
On the Benefits of Biophysical Synapses

Julian Lemmel, Radu Grosu
Faculty of Informatics of Technische Universität Wien, Austria.

julian.lemmel@tuwien.ac.at, radu.grosu@tuwien.ac.at

Abstract

The approximation capability of ANNs and their RNN instan-
tiations, is strongly correlated with the number of parameters
packed into these networks. However, the complexity barrier
for human understanding, is arguably related to the number
of neurons and synapses in the networks, and to the associ-
ated nonlinear transformations. In this paper we show that
the use of biophysical synapses, as found in LTCs, have two
main benefits. First, they allow to pack more parameters for
a given number of neurons and synapses. Second, they allow
to formulate the nonlinear-network transformation, as a linear
system with state-dependent coefficients. Both increase inter-
pretability, as for a given task, they allow to learn a system
linear in its input features, that is smaller in size compared
to the state of the art. We substantiate the above claims on
various time-series prediction tasks, but we believe that our
results are applicable to any feedforward or recurrent ANN.

Introduction
Inspired by spiking neurons, artificial neurons (ANs) com-
bine in one unit, the additive behavior of biological neurons
with the graded nonlinear behavior of their synapses (Bishop
1995; Goodfellow, Bengio, and Courville 2016). This makes
ANs implausible from a biophysical point of view, and pre-
cluded their adoption in neural science.

Artificial neural networks (ANNs) however, correct this
biological blunder. In ANNs it is irrelevant what is the mean-
ing of a neuron, and what is that of a synapse. What mat-
ters, is the mathematical expression of the network itself.
This was best exemplified by ResNets, which were forced,
for technical reasons, to separate the additive transforma-
tion from the graded one, and introduce new state variables,
which are the outputs of the additive neural, rather than the
nonlinear synaptic units (He et al. 2016).

This separation allows us to reconcile ResNets with liq-
uid time-constant neural networks (LTCs), a biophysical
model for nonspiking neurons, that shares architectural mo-
tifs, such as activation, inhibition, sequentialization, mutual
exclusion, and synchronization, with gene regulatory net-
works (Lechner et al. 2019, 2020; Hasani et al. 2021; Alon
2007). LTCs capture the behavior of neurons in the retina of
large species (Kandel et al. 2013), and that of the neurons

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in small species, such as the C.elegans nematode (Wicks,
Roehrig, and Rankin 1996). In LTCs, a neuron is a capaci-
tor, and its rate of change is the sum of a leaking current, and
of synaptic currents. The conductance of a synapse varies in
a graded nonlinear fashion with the potential of the presy-
naptic neuron, and this is multiplied with a difference of po-
tential of the postsynaptic neuron, to produce the synaptic
current. Hence, the graded nonlinear transformation is the
one that synapses perform, which is indeed the case in na-
ture, and not the one performed by neurons.

In contrast to ResNets, NeuralODEs and CT-RNNs (Chen
et al. 2018; Funahashi and Nakamura 1993), LTCs multi-
ply (or gate) the conductance with a difference of poten-
tial. This is dictated by physics, as one needs to obtain a
current. Gating makes each neuron interpretable as a lin-
ear system with state-dependent coefficients (Alvarez-Melis
and Jaakkola 2018; Çimen 2008). Moreover, LTCs associate
each activation function to a synapse (like in nature) and not
to a neuron (like in ANNs). This allows LTCs to pack con-
siderably more parameters in a network with a given number
of neurons and synapses. As the approximation capability
of ANNs and LTCs is strongly correlated with their num-
ber of learnable parameters, LTCs are able to approximate
the same behavior with a much smaller network, that is ex-
plainable in terms of its architectural motifs. We argue that
nonlinearity and the size of a neural network are the major
complexity barriers for human understanding.

Moving the activation functions to synapses can be ac-
complished in any ANN, with the same benefits as for LTCs
in network-size reduction. The gating of sigmoidal activa-
tion functions can be replaced with hyperbolic-tangent acti-
vation functions. However, one looses the biophysical inter-
pretation of a neural network, the linear interpretation of its
neurons, and the polarity of its synapses.

