terms of convergence and speed.

Below is the outline of BCA which is a population-based

optimizer.

Definition 1. Given an objective function f(x) with n
variables, BCA performs the following steps to search for the

global best solution of f(x).

1) It creates a randomly (uniformly distributed) initial popu-

lation of candidates over the search space.

2) It computes fitness of each candidate and finds the candi-

date fittest on f(x).
3) It updates position of each candidate based on the updating

criteria and optimizer parameters. It recomputes fitness

values and updates the global best if better solution is

found. It repeats until termination criteria is met.

In Algorithm 2, we start by creating an initial population

of candidates (Line 2) and then computing the fitness of

each candidate i.e. the test case (Line 3). The individuals in

the initial population are obtained by generating test inputs

that uniformly sample the (numerical) input domain of the

SUT. Note that genPop (Line 2) mimics the first step of

BCA outlined in Definition 1, and ensures that the initial

population is a non-empty set of test candidates of a user-

defined population size. We do not consider for the moment

other input domains since they seldom occur in CPS model,

but they could be also addressed as long as a distance metric

is provided for their domain. For instance, a Boolean distance

function could be used with enumerated signals.

Here, for each candidate in the population, the fitness indi-

cates the quantitative robustness measure of the execution trace

of the faulty model MF with respect to the STL specification

φ. Line 4 finds the best test case among all test cases in the

population which (1) is closest to the failing test case tf and

(2) satisfies φ. Line 5 computes the initial Euclidean distance

between tf and the best solution tp, which is later used by the

algorithm as the selection criterion. An important observation

is that the algorithm updates the test cases (Line 8) and accepts

the new solution as the best one if the selection criteria is met

i.e., a closer passing test is found (Lines 12-15). On the guard

for the while loop (Line 6), the subroutine terminates if one

of the following conditions holds: (1) the maximum number

of iterations is reached, (2) there is no improvement after a

certain number of iterations, and (3) we reach the timeout.

B. Localizing faults

Algorithm 3 outlines our approach for localizing faults by

analyzing the anomalous events in the SUT guided by a STL

specification. The inputs include a faulty model and a Test

Suite T SFL with a set of pairs of failing and passing test

cases. The localization algorithm follows the intuition that the

signals that deviate first in time between the passing and the

failing test executions are likely to be an artifact of a fault

present in the block that originated their values. In practice,

it identifies the model variables that misbehave first in time

Algorithm 2: The SEARCHPT() subroutine.

Input : MF : A faulty model.

φ : An STL specification.

tf : A failing test case.

Output: tp : Close passing test case.

1 Initialize optimizer parameters

2 InitPop ← genPop() ; // Initial population
3 FitPop ← Cost(InitPop, φ) ; // fitness
4 tp ← Best(FitPop) ; // best solution
5 Dmax = D(tf , tp) ; // Initial Distance
6 while TimeOut() do
7 for each candidate u ∈ InitPop do
8 unew ← Update(u)
9 end for

10 FitPop ← Cost(InitPop, φ)
11 D ← D(tf , Best(FitPop))
12 if D < Dmax then
13 Dmax ← D ; // update the distance
14 Update tp ; // new best solution
15 end if
16 end while
17 return tp

with significantly high differences between the failing test case

and the close passing test case, maps these variables to the

corresponding blocks and generates a list of suspicious blocks

to assist model debugging and repair.

Algorithm 3: Fault Localization by analyzing anoma-

lous events with STL.
Input : MF - A faulty model.

T SFL - Set of failing-passing test case pairs.

Output: SOIbest - Signals of interest.

blockListbest - List of suspicious blocks.

1 for each pair (tf , tp) ∈ T SFL do
2 out(MF , tf) = Simulate(MF , tf)
3 out(MF , tp) = Simulate(MF , tp)
4 d = |out(MF , tf)− out(MF , tp)|
5 dm, qviol ← EVAL(d)
6 dnew = Normalize(dm)
7 SOI ← GetSignalInfo(dnew)
8 blockList ← Map(SOI)
9 end for

10 SOIbest, blockListbest = Π(T SFL,SOI,blockList)
11 return SOIbest, blockListbest

Engineers start with a test suite T SFL, a set of failing-

passing test case pairs. Lines 2-3 perform the job of ‘Faulty

Model Simulation’ block shown in Fig. 2. In particular, Line

2 simulates the faulty model with the failing test case tf , so as

to obtain the corresponding simulation traces of each model

variable. Line 3 simulates the faulty model with the passing

test case tp to acquire the simulation traces.

Lines 4-7 perform the ‘Trace Analysis’ (as shown in Fig. 2).

149

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 22,2023 at 14:11:02 UTC from IEEE Xplore. Restrictions apply.

In particular, Line 4 computes the deviations between the

simulation traces for the failing and passing tests. We recall

that we assume that every trace is periodically sampled, thus

enabling pointwise comparison between two traces. Usually,

out(MF , t) is an array of size Y × Z where Y denotes the

total number of samples of the recorded signals and Z is the

total number of signals recorded. The deviation d (an array of

size Y × Z) represents the absolute values of the difference

among Z recorded signals for tf and tp. Note that ‘minus’

sign in Line 4 indicates element-by-element subtraction of the

values of each recorded signal at every timestamp for test case

tp from that of test case tf .

In Line 5, the function EVAL takes the computed deviation d
as input and finds the timestamp qviol at which first misbehav-

ior is observed. It also internally sorts all the deviation values

corresponding to qviol in descending order and returns dm
which is an array of size 1×Z. More precisely, dm indicates

an ordered sequence of deviation values of all recorded signals

observed at the first timestamp of violation qviol.
The function Normalize returns the vector-wise z-score

of dm with center 0 and standard deviation 1 (Line 6).

