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Abstract—Mutation testing is an established software quality
assurance technique for the assessment of test suites. While it is
well-suited to estimate the general fault-revealing capability of a
test suite, it is not practical and informative when the software
under test must be validated against specific requirements. This
is often the case for embedded software, where the software is
typically validated against rigorously-specified safety properties.
In such a scenario (i) a mutant is relevant only if it can impact
the satisfaction of the tested properties, and (ii) a mutant is
meaningfully-killed with respect to a property only if it causes
the violation of that property. To address these limitations of
mutation testing, we introduce property-based mutation testing, a
method for assessing the capability of a test suite to exercise
the software with respect to a given property. We evaluate
our property-based mutation testing framework on Simulink
models of safety-critical Cyber-Physical Systems (CPS) from the
automotive and avionic domains and demonstrate how property-
based mutation testing is more informative than regular mutation
testing. These results open new perspectives in both mutation
testing and test case generation of CPS.

Index Terms—Cyber-Physical Systems, Mutation Testing, Sig-
nal Temporal Logic (STL), Simulink Models, Software Testing

I. INTRODUCTION

Software has a pivotal role in safety-critical applications,
from autonomous vehicles to medical devices. Inadequate soft-
ware quality assurance may result in potentially catastrophic
system failures. It is thus important to thoroughly test software,
checking that it does not violate its critical properties.

Mutation testing (MT) is a well-established technique to
measure the adequacy of a test suite w.r.t. a fault model [1]–
[4]: MT first injects some artificial defects in the software-
under-test, and then measures the thoroughness of the test suite
as the percentage of injected faults that the test suite can reveal.
The injection is performed through mutation operators that
modify the software according to well-defined patterns. The
resulting modified program is called a mutant. A test case kills
a mutant if its execution causes observable differences in the
behavior of the original and mutated programs. The ratio of
killed mutants w.r.t. the mutants that are not equivalent to the
original program is known as the mutation score. Ideally, a
test suite should reach a mutation score equal to one.

While MT is effective when the test suite has to be assessed
against a wide set of faults spread in the software, it loses its
effectiveness when the purpose of a test suite is to validate
the software against specific requirements. This is particularly
true in the embedded software domain, where software must

be often validated against rigorously-defined safety properties.
For example, the ATCS (Automatic Transmission Controller
System) we used in the experimental evaluation is annotated
with several safety properties expressed with Signal Temporal
Logic (STL) [5], and test cases are designed to validate the
software against these properties.

When applying mutation testing to assess the capability of a
test suite to thoroughly exercise a software w.r.t. a given prop-
erty, there are two challenges to take into consideration: the
relevance of the mutants and the relevance of the executions
that kill the mutants.

Relevance of the mutants w.r.t. a tested property. Not all
the mutants are relevant to assess the thoroughness of a test
suite against a property. In fact, only the mutants whose
effects propagate in a way that ultimately causes the property
violation are relevant. A mutant that does not impact a property
shall also not contribute to measuring the adequacy of a test
suite against that property. Regular MT does not distinguish
between these mutants, and hence does not consider the
difference between them when computing the mutation score.

Relevance of the execution that kills a mutant. Producing
different outputs for the original and the mutated programs is
insufficient to kill a mutant when a test suite is assessed against
a property. In fact, a test is thoroughly exercising the software
w.r.t. a property only if the difference in the two outputs
is severe and relevant enough to cause a violation of the
property under consideration. Otherwise, the test is generating
differences that are marginal w.r.t. the testing objective. For
instance, in our evaluation, we assessed the test cases for the
ATCS against the property that requires the engine speed and
the vehicle speed to remain below certain thresholds. Several
tests succeeded in exercising a mutant in the Transmission
component, causing differences in the outputs, but failed to
produce outputs that violate these properties, which is a clear
inadequacy of the test suite. This situation is visually illus-
trated in Fig. 1 (top), where the test is generating differences in
the engine and vehicle speeds without exceeding the threshold.
The mutant would be counted as killed according to regular
mutation testing, although the test does not make the software
to violate the property. In practice, if the fault would be present
in the original model, the test would not reveal it. This also
exemplifies how mutations could be easily killed according to
regular mutation testing in data-flow models, where most of
the components are activated in every computation and values
easily propagate through the blocks in the model. However, the
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propagated values often result in minor and non-significant
output differences. Killing mutants while taking the tested
properties under consideration is a definitely harder challenge.
For instance, Fig. 1 (bottom) shows the case of a test that
reveal the mutant by violating the tested properties, obtained
in our experiments.
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Fig. 1. Output plots for the original and mutated models of ATCS: (top) for
a test case satisfying the property on the mutant, (bottom) for a test case
violating the property on the mutant. The portion of the output trace (vehicle
speed) responsible for property violation is highlighted.

In this paper, we address these challenges by defining the
notion of Property-Based Mutation Testing (PBMT) to assess
test suites against properties or specifications. To this end,
we revise the key notions of mutation testing to measure the
effectiveness of the test suites as their capability to exercise
the software against a property. We also define a search-based
test generation strategy for Simulink models to effectively and
automatically identify the relevant mutants that could be killed
with meaningful executions, from a set of injected mutants. We
provide empirical evidence that PBMT is more informative
than MT to assess the thoroughness of test suites, considering
two benchmarks in the domain of safety-critical CPS with
requirements expressed in STL formalism.

In summary, this paper makes the following contributions:
1) We introduce the novel notion of Property-Based Muta-

tion Testing for testing software against properties.
2) We define a search-based strategy to automatically iden-

tify the mutants that contribute to PBMT experiments.
3) We report empirical results for Simulink models, demon-

strating that PBMT is more informative than regular MT
when software is tested against properties.

4) We make tools and experimental data publicly available
for reproduction and to ease follow-up research1.