We compared the expressive power of LTCs with that
of CT-RNNs, (Augmented) NeuralODEs, LSTMs, and CT-
GRUs, for various recurrent tasks. In this comparison, we
considered LTCs and CT-RNNs with both neural and synap-
tic activation functions. We also investigated the benefits of
gating sigmoidal activation with a difference of potential.
Our results show that synaptic activation considerably re-
duces the number of neurons and associated synapses re-
quired to solve a task, not only in LTCs but also in CT-
RNNs. We also show that the use of hyperbolic-tangent ac-

ar
X

iv
:2

30
3.

04
94

4v
1

 [
cs

.N
E

]
 8

 M
ar

 2
02

3

tivation functions in CT-RNNs has similar expressive power
as gating sigmoids with a difference of potential, but it
looses the linear interpretation.

The rest of the paper is structured as follows. First, we
provide a fresh look into ANNs, ResNets, NeuralODEs, CT-
RNNs, and LTCs. This paves the way to then show the ben-
efits of biophysical synapses in various recurrent tasks. Fi-
nally we discuss our results and touch on future work.

A Fresh Look at Neural Networks
Artificial Neural Networks
An AN receives one or more inputs, sums them up in a linear
fashion, and passes the result through a nonlinear activation
function, whose bias b is the condition for the neuron to fire
(spike). However, activation is graded (non-spiking), with
smooth (e.g. sigmoidal) shape. Formally:

yt+1
i =σ(

n∑
j=1

wt
ji y

t
j + bt+1

i) σ(x)=
1

1 + e−x
(1)

where as in Figure 1, yt+1
i is the output of neuron i at layer

t+1, ytj is the output of neuron j at layer t,wt
ji is the weight

associated to the synapse between neuron j at layer t and
neuron i at layer t+1, bt+1

i is the bias (threshold) of neuron
i at layer t+1, and σ is the activation function, e.g., the
logistic function above. A network with one input layer, one
output layer, andN ≥ 2 hidden layers, is called a deep neural
network (DNN) (Goodfellow, Bengio, and Courville 2016).
ANNs are universal approximators.

Although ANs are biophysically implausible, ANNs are
in fact closely related to nonspiking neural networks. To
demonstrate this, let us look first at ResNets (He et al. 2016).

Residual Neural Networks
DNNs with a large number of hidden layers suffer from the
degradation problem, which persists even if the vanishing
gradients are curated. Intuitively, DNNs cannot accurately
learn identities. Hence, they were simply added to the DNNs
in form of skip connections (He et al. 2016).

The resulting architecture, as shown in Figure 1, was
called a residual neural network (ResNet)1. In ResNets, the
outputs xti of the sums are distinguished from the outputs yti
of the sigmoids. Formally:

xt+1
i = xti +

n∑
j=1

wt
ji y

t
j ytj = σ(xtj + btj) (2)

This distinction is very important from a biophysical point of
view. The main idea is that neurons are just summation units,
and the sigmoidal transformation happens in synapses. In
fact, one can put the weights in the synaptic transformation,
too, which leads to the equivalent equations:

xt+1
i = xti +

n∑
j=1

ytji ytji = wt
ji σ(x

t
j + btj) (3)

1In (He et al. 2016), xt
i skips the first sum and it is added di-

rectly to xt+2
i . Hence, the architecture shown in Figure 1, can be

regarded as ResNets with finest skip granularity.

Figure 1: DNN (in black) and ResNet (in black and blue).

Here wt
ji can be thought of as the maximum conductance

of the input dependent synaptic transformation σ(xtj + btj).
This transformation is indeed graded in nature, that is non-
spiking. Since ResNets are particular DNNs, with identity as
a linear activation, they are also universal approximators.