Consequently, dnew is an array of size 1×Z with normalized

deviation values (observed first in time) for each recorded

signal. We used data normalization to adjust the deviation

values to a notionally common scale and ensure that all the

measured deviations lie numerically in the same interval.

In Line 7, the function GetSignalInfo finds the logging

information of all those signals which misbehave first in time

with normalized deviations exceeding 0. This constraint on the

normalized deviation values allows to focus only on a small

set of signals with significantly high deviations. By that, we

localize all the internal signals in the model responsible for

the faulty behavior. In Line 8, the function Map (equivalent

to ‘Mapping’ in Fig. 2) maps the Signals of interest (SOI) to

their corresponding model blocks, so as to mark the suspicious

blocks. SOI are the model variables (internal signals) that

deviate first in time and with significantly high deviations

between tf and tp for the faulty model. In essence, SOI
indicate those model variables that can best explain the fault.

Finally, the failing-passing test case pair which yields the

minimum number of SOI is chosen as the best pair. This

task is performed by the function Π (Line 10) (‘Selector’ in

Fig. 2). Note that SOI and blockList respectively represent a

set of SOI and blockList associated with each pair (tf , tp) ∈
T SFL. Corresponding to the best pair, the variables SOIbest
and blockListbest are shown as the final output to assist

identifying the “culprit” signals and components that lead to

failure, localizing the faulty units (Line 11). The violation time

(qviol) can also be output to assist the understanding of the

failure context and the timing modality.

Example 1. We now demonstrate STL-FL with an ex-

ample. We consider the Simulink model of an automatic

transmission controller system described in detail in Section V.

We assume a faulty variant with a Bias/Offset fault (with

fault value set to 10 units) injected in the signal propagating

from the EngineTorque block to Sum block within the Engine

TABLE I
DETAILS OF FAILING-PASSING TEST CASE PAIR FOR EXAMPLE 1.

Test case
Throttle parameters

Robustness R D(tf , tp)
ST IV FV

tf 1 10 68 −1.8022
80.8332

tp 1 10 65 0.8242

subsystem of the model.

With constant brake signal (set to zero), we find a failing test

case tf for the model w.r.t. the corresponding STL property

φ mentioned in Table III, where the test case represents the

throttle input signal. We assume that the throttle is a step signal

defined using three parameters: Step Time (ST), Initial Value
(IV), and Final Value (FV). Using our proposed ‘Close passing

test case search problem’ delineated in Algorithm 2, we found

a passing test case tp (see Table I).

Using Algorithm 3, we identified the SOI to localize the

faulty component. We observe that only one internal signal

misbehaves first in time with the normalized deviations greater

than zero, the details of which are provided in Table II.

The identified SOI originates within the Engine subsystem

wherein we injected the fault, therefore indicating correct

localization of the faulty component.

IV. FAULT LOCALIZATION WITH EQUIVALENCE CHECKING

Many CPS do not have explicit specifications. During

the various development phases, the design is then typically

compared to a reference model that is assumed or proved

to be correct. Equivalence testing (aka back-to-back testing,

differential testing or differential fuzzing in software engi-

neering) is often used to test for equivalence between the

reference model M and its updated or refined version M′.
The equivalence is determined by comparing the output signals

generated by simulating both against a unique (equivalence)

test case. More precisely, the logged output signals are used

as the equivalence criteria between M and M′. It corresponds

to an implicit specification formally relating the two models.

The non-equivalence of two models can be expressed as:

m∧
i=1

In1.i = In2.i

︸ ︷︷ ︸
all inputs equal

∧
e∨

o=1

out1.o �= out2.o

︸ ︷︷ ︸
an output not equal

(1)

Here, In represents the set of model inputs of length m and

out indicates the set of traces of all IIO signals of the models

with e outputs. (Referring to Fig. 1, m = 2 and e = 3). Any

assignment that satisfies Formula (1) indicates two distinct

executions of M and M′ that produce a different output signal

for the same input sequence.

Our approach also supports equivalence checking. Similar

to STL-FL, the workflow of our equivalence-driven approach,

namely E-FL, starts with testing, explained in the previous

section. In this case, a failing test corresponds to a witness of

non-equivalence between the two models. For each failing test,

we aim to search the close test case that yields the most similar

150

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 22,2023 at 14:11:02 UTC from IEEE Xplore. Restrictions apply.

TABLE II
SOI FOR FAULT LOCALIZATION AND THE CORRESPONDING BLOCKS.

Faulty variant Signal Index Signal Name Parent Block qviol(s)

Offset fault in Engine s2 EngineTorque:1 → Offset1:1 Engine 1.00

Note: qviol denotes the first time that the signal exhibits anomalous behavior w.r.t. the test case pair (tf , tp).

output as the failing test case. We use a distance metric dist
to evaluate the similarity between two outputs. We treat the

search task as an optimization problem formulated as: “Given

a faulty model MF with a failing test case tf , find tc (close

to tf) s.t. dist(c1, c2) < θ where c1 = out.o(MF , tf) and

c2 = out.o(MF , tc)”. Here, dist indicates the Chebyshev

distance (aka supremum norm, or L∞ norm or uniform norm).