1https://gitlab.com/DrishtiYadav/mt

Paper Organization. Section II presents the overview of
regular mutation testing. Section III presents property-based
mutation testing, our proposed approach. Section IV describes
testing CPS Simulink models against STL specifications. Sec-
tion V presents our evaluation of two safety-critical industrial
benchmarks. Section VI discusses threats to validity. Sec-
tion VII describes the lessons learned. Section VIII presents
related work. Section IX concludes the paper.

II. MUTATION TESTING

In this section, we present the background and fundamental
concepts of regular mutation testing.

Mutation testing relies on two fundamental assumptions [1],
[2]: (1) the Competent Programmer Hypothesis that states
that programmers create programs that differ from the correct
one mostly by small syntactic errors, and (2) the Coupling
Effect that asserts that “complex faults are coupled to simple
faults in such a way that a test data set that detects all
simple faults in a program will detect a high percentage
of the complex faults” [6]. Several studies investigate these
hypotheses demonstrating that results obtained with mutation
testing can reliably predict the results obtained for the vast
majority of high-priority real bugs [7]–[10]. Although not
every bug couples with mutants, mutation testing can still be
considered a good tool to measure test suite quality.

We now introduce the key concepts of mutation testing.

Definition II.1 (Mutation operator). A mutation operator is
a source-code transformation that introduces a modification in
the program-under-test. More rigorously, given a program P ,
a mutation operator op is a function that takes as inputs P and
a location k inside P and creates a syntactic alteration of P
at location k, if the location can be mutated with op.

Definition II.2 (Mutant). For a given program P and a set of
mutation operators O = {op1, op2, ..., opn}, a mutant p is the
result of the application of a mutation operator op ∈ O to P
at a specified location k. A mutant created by the application
of only one mutation operator to P is known as First Order
Mutant (FOM). The application of multiple mutation operators
to P results in a Higher Order Mutant (HOM) [11].

Given a test suite T , and a test t ∈ T , we write t |= p when
the test passes on p and t 6|= p when the test fails on p. We
denote with O(t, p) the output generated by p with t and with
T pU the (universal) set of every possible valid test case for p.

Definition II.3 (Killed Mutant). A mutant p is said to be killed
by T if at least one test case t in T fails when exercising p,
i.e., ∃t ∈ T : t 6|= p.

Definition II.4 (Live Mutant). Mutants that do not lead to the
failure of any test case t ∈ T are said to be live or survived.
Formally, p is said to be live if ∀t ∈ T , t |= p.

Definition II.5 (Equivalent Mutant). A mutant p is equivalent
to the original program P if they both generate the same
output for any possible input. Formally, p is equivalent to
P if ∀t ∈ T PU , O(t, p) = O(t,P). In other words, no test
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case can distinguish an equivalent mutant from the original
program [12]. Note that the detection of equivalent mutants is
undecidable.

Definition II.6 (Invalid Mutant). A mutant p is considered
invalid if it cannot be compiled [13]. Such a mutant is not
included in the mutation coverage.

Definition II.7 (Mutation coverage). The adequacy of a
test suite T can be measured using the mutation coverage
(hereafter, mutation score MS): the ratio of mutants killed
w.r.t. the total number of non-equivalent and valid mutants:

Mutation coverage =
#killed mutants

#valid mutants−#equivalent mutants

T is said to achieve 100% mutation test adequacy if it kills all
non-equivalent valid mutants. Full mutation coverage ensures
that T is (i) robust against the modeled mutation types, and
(ii) sensitive to small changes in the program-under-test (P).

Definition II.8 (Redundant Mutant). Redundant mutants are
not beneficial as they consume resources without contributing
to the test process as they are killed whenever other mutants
are killed. This redundancy can be expressed by duplicate
and subsumed mutants [14]. Duplicate mutants are equivalent
with each other but not equivalent to the original program [3].
Subsumed mutants are not equivalent with each other but are
killed by the same test cases. The subsumption relation is
defined as follows [15]: We say that pi subsumes pj , denoted
pi → pj , iff the following two properties hold:

1) ∃t ∈ T PU : t 6|= pi. In other words, there exists some test
case t s.t. pi and P yield different outputs on t, i.e., pi
is not equivalent to P .

2) ∀t ∈ T PU , if t 6|= pi, then t 6|= pj . In other words, for
every possible test case t on P , if pi yields a different
output than P on t, then so does pj .

With Regular MT, for a test case t ∈ T to kill a mutant p,
the following three conditions must be satisfied [16], [17]:
1) Reachability: t must reach the mutated statement in p.
2) Necessity: t must infect the program state by causing

different program states for p and P .
3) Sufficiency: the incorrect program state must propagate to

the output of p and be checked by t, i.e., there is an
observable difference in the outputs of p and P for t.

The above three conditions are known as the RIP model.
The capability of a test case t ∈ T to kill a mutant p is
governed by the observability of the program state, leading to
following two common types of mutation testing:
1) Weak mutation testing: A mutant p is killed by a test suite
T if only the first two conditions of the RIP model are
satisfied.

2) Strong mutation testing: For a test case t ∈ T to kill a
mutant p, all three conditions of the RIP model must be
met.

Tests, in particular automated tests, usually include an
explicit comparison of the observed program behavior to the

expected behavior using an oracle. Thus, automated tests
usually examine specific portions of the output state. However,
the oracle will fail to identify the failure if it does not check the
specific part of the output state which contains the erroneous
value. Therefore, the oracle should also reveal the failure [18],
as proposed in the RIPR model. This paper further elaborates
this concept defining how mutation testing can be designed
to validate and measure the quality of a test suite w.r.t. a
requirement, in our case taking the form of a rigorously
defined STL property for a MathWorks® Simulink model.

III. PROPERTY-BASED MUTATION TESTING

In this section, we present PBMT, a mutation testing ap-
proach designed to validate test suites against programs and
properties. We assume that we have a program P expressed in
a language L as the software-under-test (SUT), a property φ
of the SUT, a test suite T and a set of mutation operators O.
PBMT measures how thoroughly the test suite T validates P
against the property φ, studying the capability of T to reveal
faults —of type defined in O—that may impact φ.