Neural Ordinary Differential Equations
Equations (3) is the Euler discretization of a set of differ-
ential equations, where the time step is simply taken to be
one (E 2017; Chen et al. 2018). Mathematically:

ẋi(t) =

n∑
j=1

yji(t) yji(t) = wji(t)σ(xj(t)+ bj(t)) (4)

In these equations, x, y, and the parameters w and b change
continuously in time. Now suppose we make the parameters
constant. Are we still going to have a universal ODE approx-
imator? The answer is yes, as we will show in next section.
The differential equations are as follows:

ẋi(t) =

n∑
j=1

yji(t) yji(t) = wji σ(xj(t)+ bj) (5)

This is the form of Neural Ordinary Differential Equations
(NeuralODEs) (E 2017; Chen et al. 2018).2 Taking the state
of the network as the sigmoid y of a sum is equivalent to
taking the state as the sum x of sigmoids.

Theorem 1 (NeuralODEs). Let x and y be state vectors.
Then ẏ=σ(Wy + b) is equivalent to ẋ=Wσ(x+ b).

Proof. Take x=Wy. Then the following holds:

ẋ =Wẏ =Wσ(Wy + b) =Wσ(x+ b)

A slight extension called ANODEs is given in (Dupont,
Doucet, and Teh 2019), which embeds the input in the inter-
nal state, and projects the state to the outputs S, as follows:

x(t0) = [x, 0]T y = πS(x(tN)) (6)

NeuralODEs are harder to learn than ResNets. For the train-
ing purpose, one can use the adjoint equation, and employ
efficient numerical solvers (E 2017; Chen et al. 2018).

2Strictly speaking, NeuralODEs ẋ(t)= f(x) may have an arbi-
trary number of neural layers for the function f .

Figure 2: Synaptic-activation DNN and ResNet.

Continuous-Time Recurrent Neural Networks
Autonomous case. In this form of CT-RNNs, the input is
the initial state. Let us call them ACT-RNNs, They extend
NeuralODEs with a leading term −wixi(t) (Funahashi and
Nakamura 1993). Their mathematical form is as follows:

ẋi(t) = −wixi(t) +
∑n

j=1 yji(t)

yji(t) = wji σ(xj(t)+ bj)
(7)

The leading term brings the system back to the equilibrium
state, when no input is available. Hence, a small perturba-
tion is forgotten, that is, the system is stable. Like in Neu-
ralODEs, one can interchange sumation and activation.

Theorem 2 (ACT-RNNs). Let x and y be state vectors. Then
ẏ=−w ∗ y+σ(Wy+ b) and ẋ=−w ∗x+Wσ(x+ b) are
equivalent ODEs where ∗ is the pointwise product of vectors.

Proof. Let x=Wy. Then (Funahashi and Nakamura 1993):

ẋ=Wẏ
=W (−w ∗ y+σ(Wy+b))=−w ∗x+Wσ(x+ b)

ACT-RNNs are universal approximators, and stabilization is
not relevant in this respect (Funahashi and Nakamura 1993).
Hence, NeuralODEs are universal approximators, too.

Synaptic activation. Like in ANNs, ACT-RNNs associate
each activation function to a neuron. We therefore call them
NA-ACT-RNNs, where NA stands for neural activation.

However, as shown in Figure 2, any ANN can be rewrit-
ten, such that activation functions are associated to synapses.
We call this form of ACT-RNNs, SA-ACT-RNN, where SA
stands for synaptic activation. Adding to each activation a
variance a, too, one has the following explicit form:

ẋi(t) = −wixi(t) +
∑n

j=1 yji(t)

yji(t) = wji σ(ajixj(t)+ bji)
(8)

The advantage of SA-ACT-RNNs is that they pack many
more parameters in a network, for the same number of neu-
rons and synapses. For example, an SA-ACT-RNN with 32
neurons, connected in an all to all fashion, is able to pack
3104 parameters. This roughly corresponds to an NA-ACT-
RNN with 54 neurons which packs 3132 parameters.