Chebyshev distance is a metric on finite-dimensional vector

spaces which measures the degree of similarity based on the

most significant dimension. We use Chebyshev distance metric

induced by the maximum (or supremum) norm that closely

resembles the semantics of STL. Formally, the Chebyshev

distance between two finite-length signals y and z (with g
samples) is expressed as:

dist(y, z) = ||y − z||∞ = max
g

(|yg − zg|)

In order to speed up the convergence of the search task

(using BCA optimizer), we impose a constraint on the distance

between the two outputs as dist(c1, c2) < θ where θ is taken

as 0.05. The localization procedure is similar to that used

in STL-FL (see Lines 1-9 in Algorithm 3), except that the

deviations are analyzed for the simulation outputs of the failing

test case tf and the newly discovered test case tc.

V. EMPIRICAL EVALUATION

In this section, we describe our research questions,

experimental setup, evaluation metrics, and experimental

results. We seek to answer the following research questions:

RQ1. [Fault Localization Ability] How well does our
approach narrow down the number of signals and blocks to
be inspected to localize the faults? We evaluate the reduction

in the number of suspicious model variables and number of

blocks to be inspected to localize the faults. Specifically, we

investigate the fault localization ability of our approach and

compare our results with those obtained by the baseline tech-

nique, CPSDebug [10], which is a state-of-the-art automated

fault localization approach for CPS models.
RQ2. [Robustness evaluation] Is our approach adequately

robust when the number of faults in the SUT is large, poten-
tially of different types? In order to analyze the robustness of

our approach with increasing number of faults in the model,

we evaluate its fault localization ability against multi-fault
models and compare the variations with the baseline.

RQ3. [Computational Efficiency] Is our approach com-
putationally efficient compared to the baseline technique? To

analyze the computational overhead, we report the computa-

tion time of our approach and compare the results with that

obtained by the baseline technique.

To empirically evaluate our approach and answer the re-

search questions, we conducted systematic experiments on

Simulink models of systems across safety-critical domains.

For our fault localization approach described in Section III,

we developed a prototype implementation. The procedures

for test generation, model simulation and model-based fault

localization are implemented in MATLAB. We used the

RTAMT tool [19] for offline evaluation of STL properties,

and implemented our fault localization procedure (presented

in Section III) on top of it.

A. CPSDebug

We now provide a brief description of our baseline tech-

nique: CPSDebug [10], a state-of-the-art diagnosis solution

for Simulink models that localizes bugs in CPS designs

and explains the root cause of failures. The workflow of

CPSDebug consists of three essential phases: (1) Testing, (2)

Specification Mining, and (3) Explaining.

In the testing phase, CPSDebug simulates the CPS

Simulink model under analysis against an initial test suite and

partitions the test cases into passing and failing ones based on

their evaluation against formal STL requirements.

After that, in the specification mining phase, CPSDebug
exploits the passing test traces for property mining. The goal

is to infer a set of properties that capture the expected behavior

of the model. CPSDebug uses (1) Daikon [20], a template-

based property inference tool used to infer properties that are

likely to hold for the input variables, and (2) Timed k-Tail

(TkT) [21], an automaton learning engine that can generate

timed automata from timed traces.

Finally, in the explaining phase, CPSDebug exploits the

mined properties to analyze failed traces and generate failure

explanations. The explaining phase consists of two steps:

(1) Monitoring: CPSDebug analyzes fail traces and returns

the signals violating the properties and the violation time

intervals; (2) Clustering and Mapping: CPSDebug clusters

the fail-annotated signals w.r.t. their violation times and maps

them to their corresponding model blocks. CPSDebug uses

the violated signals with their corresponding origin blocks to

produce, as the final output, a sequence of system snapshots

for every cluster of property violations: this way it captures

the fault origin and failure propagation in space and time.

B. Experimental Setup

We ran the experiments on a MacBook Pro with Apple

M1 chip, 16 GB RAM, macOS Monterey with MATLAB™

R2018b. This section describes the subjects that we use for

experiments and evaluation. We also describe fault seeding,

test suites and test oracles used in our experiments.

151

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 22,2023 at 14:11:02 UTC from IEEE Xplore. Restrictions apply.

1) Case studies: In our experiments, we use three Simulink

models from the automotive and avionic domains. Table III

provides the size of each model, the STL specification used

in the experiments, and the simulation time qT . The STL

specifications in Table III are taken from [5], [10], [22].
Automatic Transmission Controller System is a benchmark

from automotive domain [22]. The model has two inputs,

the throttle ut and the brake ub, that govern the two system

outputs: the vehicle speed v (mph) and the engine speed ω
(RPM). The inputs lie in the range [0, 100] for all time instants.

One of the safety requirements of this system is that the vehicle

speed v and engine speed ω must not exceed their respective

thresholds v̄ and ω̄. We chose these parameters as: v̄ = 120
mph and ω̄ = 4500 RPM.
Aircraft Elevator Control System is a model from the

avionics domain which has a redundant actuator control mod-

ule [23]. The model has two output variables (the positions

of left and right actuators) guided by the input variable (Pilot

Command). A relevant property is that the desired position of

the aircraft must be attained within a preset time. Formally,

whenever Pilot Command cmd exceeds a threshold m, the

measured actuator position pos must become steady (become

at most n units away from the cmd) within T + a time units.