Definition III.1 (φ-killed mutant). A mutant p is said to be
φ-killed by a test suite T ⊂ T PU iff ∃ a test case t ∈ T such
that the following conditions hold:

1) O(t,P) |= φ, i.e., t satisfies φ when executed on the
original program P , and

2) O(t, p) 6|= φ, i.e., t violates φ when executed on the
mutant p. It follows that t exercises the mutation/fault
in p in such a way that its effect is propagated to the
output up to the violation of the property φ.

The above two conditions collectively guarantee that the
execution of p against t yields an output strong enough to
violate φ (i.e., O(t, p) 6|= φ), while still passing in the original
program (i.e., O(t,P) |= φ). This implies that the test is
specifically good in exercising the software so that the fault,
if present, is propagated to the output, producing significant
behavioral differences up to the point of violating φ.

Similar to the concept of equivalent mutants in regular MT,
we introduce a refined version of equivalent mutants which
we call: φ-trivially different mutants. The intuition is that in
this context, a mutant is irrelevant not only if it is equivalent
(i.e., it shows no behavioral differences w.r.t. the original
program), but also if the introduced behavioral differences are
not relevant w.r.t. the property φ, that is, no test case t ∈ T PU
can distinguish between p and P .

Definition III.2 (φ-trivially different mutant). A mutant p is
φ-trivially different from P iff @t ∈ T PU : O(t,P) |= φ ∧
O(t, p) 6|= φ.

The set of the φ-trivially different mutants include equiva-
lent mutants. The identification of φ-trivially different mutants
is undecidable.

Definition III.3 (φ-adequate test suite). A test suite T is φ-
adequate w.r.t. a set of mutation operators O if it kills all the
non φ-trivially different mutants that can be generated by O.



Definition III.4 (Mutation score). If KDφ denotes the φ-
killed mutants and NTDφ denotes the non φ-trivially different
mutants, the mutation score assigned with a test suite T for a
program P and a set of mutation operators O is

MSφ =
|KDφ|
|NTDφ|

(1)

The objective of implementing test suites that are adequate
according to PBMT results in the Mutant killing problem. That
is, given a program P , a mutant of P denoted by p and a
property φ, the mutant killing problem is the problem of
finding a test case t such that O(t,P) |= φ, and O(t, p) 6|= φ.

PBMT is usually more challenging than regular MT since:
• Higher risks of introducing φ-trivially different mutants:

PBMT can potentially generate more irrelevant mutations
than mutation testing since, in addition to equivalent
mutants, there might be mutants that are not equivalent
but introduce irrelevant differences w.r.t. a property φ.

• Harder to kill mutants: The faults must be exercised in
such a way that it does not only propagate to the output
but also leads to the violation of φ.

IV. MUTATION TESTING OF SIMULINK CPS PROGRAMS

We instantiate PBMT in the context of safety-critical CPS
Simulink (data-flow) models where the system safety prop-
erties are expressed using STL. While extensive details of
Simulink models [19]–[21] and STL [5], [22], [23] are avail-
able elsewhere, we introduce below the key concepts to make
the paper self-contained. We conclude by presenting a novel
technique to automatically determine the mutants that could
be φ-killed by test suites.

A. Simulink models

The MathWorks® Simulink environment is widely used for
CPS model-based development [24], [25]. Simulink allows
non-software engineers to design complex systems, compile
them to low-level code, and simulate the designed models to
observe their behavior against some test inputs. In general,
a Simulink model is the block diagram representation of a
system using blocks and lines (aka connections) as in Fig. 2.
A block receives data via its input ports and performs a defined
operation on its input data depending on its functionality. After
processing the input data, a block transmits the output data
via its output ports, along (directed) lines. Each line in the
model can be uniquely identified using (1) the source block
and its associated output port, and (2) the target block and its
associated input port. The model receives its inputs from a set
of input blocks and emits the output through a set of output
blocks. Usually, a block can be either atomic (i.e., it does
not include any other block within it) or hierarchical (i.e., it
includes other blocks within it).

When creating a model, a tester can either use standard
blocks from built-in libraries or create new custom blocks
from scratch. After designing the model, a tester compiles and
simulates the model using a suitable solver and simulation

Fig. 2. A Simulink model with hierarchical blocks (b4, b8) and atomic blocks
(remaining), input ports (black nodes), output ports (white nodes), inputs (In1
and In2) and outputs (Out1, Out2 and Out3).

mode. Simulink allows to execute the model using user-
specified sample times (either fixed-length or variable-length).

A Simulink model M when simulated against a test case t
yields the model simulation output as the set of traces of all
input-internal-output signals. We denote the model simulation
output with O(t,M). A Simulink model can have multiple
outputs (such as Fig. 2’s Out1, Out2 and Out3).

B. Signal Temporal Logic (STL)

In recent years, for the verification of safety-critical CPS,
researchers have used temporal logic formalisms to express
safety properties. Signal Temporal Logic (STL) [5] is a well-
known specification formalism used to express temporal prop-
erties of dense-time real-valued behaviors of hybrid (i.e., both
continuous and discrete dynamic) systems, including safety-
critical CPS. The syntax of STL is formally defined as follows:

Φ := f(x(j)) > 0 | ¬Φ | Φ1 ∧ Φ2 | �IΦ | ♦IΦ | Φ1UIΦ2

Here, the formula of the form f(x(j)) > 0 represents a signal
predicate, where x(j) is the value of a signal x at time instant
j, and f is a function from signal domain D to R. I ⊆ R≥0 is
an arbitrary time-interval. The propositional logic operators ¬
and ∧ follow the obvious logical semantics, i.e., ¬ indicates
logical negation and ∧ indicates logical conjunction. Other
temporal operators are as follows:
• �IΦ (always operator) indicates that Φ must be true for

all samples in I .
• ♦IΦ (eventually operator) indicates that Φ must be true

at least once for samples in I .
• Φ1UIΦ2 means that Φ1 must be true in I until Φ2

becomes true. UI refers to as until operator.
The Boolean satisfaction semantics aka qualitative seman-

tics of STL offers a boolean witness of the property Φ. The
Boolean satisfaction of the signal predicate is simply > if it
is satisfied; otherwise ⊥. We use the operators U , ♦, and �
to denote UI , ♦I , and �I with I = [0,∞).