While the approximation capability of a neural network
is strongly correlated with its number of parameters, we
strongly believe that the complexity barrier for human un-
derstanding, is in the number of neurons and synapses.

Figure 3: The electric representation of a nonspiking neuron.

General case. CT-RNNs have in general associated a time
varying input signal u, too, that is, they are RNNs. The way
the input is considered, plays a very important role.

A popular way of adding the input signal u, is to extend
the sum within a sigmoid with a sum corresponding to the
input. In vectorial form this looks as follows:

ẏ=−w ∗ y+σ(Wy + V u+ b) (9)

This form has excellent convergence properties, but it cannot
be extended to synaptic activations. We therefore prefer the
following form, which has the same convergence properties:

ẋ=−w ∗x+Wσ(ax ∗x+ bx)+V σ(au ∗u+ bu) (10)

where ax, bx and au, bu represent the variance and the bias
vectors for the state and the input vectors, respectively. Fi-
nally, another popular way of adding the input to CT-RNNs
is in a linear fashion, as below.

ẋ=−w ∗x+Wσ(a ∗x+ b)+V u (11)

Synaptic activation. Like in SA-ACT-RNNs, the last two
CT-RNNs can be rewritten, by associating each activation to
a synapse. To distinguish the two variants, we call them NA-
CT-RNNs and SA-CT-RNNs, respectively. In scalar form,
the sigmoidal-input version can be written as below. The
linear-input version is very similar:

ẋi(t) = −wixi(t) +
∑n

j=1 yji(t) +
∑m

j=1 zji(t)

yji(t) = wji σ(a
x
jixj(t) + bxji)

zji(t) = vji σ(a
u
jiuj(t) + buji)

(12)

Now consider an SA-CT-RNN with 32 neurons, connected
all to all, and with 32 inputs. It packs a total of 6176 param-
eters. This roughly corresponds to an NA-CT-RNN with 54
neurons, which packs a total of 6102 parameters.

Liquid Time Constant Networks
Autonomous case. LTCs are a biophysical model for the
neural system of small species (Wicks, Roehrig, and Rankin
1996; Lechner et al. 2019, 2020; Hasani et al. 2021), and the
retina of large species (Kandel et al. 2013). Due to the small
dimension of these neural systems (≤ 1mm), neural trans-
mission happens passively, in the analog domain, without
considerable attenuation. Hence, the neurons do not need to
spike for an accurate signal transmission.

As shown in Figure 3, the neuron’s membrane is an insu-
lator, with ions both on its inside and outside. Electrically,

sigm
presynaptic
activation

postsynaptic
activation

synaptic
current

sigm
presynaptic
activation

postsynaptic
activation unsqueeze(x,-2)

unsqueeze(x, -1)

sum(x,-2)
synaptic
current

Figure 4: Synaptic Layer in LTCs with synaptic (top) and neural (bottom) activation.

it is a capacitor. The difference between the inside-outside
ionic concentrations defines the membrane potential (MP)
x. The rate of change of x depends on the currents y pass-
ing through the membrane. These are either external currents
(ignored for ALTCs), a leakage current, and synaptic cur-
rents. For simplicity, we consider only chemical synapses.
The capacitor equation is then as follows:

C ẋi(t) = wli (eli − xi(t)) +
∑n

j=1 yji(t)

yji(t) = wji σ(ajixj(t)+ bji) (eji − xi(t))
(13)

where C is the membrane capacitance, eli the resting poten-
tial, wli the leaking conductance, and eji the synaptic poten-
tials. These are either 0 mV for excitatory synapses (poten-
tial xi is negative so the current is positive), or -90 mV for
inhibitory synapses (the current is in this case negative).

Equations (18) are very similar to Equations (7) of an SA-
ACT-RNN. They have a leaking current, which ensures the
stability of the ALTC, and a presynaptic-neuron controlled
conductance σ for the synapses, with maximum conduc-
tance wji. This conductance is multiplied with a difference
of potential eji −xi(t), to get a current. This biophysical
constraint, makes them different from SA-ACT-RNNs. So
what is the significance of this gating term from the point of
view of machine learning? As we prove below, it has impor-
tant consequences for the interpretability of ALTCs.