This is expressed by the STL in Table III where m = 0.09,

T = 2, a = 1 and n = 0.02.
Abstract Fuel Control System is a well-known Powertrain

Control Verification Benchmark [24] from the automotive

domain modeling the air-fuel controller for an engine. The user

inputs throttle command and engine speed to govern both the

fuel rate and the air-to-fuel (AF) ratio. The control objective is

to maintain the AF ratio at the set-point Ref (i.e., the ideal
stoichiometric ratio) via closed-loop adjustments of relevant

model variables. The STL specification for this model captures

constraints on the AF ratio. The values of the parameters are

Ref = 14.7, tol = 0.01, Tstart = 10, and Tstop = 40.
For our experiments, we set the fundamental sample time

of the models {ATCS, AECS, AFCS} to {0.04, 0.01, 0.005}
respectively. All the three models are publicly available in the

Simulink/Stateflow online documentation of MathWorks [25]–

[27]. It is worth mentioning that these models are representa-

tive of industrial Simulink models in terms of size, behavioral

dynamics and complexity.
2) Fault Seeding: We use the FIM prototype tool [28]

to systematically inject faults into a model. We selected the

faults to be injected based on the ones typically used in the

literature [29]–[32]. In particular, we considered the following

categories:

• Sensor faults: Stuck-at, Noise, Bias/Offset.

• Hardware faults: Bit-flip (single and multiple).

• Network faults: Package drop, Time delay.

• Block mutations: Wrong relational operator, wrong logi-

cal operator, wrong arithmetic operator.

For each of the above-mentioned faults, FIM creates cus-

tomized fault blocks with flags to control their activation.

In particular, FIM seeds faults in a model by (1) inserting

fault blocks, and by (2) replacing blocks with fault blocks,

exploiting a custom library of faults and mutations. In order

to attain heterogeneity, we seeded faults of varied types in

different parts (target locations) of the SUTs, particularly at

distinct hierarchical depths. Table IV shows the number of

seeded faults (and the group to which they belong) for each

subject. We seeded a total of 15, 45 and 20 faults in ATCS,

AECS and AFCS models, respectively.

Prior to testing the fault model, we instrumented it so as

to log all the internal signals. We assigned a unique name

to each signal and enabled data logging by the simulation

engine. Using the activation flag of the seeded fault block

injected by FIM, we activated and deactivated the seeded faults

to create different faulty variants. A faulty variant corresponds

to the instrumented faulty model with faults of interest (FOI)

activated. FOI could be one or more depending on the user

and the task at hand.

To answer RQ2, we created different faulty variants of our

subjects, each faulty variant with a different number of active

fault blocks. More precisely, for each subject, we created three

sets of faulty variants s.t. the number of active fault blocks is

1, 2 and 3 in the first, second, and third set, respectively. For

ATCS, each set has 15 faulty variants. For AECS, each set

has 45 faulty variants, and for AFCS, each set has 20 faulty

variants. Therefore, we created {45, 135, 60} faulty variants of

{ATCS, AECS, AFCS}, respectively, i.e., 240 faulty variants

in total. For fair evaluation of our approach, we ensured that

the activated fault blocks are of different types and located at

different parts of the models.

3) Setup for Equivalence Testing: In order to evaluate our

approach in absence of STL specifications, we assume that the

original ATCS, AECS and AFCS are reference models, and

that their faulty variants are models-under-test. We then use

the non-equivalence witness trace and apply E-FL to localize

its cause, i.e., the location(s) of the injected fault(s).

4) Test Suite and Test Oracle: We use Adaptive Random

Testing (ART) [16] to generate the initial test suite (T S). ART

is a baseline method that uniformly samples test cases within

valid input ranges. For each case study, we generate an initial

T S of 100 test cases.

In the case of STL-FL, we used the monitor generated

from the STL specification by the RTAMT library as the test

oracle. In the case of E-FL, we implemented a procedure that

computes the distance between the reference and the tested

model behaviors as our test oracle.

5) Evaluation metrics: We evaluated the results obtained

using STL-FL and E-FL on the following aspects: Scope

Reduction, Fault Localization Cost, Fault Localization Accu-

racy and Computation Time. Scope Reduction evaluates our

approach based on the degree of reduction in the overall model

variables to a relatively small number of suspicious variables

that can best localize the faults. The metric Fault Localization
Cost indicates the absolute number of blocks that require the

attention of the engineers to localize the fault and fix it. Fault
Localization Accuracy indicates the efficiency of the approach

in terms of fault detection. At last, we analyze the computation

time of our proposed approach.

152

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 22,2023 at 14:11:02 UTC from IEEE Xplore. Restrictions apply.

TABLE III
KEY INFORMATION ABOUT THE SIMULINK MODELS OF OUR SUBJECTS.

Model Name #Blocks #Lines φ qT

Automatic Transmission Controller System (ATCS) 65 92 �((v ≤ v̄) ∧ (ω ≤ ω̄)) 30
Aircraft Elevator Control System (AECS) 825 577 �(↑ (cmd ≥ m)→ ♦[0,T]�[0,a](|cmd− pos| ≤ n)) 10

Abstract Fuel Control System (AFCS) 253 283 �[Tstart,Tstop]¬((AF > Ref − tol) ∨ (AF < −Ref + tol)) 40

TABLE IV
INFORMATION OF SEEDED FAULTS IN EACH CASE STUDY.

Type ATCS AECS AFCS

Sensor faults 3 20 9
Hardware faults - 17 6
Network faults 9 - 4
Block mutations 3 8 1

Total 15 45 20

C. Results

We report the experimental results obtained w.r.t. our eval-

uation criteria. As a running example, we consider the model

of ATCS. For the sake of illustration, we evaluate STL-FL
and E-FL against the following test settings:

• Test 1: [One-fault] ‘Stuck-at 0’ fault within the Engine
subsytem.

• Test 2: [Two-fault] As in Test 1 and ‘Time Delay’ fault

within the Transmission/TransmissionRatio subsystem.