Besides the qualitative semantics, STL also offers quanti-
tative semantics [23] that allows to compute the degree of
satisfaction of Φ by the traces generated by a system after
executing it against a test input. The degree of satisfaction of



Φ for a trace q is measured using a robust satisfaction function
ρ(q,Φ) that computes a real value that indicates the distance
of the trace q from satisfying (|=s) the property Φ. Formally,
ρ(q,Φ) > 0⇒ q |=s Φ, and ρ(q,Φ) < 0⇒ q 6|=s Φ.

C. Mutations in Simulink

From a conceptual perspective, mutations are simply mod-
ifications to the behavior of the Simulink model. Usually,
alterations can be made in a Simulink model in two ways:
1) Line mutations: changing the behavior of the signals that

propagate through lines from one block to another block
(see ‘Fault in line’ in Fig. 3), or

2) Block mutations: changing the behavior of a block (see
‘Fault in block’ in Fig. 3), for instance, by making changes
in its functionality.

Fig. 3. Mutations in a SUT (the seeded fault blocks F are highlighted in red).
A, B and C are blocks of original SUT. Internal signals s and s′ provide
knowledge of the fault location.

D. Robustness Measure

The notion of robustness function ρ becomes useful when
we need to search for a test t that passes the execution of the
model M w.r.t. an STL requirement φ. We use the following
notations [23]:

1) ρ(O(t,M), φ) < ε ⇒ O(t,M) 6|= φ, i.e., t fails on M
with respect to the specification φ

2) ρ(O(t,M), φ) > ε⇒ O(t,M) |= φ, i.e., t passes onM
with respect to the specification φ.

Here, the parameter ε represents the degree of violation of
the property as assessed by the robustness function ρ. The
standard choice is ε = 0 which implies that the identification
of passing or failing test case i.e., satisfaction or violation is
based on even a small (non-zero) deviation in the observed
behavior of M from the expected behavior w.r.t. φ.

E. Search-based generation of mutation adequate test cases

A key challenge in mutation testing, including PBMT, is
accurately computing the mutation score, due to the undecid-
able problem of identifying the equivalent mutants. In PBMT,
this problem is even harder due to the need of identifying
the φ-trivially different mutants, which include but are not
limited to the equivalent mutants. To address this challenge,
we defined a search-based test generation strategy that exploits
the knowledge of the mutants and their locations to generate
targeted executions that demonstrate if a mutant can be φ-
killed. Although nothing could be said about the mutants not
killed according to this procedure, the experimental results

show that assuming this procedure can identify every φ-
killable mutant may give an accurate approximation of the
mutation score.

Note that the proposed test strategy cannot be used to gen-
erate tests in a real situation, since it exploits the knowledge of
the fault location that is normally unknown when a software is
tested. However, the proposed test generation strategy is useful
in the context of PBMT to collect accurate empirical data.

In particular, we formulate the ‘Property-based test search
problem’, an optimization problem of finding a φ-adequate
test case as:

Property-based test search problem

INPUT: a Simulink modelM, a first-order mutantM′
(with signal s changed into signal s′ or a block b with
output s changed into a block b′ with output s′), and
a property φ.
PROBLEM: Find t s.t. ρ(O(t,M), φ) > 0,
ρ(O(t,M′), φ) < 0 and D(s, s′) is maximum.

The proposed ‘Property-based test search problem’ com-
bines three key features, two deriving from the definition of
φ-killed mutant and one guiding the search toward the mutant,
and toward producing an execution that exploits the mutant to
significantly alter the state of the system:
• ρ(O(t,M), φ) > 0 requires finding a test that passes on

the original program,
• ρ(O(t,M′), φ) < 0 requires finding a test that violates
φ in the modified program, and

• D(s, s′) is maximum requires the mutation to impact on
the internal signal as much as possible.

We choose the Euclidean distance (aka L2 norm) as the
metric to compute the distance between s and s′. Since CPS
models involve continuous real-valued variables, Euclidean
distance, a prominent metric for real vector spaces, is a
good candidate for computing the distance. More rigorously,
given two finite-length signals s = (s1, · · · , sk) and s′ =
(s′1, · · · , s′k), each with k samples, the Euclidean distance
between s and s′ is mathematically expressed as:

D(s, s′) = ||s− s′||2 =

√√√√ k∑
i=1

(si − s′i)2

The optimization task is to maximize D(s, s′) subject to
the constraints ρ(O(t,M), φ) > 0 and ρ(O(t,M′), φ) < 0.
To solve the formulated test search problem, we exploit
BCA [26], a recently developed global optimizer as outlined
in Algorithm 1. We chose BCA over other available optimizers
on account of its superior convergence and speed. While being
a global search with BCA in essence, Algorithm 1 introduces
two differences w.r.t. standard BCA: (1) The initial population
(Line 2) is a set of test cases randomly generated in their
valid numerical input domain. (2) Fitness (Line 3) corresponds
to the value of the test objective function for the given
population of test cases. The test objective function is obtained



by converting the constrained optimization problem into an
unconstrained problem using the scalar penalty constraint
handling method [27]. The algorithm updates the test cases
(Line 6-8) and finds the best solution for the new population
depending on their fitness values (Lines 9-10). The candidate
fittest amongst all others in the population is accepted as the
new global best solution (Lines 11-14). The algorithm returns
the best solution if all the constraints are satisfied. Algorithm 1
terminates (loop at Line 5) if either a test case satisfying the
optimization constraints is found, or the budget is exhausted
(time budget or the maximum number of iterations).