• Test 3: [Three-fault] As in Test 2 and ‘Sum to Product

mutation’ within the Engine subsystem.

For each of the aforementioned test setting, we use fault

localization procedures STL-FL and E-FL to identify the

SOI and their corresponding blocks in the SUT. We then

analyze the degree of reduction achieved for the fault iden-

tification as shown in Table V. Column Test points out

to the type of test setting. Column Approach specifies the

fault localization technique. Column #SOI (Reduction in

#V ars) represents the number of Signals of Interest; the

degree of reduction achieved in the number of variables for

the analyzed fault is indicated in parenthesis. Note that SOI
indicates the suspicious variables that misbehave first in time

with considerable anomalies. Column FL Cost (Reduction

in #Blocks) denotes the Fault localization cost (abbreviated

as FL Cost) and the corresponding degree of reduction

achieved is reported between parentheses. FL Cost is based

on the absolute number of blocks that need to be inspected

to localize the fault(s) in the faulty model. Column Fault(s)
detected specifies whether the faulty component(s) is identified

correctly.

From Table V, we can observe that our approach can

find out the root cause of the fault by correctly identifying

the faulty component for all the three test settings. In Test

1, STL-FL yields only one SOI , signifying a considerably

high reduction of 98.5% in the number of model variables.

It is noteworthy that the reduction in number of variables

and blocks is computed using the respective values for the

instrumented fault model. After fault injection and model

instrumentation, the total number of blocks in ATCS is 77

and the total number of model variables is 67. Referring to

Table V, E-FL identifies two SOI in Test 1 with a reduction

of 97%. It is worth mentioning that emphasis on a small

subset of the suspicious signals allows significant reduction in

the number of variables. This permits the engineers to focus

on a relatively lower number of signals, thereby making the

debugging process easier. Further, we observe that the fault

localization cost is low for all the three tests. Using STL-FL,

we achieve 88.3%, 68.8% and 68.8% reduction in the number

of blocks to be inspected for Tests 1, 2 and 3 respectively.

Compared to CPSDebug, STL-FL and E-FL not only

reduce the scope (for both model variables and blocks),

but also provide correct identification of faulty components.

We observe that despite higher reductions in the number of

suspicious signals for more number of faults (as in Test 3),

CPSDebug is unable to correctly identify the fault location.

We summarize the degree of reduction in model variables

using STL-FL and E-FL in terms of statistical evaluation

metrics in Table VI. The values are obtained for all three

sets of faulty variants of each subject. We observe that both

STL-FL and E-FL offer considerably high reductions in

the number of suspicious model variables. On an average,

STL-FL and E-FL respectively provide reductions of nearly

92% and 90% for multi-fault (one- to three-fault) models.

Fault Localization Cost. To answer RQ1 and RQ2, we

compute the FL Cost for all the 240 faulty models using

STL-FL, E-FL and the baseline fault localization technique

CPSDebug. Fig. 3 shows the distributions of the FL Cost
values for all three benchmarks for one-fault, two-fault and

three-fault models. Each box-plot in Fig. 3 consists of 80

points (15 for ATCS, 45 for AECS and 20 for AFCS) cor-

responding to 80 faulty variants in each of the one-, two- and

three-fault models: the horizontal axis shows the localization

approach while the vertical axis indicates the FL Cost.

For statistical evaluation of the fault localization ability of

our approaches against CPSDebug, we performed the well-

known and conventional non-parametric Wilcoxon rank-sum

statistical test [33], [34] with 5% degree of significance. The

statistical test results reveal that for multi-fault models (one- to

three-faults activated), our approaches STL-FL and E-FL are

always significantly better than CPSDebug (i.e., the obtained

p-values < 0.05).

In summary, our proposed approach exhibits consider-

able improvement in the fault localization cost compared to

CPSDebug. On average, STL-FL reduces the FL Cost by

153

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 22,2023 at 14:11:02 UTC from IEEE Xplore. Restrictions apply.

TABLE V
SCOPE REDUCTION AND FAULT DETECTION IN ATCS.

Test Approach #SOI (Reduction in #V ars) FL Cost (Reduction in #Blocks) Fault(s) detected

1
STL-FL 1 (98.5%) 9 (88.3%) �
E-FL 2 (97.0%) 9 (88.3%) �
CPSDebug 8 (88.1%) 25 (67.5%) �

2
STL-FL 5 (92.5%) 24 (68.8%) �
E-FL 7 (89.5%) 24 (68.8%) �
CPSDebug 8 (88.1%) 25 (67.5%) × (Only one faulty component identified)

3
STL-FL 12 (82.1%) 24 (68.8%) �
E-FL 12 (82.1%) 24 (68.8%) �
CPSDebug 9 (86.5%) 34 (55.8%) × (Only one faulty component identified)

STL-FL E-FL CPSDebug
Approaches

10

20

30

40

50

60

70

80

F
au

lt
 L

o
ca

liz
at

io
n

 C
o

st

(a) One-fault models

STL-FL E-FL CPSDebug
Approaches

10

20

30

40

50

60

70

80

F
au

lt
 L

o
ca

liz
at

io
n

 C
o

st

(b) Two-fault models

STL-FL E-FL CPSDebug
Approaches

20

40

60

80

100

120

F
au

lt
 L

o
ca

liz
at

io
n

 C
o

st

(c) Three-fault models

Fig. 3. Distributions of FL Cost for one-fault to three-fault models.

TABLE VI
EMPIRICAL EVALUATION OF OUR APPROACH.