Algorithm 1: Search-based test generation.
Input : M : A Simulink model.

M′ : A mutant of M.
φ : An STL specification.

Output: tbest : A test case that φ-kills M′.
1 Initialize optimizer parameters
2 IP← GENERATEINITIALPOPULATION()
3 FP← Fitness(IP,M,M′, φ)
4 tbest, Fbest ← BestFound(FP)
5 while TimeOut() do
6 for each candidate k ∈ IP do
7 knew ← Update(k)
8 end for
9 FP← Fitness(IP,M,M′, φ)

10 tnew, F ← BestFound(FP)
11 if F > Fbest then
12 Fbest ← F ; // update best fitness
13 tbest ← tnew ; // update best test
14 end if
15 end while
16 return tbest

For each mutant, we solve the formulated ‘Property-based
test search problem’ to find a test case that φ-kills it. The
resulting test suite is a fault-directed test suite that is likely to
reveal all the non φ-trivially different mutants.

F. Test suite reduction

To maintain a small and practical fault-directed test suite,
we reduce its size automatically. We consider a test case tr
φ-redundant w.r.t. a fault-directed test suite T if the set of
φ-killed mutants by T remains unchanged after the inclusion
of tr in T , i.e., |KDφ|T = |KDφ|T ∪ tr .

A φ-non-redundant test suite does not contain φ-redundant
test cases. Usually, a test suite can contain redundant test cases
while retaining the same testing power in the sense that they
are capable of killing the same mutants w.r.t. φ. In other words,
a single test case can cover more than one mutation.

In our experiments, we use the greedy algorithm similar
to the one proposed in [28] for test suite reduction. In the
worst-case scenario, p test cases are required to cover all p
non φ-trivially different mutations. In practice, fewer tests are
usually necessary.

V. EVALUATION

Our evaluation aims to study Property-Based Mutation
Testing (PBMT) for testing CPS Simulink models against STL
properties, also w.r.t. regular Mutation Testing (MT).

A. Research Questions

Our experiments address the following research questions:
RQ1. Does PBMT measure the adequacy of a test suite

better than MT when a safety property is targeted? To answer
this research question, we assess the adequacy of multiple
test suites using both PBMT and MT, and discuss how the
resulting scores reflect the intrinsic capability of the test cases
to exercise the software based on the target property.

RQ2. Are mutation operators equally contributing in
PBMT? To answer this research question, we study the impact
of different mutation operators on the mutation score, aiming
at discovering operators that tend to generate mutants that are
either trivial or particularly hard to detect.

B. Experimental Setup

We performed our experiments on a MacBook Pro with
Apple M1 chip, 16 GB RAM, macOS Monterey with MAT-
LAB™ R2018b. For our evaluation, we developed a prototype
implementation of both PBMT and MT with CPS Simulink
models in MATLAB. We used the RTAMT library [29] for
offline evaluation of STL properties.

We limit the scope of the evaluation to FOMs. Moreover, we
use a fixed-length sampling when running Simulink models
with faults active from the beginning to the end of the
simulation. In the following, we describe our experimental
subjects, mutants and test suites.

1) Experimental subjects: We evaluate PBMT on Simulink
models of two industrial benchmarks across the safety-critical
domain, each one publicly available in the Simulink/Stateflow
online documentation of MathWorks® [30], [31]: ATCS, an
Automatic Transmission Controller System, and AECS, an
Aircraft Elevator Control System.

ATCS is a typical automotive drivetrain with the two inputs
throttle and brake governing the vehicle speed v (mph) and
the engine speed ω (RPM). Both user inputs are in the range
[0, 100] for all time instants. As one of the safety properties,
ATCS requires that v and ω must always remain below their
thresholds v̄ and ω̄, respectively. This is represented in STL
in Table I where v̄ = 120 mph and ω̄ = 4500 RPM.

AECS from the avionics-aerospace domain controls the
positions of the left and right elevators of an aircraft using
the pilot command. In general, the elevator position should
maintain a constant value if the aircraft is flying at the desired
level. Among the safety requirements, the AECS requires that
whenever the Pilot Command cmd goes beyond a threshold
m, the measured elevator position pos must stabilize (should
not exceed cmd by more than n units) within T + a time
units. This is formally expressed with the STL specification
in Table I where m = 0.09, T = 2, a = 1 and n = 0.02.



TABLE I
DETAILS OF SIMULINK MODELS OF OUR CASE STUDIES.

Model Ref. #Blocks #Lines φ (STL specification) qT Sample time #Samples

ATCS [32] 65 92 �((v ≤ v̄) ∧ (ω ≤ ω̄)) 30 0.04 751
AECS [33] 825 577 �(↑ (cmd ≥ m)→ ♦[0,T ]�[0,a](|cmd− pos| ≤ n)) 10 0.01 1001

2) Fault seeding and mutant generation: For each experi-
mental subject, we generated mutants using the FIM prototype
tool [34] that supports the following mutation operators for
Simulink models: Negate, Stuck-at, Absolute, Noise,
Bias/Offset, Time Delay, Package Drop, ROR (Re-
lational Operator Replacement), LOR (Logical Operator Re-
placement), S2P (Sum to Product mutation), P2S (Product to
Sum mutation) and ASR (Arithmetic Sign Replacement). The
detailed description of these operators can be found in [34].

Since FIM does not support the injection of faults in look-
up tables (LUTs), we extended the tool implementing two
additional operators: (1) Stuck-at 0 fault in any one entry, and
(2) swapped entries (from two randomly chosen neighbors).

Table II reports, for each subject, the number of mutants
generated for the specific mutation operator. Table III indicates
the total number of mutants generated for every subject and
their generation time. Mutant generation is fast: On an average
(across ATCS and AECS), the generation of a mutant takes
1.74 seconds.