Model Reduction in model variables
STL-FL E-FL

Mean SD Mean SD

ATCS
One-fault 0.9463 0.0263 0.9328 0.0120
Two-fault 0.8975 0.0158 0.8892 0.0118
Three-fault 0.8199 0.0143 0.8003 0.0092

AECS
One-fault 0.9742 0.0019 0.9577 0.0132
Two-fault 0.9526 0.0142 0.9217 0.0113
Three-fault 0.9021 0.0155 0.8835 0.0129

AFCS
One-fault 0.9704 0.0037 0.9602 0.0167
Two-fault 0.9364 0.0111 0.9153 0.0149
Three-fault 0.8926 0.0237 0.8748 0.0265

*SD: Standard Deviation

approximately 43% while E-FL reduces the FL Cost by

nearly 35% compared to CPSDebug.

Fault Localization accuracy. We analyze the overall fault

localization accuracy of the proposed approach and compare

the results with the baseline technique. Table VII summarizes

the fault localization accuracy indicated as ‘total number of

fault models for which the faults were correctly identified/the

total number of fault models’. The value in parenthesis repre-

sents the % fault localization accuracy. We observe that both

STL-FL and E-FL improve the fault localization accuracy

over CPSDebug, and are more robust when the number of

active faults in the underlying models increases. Specifically,

TABLE VII
FAULT LOCALIZATION ACCURACY.

Approach ATCS AECS AFCS

STL-FL 45/45 (100%) 135/135 (100%) 60/60 (100%)
E-FL 45/45 (100%) 135/135 (100%) 60/60 (100%)
CPSDebug 22/45 (48.88%) 53/135 (39.25%) 25/60 (41.66%)

CPSDebug works well with one-fault models, but fails to

localize faults in multi-fault models. Further, referring to Ta-

ble V, it can be observed that the performance of CPSDebug
degrades with increasing number of active faults.

Computational cost. Table VIII provides the computation

time of our procedure applied to the three subjects. Note that

the costs for Testing and Localizing denote the average time

taken by the approach to localize a bug in a model. The

values are based on the analysis of different fault variants

(one-to-three fault models) of our subjects for a failing-passing

test pair. We observe that Testing is more dominant than

Localizing. This is mainly due to the search task (optimization)

for finding the most similar test case. Note that specification

monitoring (by calling external tool) involved in STL-FL
leads to slightly higher computation cost over E-FL.

Referring to Table VIII, both STL-FL and E-FL have an

acceptable global overhead of {23.7, 27.6, 26.7}s and {23.2,

26.9, 25.1}s respectively, to locate a bug in {ATCS, AECS,

AFCS} models. The higher computation cost of CPSDebug
is mainly due to specification mining using Daikon and

154

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 22,2023 at 14:11:02 UTC from IEEE Xplore. Restrictions apply.

TABLE VIII
COMPUTATIONAL COST (IN SECONDS).

Approach ATCS AECS AFCS

STL-FL
Testing 21.4 24.5 23.9
Localizing 2.3 3.1 2.8

E-FL
Testing 20.9 23.8 22.3
Localizing 2.3 3.1 2.8

CPSDebug 294.1 3394.6 2174.8

TkT. Our approach demonstrated its efficiency, completing

the diagnosis in about 25 seconds on average, in contrast to

CPSDebug which requires an order of magnitude more time.

In summary, the answer to RQ3 is that our approach is more

computationally efficient than the baseline and offers a low-

cost solution for debugging CPS Simulink models.

VI. RELATED WORK

In the recent past, CPS researchers and practitioners have

adopted two key methodologies for evaluating the safety

and reliability aspects of CPS: set-based reachability anal-
ysis [35]–[37] and rigorous testing such as differential test-

ing [38] and falsification analysis [5], [6]. Our approaches

utilize the characteristics of both the differential testing (in

E-FL) and falsification analysis (in STL-FL). From the

perspective of software engineering, fault localization has

remained to offer continually increasing challenges [39], [40].

Although the presence of faults can be discovered by analyzing

the falsifying traces, counterexamples or related manifestations

of the fault, yet the identification of the precise fault location in

the SUT remains a tedious task. Recent works use traditional

and iterative statistical debugging techniques [3], [16], [41] for

generating a ranked list of blocks that need the further attention

of an engineer to identify fault locations. Our approach E-FL,

unlike statistical techniques, uses (1) differential testing to

identify the failing test cases and (2) optimization to find the

new test candidates to localize faults.

Similar to our approach STL-FL that is guided by a STL

specification for detecting bugs, the work in [42] analyzes the

neighborhoods of falsifying traces of a CPS for a formalized

property. The goal is to identify and analyze the segments of

inputs that cause the violation of the specification as a whole.

This approach may be possibly used for systematic refinement

of the test candidates to assist in debugging. Another work on

spectrum-based fault localization combines trace diagnostics

with model slicing technique [4]. Since there is no empirical

evaluation of this SBFL technique, the expected debugging

effort is unclear. Further, the work is carried out under the

assumption that the faults are injected in specific components

of the SUT. This drastically reduces the problem space and

makes it difficult to reckon the potency of the SBFL technique.

CPSDebug [10] is a recently developed tool which em-

ploys a gray-box testing approach for localizing bugs and

explaining failures in CPS designs. The underlying concepts of

CPSDebug, that combines testing, specification mining, and

failure analysis for exposing faults, are discussed extensively

in [12]. In our empirical evaluation, our approach outper-

formed CPSDebug. The work by Singh and Saha [11] uses a

matrix decomposition-based bug localization procedure based

on the falsification of STL properties. The approach offers a

set of suspected signals to the engineer as the alleged cause

of the falsification of the STL specification.

In contrast to the state-of-the-art, we consider a wider range

of fault types and mutation operators for Simulink models.

Moreover, we do not make any assumptions on the location

of the seeded fault/mutation in the SUT, except that we

ignore faults in Stateflow charts. Contrary to the existing fault

localization techniques, our approach unifies (1) equivalence

testing with search-based testing, and (2) specification moni-

toring with search-based testing, to identify the root cause of

anomalous events that eventually led to the observed failures.

The result is a tailor-made list of suspicious model variables

and blocks, ideally appropriate for engineers to assist in their

debugging tasks.

VII. CONCLUSION

We presented a novel procedure to localize faults in

Simulink models of safety-critical CPS. The proposed ap-

proach, driven by a STL property, uses failing and automati-

cally generated passing executions similar to the failing ones

to identify the anomalous signals, and consequently the likely

faulty blocks. We instantiated our approach with the notion of

equivalence testing where the fault localization is driven by

implicit specifications.

We demonstrated the effectiveness of our approach with

three use cases. Experimental results show that our approach

is able to effectively localize multiple faults with admissible

fault localization cost, outperforming CPSDebug.

As part of future work, we envision the extension of our

approach by integrating alternative test generation strategies

and analyzing their effect on the overall fault localization

accuracy. We further aim to explore the interplay between

different failing executions for a faulty system that violates

a specification, and build refined strategies to pick the most

promising test cases from a test suite.

ACKNOWLEDGMENT

This work has been supported by the Doctoral College

Resilient Embedded Systems, which is run jointly by the TU

Wien’s Faculty of Informatics and the UAS Technikum Wien.

REFERENCES

[1] Mathworks. (2022) Simulink — simulation and model-based design.
[Online]. Available: https://in.mathworks.com/products/simulink.html

[2] B. Liu, S. Nejati, L. C. Briand et al., “Improving fault localization
for simulink models using search-based testing and prediction models,”
in 2017 IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 2017, pp. 359–370.

[3] B. Liu, S. Nejati, L. Briand, T. Bruckmann et al., “Localizing multiple
faults in simulink models,” in 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), vol. 1.
IEEE, 2016, pp. 146–156.

155

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 22,2023 at 14:11:02 UTC from IEEE Xplore. Restrictions apply.

[4] E. Bartocci, T. Ferrère, N. Manjunath, and D. Ničković, “Localizing
faults in simulink/stateflow models with STL,” in Proceedings of the 21st
International Conference on Hybrid Systems: Computation and Control
(part of CPS Week), 2018, pp. 197–206.

[5] A. Donzé, “Breach, a toolbox for verification and parameter synthesis
of hybrid systems,” in International Conference on Computer Aided
Verification. Springer, 2010, pp. 167–170.

[6] Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, “S-
taliro: A tool for temporal logic falsification for hybrid systems,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2011, pp. 254–257.

[7] A. Zutshi, S. Sankaranarayanan, J. V. Deshmukh, J. Kapinski, and X. Jin,
“Falsification of safety properties for closed loop control systems,” in
Proceedings of the 18th International Conference on Hybrid Systems:
Computation and Control, 2015, pp. 299–300.

[8] S. Sankaranarayanan and G. Fainekos, “Falsification of temporal proper-
ties of hybrid systems using the cross-entropy method,” in Proceedings
of the 15th ACM international conference on Hybrid Systems: Compu-
tation and Control, 2012, pp. 125–134.

[9] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems. Springer, 2004, pp. 152–166.

[10] E. Bartocci, N. Manjunath, L. Mariani, C. Mateis, and D. Ničković,
“CPSDebug: Automatic failure explanation in CPS models,” Interna-
tional Journal on Software Tools for Technology Transfer, vol. 23, no. 5,
pp. 783–796, 2021.

[11] N. K. Singh and I. Saha, “Specification-guided automated debugging
of CPS models,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, no. 11, pp. 4142–4153, 2020.

[12] E. Bartocci, N. Manjunath, L. Mariani, C. Mateis, and D. Ničković,
“Automatic failure explanation in CPS models,” in International Con-
ference on Software Engineering and Formal Methods. Springer, 2019,
pp. 69–86.

[13] D. Zuddas, W. Jin, F. Pastore, L. Mariani, and A. Orso, “Mimic:
locating and understanding bugs by analyzing mimicked executions,”
in Proceedings of the 29th ACM/IEEE international conference on
Automated software engineering, 2014, pp. 815–826.

[14] M. Renieres and S. P. Reiss, “Fault localization with nearest neighbor
queries,” in 18th IEEE International Conference on Automated Software
Engineering, 2003. Proceedings. IEEE, 2003, pp. 30–39.

[15] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over
real-valued signals,” in International Conference on Formal Modeling
and Analysis of Timed Systems. Springer, 2010, pp. 92–106.

[16] B. Liu, S. Nejati, L. C. Briand et al., “Effective fault localization of
automotive simulink models: achieving the trade-off between test oracle
effort and fault localization accuracy,” Empirical Software Engineering,
vol. 24, no. 1, pp. 444–490, 2019.

[17] T. Nghiem, S. Sankaranarayanan, G. Fainekos, F. Ivancic, A. Gupta,
and G. J. Pappas, “Monte-carlo techniques for falsification of temporal
properties of non-linear hybrid systems,” in Proceedings of the 13th
ACM International Conference on Hybrid Systems: Computation and
Control, HSCC 2010, Stockholm, Sweden, April 12-15, 2010, 2010, pp.
211–220.