TABLE II
NUMBER OF MUTANTS OF OUR EXPERIMENTAL SUBJECTS.

Type # Mutants

ATCS AECS

Noise 13 17
Bias/Offset 13 17
Negate 13 17
Absolute 13 17
ROR 0 10
S2P 1 3
P2S 2 6
ASR 3 8
LUT 2 5

TABLE III
INFORMATION OF GENERATED MUTANTS.

Subject Mutants generated Mutant generation time (seconds)

ATCS 60 68.76
AECS 100 261.64

3) Test Suite: To compare PBMT to MT, we assess test
suites generated according to two different strategies: Adap-
tive Random Testing (ART) [35] and Falsification Testing
(FT) [36], [37]. ART is a baseline strategy that generates
evenly distributed test cases (within valid input ranges),
thereby ensuring adequate diversity in the test inputs. On the
other hand, FT generates counterexamples i.e., test cases that
violate a property for a given model [38], [39]. Note that ART

and FT work in radically complementary ways. ART quickly
generates many test inputs, considering diversity, but ignoring
the property under test. On the contrary, FT specifically targets
the generation of a test that violates the property under test.
In particular, for each mutant M′, FT attempts to generate a
test case t such that O(t,M′) 6|= φ. The hypothesis is that
ART could obtain higher MS, but smaller MSφ since the
generated tests do not depend on φ. On the contrary, FT should
kill fewer mutants in general, but more mutants relevant to φ,
and thus obtain higher MSφ.

In our evaluation, we generated 30 and 50 test cases
with ART for ATCS and AECS, respectively. FT generates
a property-violating test per mutant, if successful.

For collecting data to address our research questions, we
have executed all the test cases in the test suite for every
subject and every generated mutant. To perform our exper-
iments, we executed multiple simulations in parallel using
the Parallel Computing Toolbox™ in the MATLAB/Simulink®

environment. Table IV provides, for each subject, the total
number of test cases executed (including both test suites) and
the total execution time.

TABLE IV
SCALE OF EXPERIMENTS.

Subject Total test cases executed Total execution time (seconds)

ATCS 90 2,490
AECS 150 25,912

C. Results

RQ1 studies the extent to which PBMT-based testing can
better capture the thoroughness of a test suite w.r.t. a safety
property that the software-under-test must fulfil. To this end,
we apply both MT and PBMT to our experimental subjects
and compute the mutation scoresMS andMSφ. Note that we
use exactly the same mutants to compute both scores. Table V
reports the results.

We report the results for regular mutation testing (MT)
and Property-Based Mutation Testing (PBMT) in two different
rows, while columns ATCS and AECS correspond to the two
subject systems. For each subject system, we indicate the
scores achieved by the test suites generated with Adaptive
Random Testing (TART ) and Falsification Testing (TFT ). In
details, we report the number of mutants that have been
generated, the number of killable and φ-killable mutants, the
number of mutants killed by each test suite according to MT
and PBMT, and finally the mutation scores MS and MSφ.



TABLE V
RESULTS OF MUTATION TESTING.

Approach ATCS AECS

TART TFT TART TFT

MT

# Mutants 60 60 100 100
# Killable mutants 47 47 83 83
# Killed mutants 47 46 74 70
Mutation Score MS (in %) 100% 97.87% 89.15% 84.33%

PBMT

# Mutants 60 60 100 100
# φ-killable mutants 47 47 83 83
# φ-killed mutants 25 27 39 35
MSφ (in %) 53.19% 57.44% 46.98% 42.16%

To identify the killable mutants, we had to identify the
equivalent ones. To this end, we inspected the non-killed
mutants to determine if a mutation generated a variant that
cannot be distinguished from the original program. We could
identify every equivalent mutant with high-confidence. In fact,
the 13 equivalent mutants in the ATCS model all belong
to the Absolute fault type injected in the ‘Transmission’
component and all try to change into positive values some
signals that could not be negative. The exact same situation
happened for the 17 equivalent mutants found in the AECS
model. To determine the φ-killable mutants, we used the
Search-based test generation (SBTG) technique presented in
Algorithm 1. Note that the SBTG strategy is more computa-
tionally expensive than ART and FT due to the optimization
constraints. Our procedure automatically identified every φ-
killable mutant with thirty independent runs of our search
algorithm and a maximum number of iterations (set to 1000)
as the stopping criterion. The remaining φ-trivially different
mutants are all equivalent mutants that cannot be killed. This
result provides confidence on the capability of our approach
to support fully automated experiments with Simulink models
by assuming that the mutants not killed with our strategy are
φ-trivially different mutants that do not need to be killed, and
thus can be excluded from the computation of MSφ.

By comparing the results obtained for MT to the results
obtained with PBMT, we can notice the mutation score ob-
tained with MT is significantly higher than the mutation score
obtained with PBMT. In fact, the value ofMS ranges between
84.33% and 100% for the four test suites and the two subject
systems. On the other hand, the value ofMSφ ranges between
42.16% and 57.44%. This is also due to the intrinsic nature of
both Simulink models and data-flow computations, where it is
generally easy to activate every component (i.e., to generate a
sequence of inputs that exercise every element in a program),
but it is definitely harder to activate these components while
guaranteeing they contribute to the computation propagating
the fault to the output, finally causing observable issues. That
is, it is relatively easy to reach faults, but it is still hard
to meaningfully propagate and detect faults. This result is
confirmed across the test suites generated with two alternative
strategies.

These results demonstrate that MT may mislead testers

when there are important properties to be validated. For in-
stance, referring to Fig. 1 (top), the test case can kill the mutant
but cannot φ-kill it. In fact, the test suites generated with ART
and FT achieve high mutation score (MS), possibly inducing
testers to believe the test suites are thoroughly exercising
software. On the contrary, it turns out that the test cases are not
good enough to guarantee that even the simple faults (e.g., like
the ones we injected) that may affect the property are actually
detected.

It is also interesting that FT, which targets the falsification of
the property, in comparison to ART, which addresses diversity
neglecting the existence of the property, does not kill more
mutants. Combined with the evidence that almost half of the
killable mutants have not been φ-killed, this suggests that more
research is needed to exercise software thoroughly w.r.t. a
target property, at least for Simulink programs.

We finally checked for the capability of the generated
tests to kill and φ-kill mutants. Interestingly, there is often
high redundancy across tests, that is, each test can kill many
mutants. For instance, all the mutants that have been killed
with ART could be killed by a single test. This reinforces the
idea that there are some surface faults that are easy to reveal,
but at the same time there are other faults that, even if simple
in structure, require more sophisticated tests to be revealed.

On the other hand, we found that four test cases, derived
with our SBTG technique are needed to reveal all 47 φ-killable
mutations of ATCS. Likewise, all 83 φ-killable mutations of
AECS could be revealed with 12 test cases. This suggests
that compact but effective test suites could be designed to
reveal faults according to PBMT. Yet, PBMT requires a higher
number of tests than regular MT to φ-kill and kill mutants,
respectively.

RQ2 assesses the contribution of individual mutation oper-
ators in PBMT. The goal is to identify the operators that tend
to generate easy-to-kill mutants (simple mutants), which do
not contribute much to measuring the adequacy of a test suite,
and the operators that tend to generate hard-to-kill mutants
(stubborn mutants), which can contribute more in measuring
the thoroughness of a test suite.

Table VI reports the following results for each mutation
operator: (1) the number of mutants generated, (2) the number
(and percentage) of φ-trivially different mutants, (3) the num-



ber (and percentage) of NTDφ (i.e., non φ-trivially different
mutants), (4) mutation score achieved by ART, (5) mutation
score achieved by FT, and (6) number (and percentage) of
NTDφ mutants not killed by any test generation technique
(neither ART nor FT). Note that Table VI reports the combined
results for our two experimental subjects (ATCS and AECS).

At least half of the mutations generated by the Negate,
ROR, S2P and ASR operators have been killed neither by
ART nor by FT. This may suggest that these operators might
be more useful than others for PBMT because they tend to
generate faults that are not easy to propagate to the output.

For instance, all the mutants of AECS with the Negate
operator were generated by alterations in the Right Outer
Hydraulic Actuator component. The available test cases can
easily infect the execution (e.g., they change the output of the
‘Line resistance’ block), but fail to propagate the infection due
to the presence of an intermediate signal (e.g., ‘Piston Force’)
that masks changes if differences are not large enough.

None of the mutants generated by ROR has been detected
by TART and TFT . In particular, we observe that for all
available test cases t ∈ TART ∪ TFT , with the execution of
the ROR mutations, the robustness value evaluated for the STL
property for every mutant is the same as that obtained for the
original model. However, there exist test cases that produce
visible differences in the outputs and φ-kill the mutants as
demonstrated by the tests obtained with our SBTG technique.

Mutations generated by S2P have been also hard to φ-
kill. Besides, some mutations with ASR operator could not be
detected by test cases in TART and TFT . Though these mu-
tants alter the internal signal, the data-flow computations and
propagation of signals do not affect the property. For instance,
the ASR mutation in the ‘Hydraulic Actuator’ component of
Right Inner Hydraulic Actuator unit of AECS (−+ replaced
by +−) creates significant variations in the local signal but is
not strong enough to φ-kill the mutant.

On the other hand, two operators have not been particularly
useful. The Absolute operator only generated equivalent
mutants. This suggests that this operator must be used care-
fully, only with systems known to process negative values, and
possibly controlling the locations where the fault is injected.
This case is quite infrequent in CPS. In fact, we have not
observed any useful mutation in our two subjects. All the
mutations generated by LUT were easy to φ-kill, with only
one exception, which generates values hard to propagate to the
output (but still feasible to propagate as demonstrated by the
test suites generated with our SBTG approach). Although this
operator is the only one targeting look-up tables, testers might
consider skipping it when there are strong time constraints on
the testing process.

VI. THREATS TO VALIDITY

We now discuss the threats to validity centered around the
following perspectives of validity and threats:

External validity. The main threat to external validity
concerns with the generalization of our results. Indeed, the
reported evidence may not generalize to every software

system. In fact, we experimented in the domain of data-
flow oriented computations (i.e., Simulink models), and our
observations may not hold in other contexts (e.g., object-
oriented programs). However, results are already quite clear
and explainable in the domain of safety-critical CPS Simulink
programs, where testing software against safety properties is
particularly relevant. Moreover, the size of the experiment
made affordable the manual analysis of mutations to identify
equivalent mutants.

Another threat to validity is the representativeness of the
injected faults. The results reported in this study are based on
typical mutation operators for Simulink models. In particular,
we used the FIM tool [34] and its mutation operators, extended
with additional mutation operator to address lookup tables.

Internal validity. In our experiments, we considered
only FOMs, i.e., faulty Simulink models with only one
fault/mutation. Models can have multiple faults/mutations that
may influence each other. Hence, the results might differ when
tested with multi-fault Simulink models. Nevertheless, since
most of the existing research on mutation testing focuses
on FOMs of software artifacts [40], [41], we assessed our
technique with single-fault models, leaving the study of HOMs
for future work.

Conclusion validity. Random variations is the main threat
to conclusion validity. We mitigate this threat by making thirty
independent runs of the test generation algorithms.

VII. LESSONS LEARNED

We now discuss the lessons learned from our experiments.
Lesson 1 - It is challenging to generate PBMT-adequate

test suites. Our study shows how none of the two state-of-
the-art test generation strategies for Simulink programs we
experimented with achieved high mutation score with PBMT.
Indeed, PBMT is more laborious than regular MT: a test
case that can kill a mutant might not φ-kill the same mutant.
The embedded software industry heavily relies on properties
for verification and validation activities, and it is important
to design testing tools that thoroughly exercise the software.
The definition of PBMT is a relevant advance to the state-of-
the-practice that may influence and guide the design of more
sophisticated and effective test generation strategies.