[18] D. Yadav, “Blood coagulation algorithm: A novel bio-inspired meta-
heuristic algorithm for global optimization,” Mathematics, vol. 9, no. 23,
p. 3011, 2021.

[19] D. Nickovic and T. Yamaguchi, “RTAMT: online robustness monitors
from STL,” in Automated Technology for Verification and Analysis - 18th
International Symposium, ATVA 2020, Hanoi, Vietnam, October 19-23,
2020, Proceedings, 2020, pp. 564–571.

[20] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically
discovering likely program invariants to support program evolution,”
IEEE Transactions on Software Engineering, vol. 27, no. 2, pp. 99–123,
2001.

[21] F. Pastore, D. Micucci, M. Guzman, and L. Mariani, “TkT: Automatic
inference of timed and extended pushdown automata,” IEEE Transac-
tions on Software Engineering, vol. 48, no. 2, pp. 617–636, 2022.

[22] B. Hoxha, H. Abbas, and G. E. Fainekos, “Benchmarks for temporal
logic requirements for automotive systems.” ARCH@ CPSWeek, vol. 34,
pp. 25–30, 2014.

[23] J. Ghidella and P. Mosterman, “Requirements-based testing in aircraft
control design,” in AIAA Modeling and Simulation Technologies Con-
ference and Exhibit, 2005, p. 5886.

[24] X. Jin, J. V. Deshmukh, J. Kapinski, K. Ueda, and K. Butts, “Powertrain
control verification benchmark,” in Proceedings of the 17th international
conference on Hybrid systems: computation and control, 2014, pp. 253–
262.

[25] Mathworks. (2022) Modeling an automatic transmission con-
troller. [Online]. Available: https://in.mathworks.com/help/simulink/
slref/modeling-an-automatic-transmission-controller.html

[26] Mathworks. (2022) Detect faults in aircraft elevator control
system. [Online]. Available: https://in.mathworks.com/help/stateflow/
ug/fault-detection-control-logic-in-an-aircraft-elevator-control-system.
html

[27] Mathworks. (2022) Modeling a fault-tolerant fuel control
system. [Online]. Available: https://in.mathworks.com/help/simulink/
slref/modeling-a-fault-tolerant-fuel-control-system.html

[28] E. Bartocci, L. Mariani, D. Nickovic, and D. Yadav, “FIM: fault injection
and mutation for simulink,” in Proceedings of the ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE), 2022.

[29] T. Fabarisov, I. Mamaev, A. Morozov, and K. Janschek, “Model-based
fault injection experiments for the safety analysis of exoskeleton
system,” arXiv preprint arXiv:2101.01283, 2021. [Online]. Available:
https://arxiv.org/abs/2101.01283

[30] I. Pill, I. Rubil, F. Wotawa, and M. Nica, “Simultate: A toolset for
fault injection and mutation testing of simulink models,” in 2016 IEEE
Ninth International Conference on Software Testing, Verification and
Validation Workshops (ICSTW). IEEE, 2016, pp. 168–173.

[31] R. Svenningsson, J. Vinter, H. Eriksson, and M. Törngren, “Modifi: a
model-implemented fault injection tool,” in International Conference on
Computer Safety, Reliability, and Security, E. Schoitsch, Ed. Berlin,
Heidelberg: Springer, 2010, pp. 210–222.

[32] M. Saraoğlu, A. Morozov, M. T. Söylemez, and K. Janschek, “Er-
rorsim: A tool for error propagation analysis of simulink models,” in
International Conference on Computer Safety, Reliability, and Security.
Springer, 2017, pp. 245–254.

[33] F. Wilcoxon, “Individual comparisons by ranking methods,” in Break-
throughs in statistics. Springer, 1992, pp. 196–202.

[34] J. D. Gibbons and S. Chakraborti, Nonparametric statistical inference.
CRC press, 2014.

[35] P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok, “C2e2: A
verification tool for stateflow models,” in International Conference on
Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 2015, pp. 68–82.

[36] G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “SpaceEx: Scalable ver-
ification of hybrid systems,” in International Conference on Computer
Aided Verification. Springer, 2011, pp. 379–395.

[37] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An analyzer
for non-linear hybrid systems,” in International Conference on Computer
Aided Verification. Springer, 2013, pp. 258–263.

[38] A. Groce, G. Holzmann, and R. Joshi, “Randomized differential testing
as a prelude to formal verification,” in 29th International Conference on
Software Engineering (ICSE’07). IEEE, 2007, pp. 621–631.

[39] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst,
D. Pang, and B. Keller, “Evaluating and improving fault localization,”
in 2017 IEEE/ACM 39th International Conference on Software Engi-
neering (ICSE). IEEE, 2017, pp. 609–620.

[40] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineering,
vol. 42, no. 8, pp. 707–740, 2016.

[41] B. Liu, Lucia, S. Nejati, L. C. Briand, and T. Bruckmann, “Simulink
fault localization: an iterative statistical debugging approach,” Software
Testing, Verification and Reliability, vol. 26, no. 6, pp. 431–459, 2016.

[42] R. D. Diwakaran, S. Sankaranarayanan, and A. Trivedi, “Analyzing
neighborhoods of falsifying traces in cyber-physical systems,” in Pro-
ceedings of the 8th International Conference on Cyber-Physical Systems,
2017, pp. 109–119.

156

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 22,2023 at 14:11:02 UTC from IEEE Xplore. Restrictions apply.