Lesson 2 - MT does not capture well the thoroughness
of a test suite. MT can still be applied to Simulink programs.
However, test generation techniques could easily kill mutants
as long as properties are not considered. This reveals that it is
important to not only design executions that cover mutants, but
that also propagate the errors produced by mutants, amplifying
its visibility on the outputs. These characteristics of a test are
not well assessed with MT.

Lesson 3 - PBMT-driven test case generation can result
in effective test cases. We defined a SBTG technique to find
test cases that demonstrate that mutants could be φ-killed.
Such a strategy has been highly effective in φ-killing mutants
and could be the basis for the design of a mutation-based test
case generation strategy.



TABLE VI
SUMMARY OF RESULTS OF PBMT FOR INDIVIDUAL OPERATORS.

Noise Negate Bias Absolute ROR S2P P2S ASR LUT

# Mutants generated 30 30 30 30 10 4 8 11 7
# (%) of φ-trivially different mutants 0 (0%) 0 (0%) 0 (0%) 30 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
# (%) NTDφ 30 (100%) 30 (100%) 30 (100%) 0 (0%) 10 (100%) 4 (100%) 8 (100%) 11 (100%) 7 (100%)
MSφART (in %) 66.67% 43.33% 46.66% 0% 0% 25% 62.5% 45.45% 85.71%
MSφFT (in %) 70% 43.33% 50% 0% 0% 25% 62.5% 45.45% 28.57%
# (%) NTDφ not killed by ART+FT 9 (30%) 17 (56.66%) 15 (50%) 0 (0%) 10 (100%) 3 (75%) 3 (37.5%) 6 (54.54%) 1 (14.28%)

Lesson 4 - Not all mutations are equally useful to
test CPS Simulink models. Based on our results, we might
deduce that some operators are more likely to generate φ-
trivially different mutants. For instance, the Absolute oper-
ator always generated equivalent mutants. On the other hand,
some operators (e.g., Negate, ROR, and ASR) generated
mutants that were hard to φ-kill, calling for test case generation
techniques that exercise the software in non-trivial ways.

VIII. RELATED WORK

Mutation Testing. From the software engineering perspec-
tive, mutation analysis is one of the powerful software testing
techniques that can evaluate the test suite quality [1], [2]. The
mutation testing and analysis literature includes a large number
of theoretical studies and empirical investigations of various
kinds of software artifacts [42], [43].

The work in [44] combines symbolic execution, concolic
execution, and evolutionary testing to automate the test gener-
ation for weak mutation testing of programs. Along a similar
line of research, the work in [45] proposes a path selection
strategy to pick up test cases capable of killing the mutants.
Related research on test suite minimization include techniques
based on Integer Linear Programming (ILP) [46], Greedy
algorithms [28], [47], formal concept analysis [48], etc.

The most prominent works concerning the applicability of
mutation testing to safety-critical industrial systems include
the empirical investigations reported in [3], [49]–[51]. Al-
though the work in [3] proposes a well-defined mutation
analysis pipeline for test suite quality assessment of embedded
software, it misses to address the importance of properties
associated with the software and the ways to handle them
during mutation testing. Contrary to the existing research on
regular MT, we use properties—which allow us to express
software requirements and specifications—to formalize the
notion of killing the mutants.

Mutations with Simulink models. Mutation mainly relies
on alterations in the Simulink model by seeding defects using
mutation operators [52]. Researchers have proposed several
tools for creating mutants: SIMULTATE [53], MODIFI [54],
ErrorSim [55], FIBlock [56], and FIM [34]. We also mention
SLforge [19], a tool for automatically generating random valid
Simulink models for differential testing. In our experiments,
we used FIM since it provides a higher degree of automation
compared to the other tools.

Mutation-based test case generation. With regular MT,
the mutation-based test case generation approaches exploit the

mutants to generate test cases that can pick up the errors and
discover the mutants. Some approaches considered generating
tests that can reveal mutations introduced in the specification
(e.g., in UML models) [57]–[62]. PBMT is different in many
ways: it does not target mutations in the specification and it
introduces a novel notion of mutation testing.

The approaches designed to address Simulink models focus
on targeted test-data generation either using search-based test-
ing [63], [64] or behavioral analysis approaches (for instance,
bounded reachability) [65], [66]. In essence, the main objective
of these techniques is to generate a mutation-adequate test
suite that achieves full mutation coverage based on the RIP
model. Inspired by these techniques, we designed our search
strategy to automatically φ-kill mutants. Further, PBMT intro-
duces a novel instance of mutation testing that assesses the
mutation adequacy of test suites w.r.t. properties, which has
not been considered in mutation-based testing so far.

IX. CONCLUSION

We presented Property-based Mutation Testing (PBMT),
a novel approach to mutation testing that promises efficient
evaluation of test suites concerning software properties. Our
formalization of mutant killability concerns with the satisfac-
tion (and violation) of a property for the original program (and
its mutated version). We provide rigorous semantics for PBMT
and its associated mutant killing problem, enabling search-
based generation of test cases using a global optimizer. We
used different test generation strategies for creating test suites
and observed their impact on mutant killability.

We studied PBMT on two Simulink models across the
safety-critical CPS domain, providing evidence that testing
software against properties is more challenging and relevant
than opting for regular MT, in which mutants can be easily
killed. Finally, our evaluation shows that state-of-the-art Adap-
tive Random Testing and Falsification Testing techniques are
still weak in terms of their capability of generating test suites
that can effectively kill mutants when tested against properties.

Future work concerns adapting PBMT to closely related
CPS modeling languages, including Simulink models inte-
grated with Stateflow Charts. We further plan to conduct
additional investigations with HOMs.
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