Theorem 3 (Interpretability). Each ALTC neuron is inter-
pretable as linear regression of its inputs.

Proof. Let x(0) be the input. This is propagated in time
as x(t). Let wji σ(ajixj + bji) be the the state-dependent
weight from neuron j to neuron i. Then according to Equa-
tions (18), ẋi(t) is a linear regression in x, for each i. More-
over, small perturbations of x lead to small changes in ẋ.

ALTCs are able to pack even more parameters than SA-
ACT-RNNs. For example, an ALTC with 32 neurons, con-
nected in an all to all fashion, is able to pack 4192 parame-
ters, whereas an SA-ACT-RNN packs only 3104 parameters.

This roughly corresponds to an NA-ACT-RNN with 64 neu-
rons which packs 4224 parameters

Neural activation. While in nature each synapse has dis-
tinct dynamics, one may want to consider that in particu-
lar cases, all outgoing synapses of a neuron have the same
activation parameters. Let us call this version of ALTCs as
NA-ALTCs, where NA stands for neural activation. We also
interchangeably refer to ALTCs as SA-ALTCs. Formally:

C ẋi(t) = wli (eli − xi(t)) +
∑n

j=1 yji(t)

yji(t) = wji σ(ajxj(t)+ bj) (ei − xi(t))
(14)

If one takes eli to be zero and aj to be one, NA-ALTCs
are the same as NA-ACT-RNNs except for the gating term
eji −xi(t). As discussed above, this term makes NA-ALTCs
linear systems with state dependent coefficients, which not
only makes them more interpretable, but allows the appli-
cation of state-dependent Ricatti equations in the automatic
synthesis of nonlinear controllers (Çimen 2008).

In our experiments, we found that CT-RNNs where the
activation function is a hyperbolic tangent, has very similar
convergence and learning-accuracy properties with LTCs,
where the activation function is a sigmoid. However, hyper-
bolic tangents fail to capture the opening degree of synaptic
channels and their associated polarity, the same way gated
sigmoids do: sigmoids accurately capture this degree, and
the difference of potential the gating polarity.

General case. Like CT-RNNs, LTCs have in general asso-
ciated a time-varying input signal u. As for CT-RNNs, we
consider both a sigmoidal-input version and a linear-input
version. In scalar form, the first can be written as below:

C ẋi(t) = wli(eli − xi(t)) +
∑n

j=1 yji(t) +
∑m

j=1 zji(t)

yji(t) = wji σ(a
x
jixj(t) + bxji)(eji − xi(t))

zji(t) = vji σ(a
u
jiuj(t) + buji)(eji − xi(t))

(15)

An SA-LTC with 32 neurons, connected in an all to all fash-
ion and with 32 inputs, packs a total of 8288 parameters,

600 2000 6000
Params

1.0

1.5

2.0

2.5

3.0

te
st

 lo
ss

600 2000 6000 20000
Params

1.0

1.5

2.0

2.5

3.0

te
st

 lo
ss

NA-CT-RNN-S
NA-CT-RNN-T
NA-LTC
SA-CT-RNN-S
SA-CT-RNN-T
SA-LTC
LSTM
CT-GRU
ANODE

Figure 5: Results for the Walker2d kinematics-learning experiments. Left: synaptic inputs, Right: linear inputs. The size of the
marker dots represent the number of neurons (or cells in case of LSTMs): 8, 16, 32 or 64 (from smallest to largest).

600 2000 6000
Params

0.004

0.006

0.008

0.010

0.012

0.014

te
st

 lo
ss

600 2000 6000 20000
Params

0.004

0.006

0.008

0.010

0.012

0.014
te

st
 lo

ss
NA-CT-RNN-S
NA-CT-RNN-T
NA-LTC
SA-CT-RNN-S
SA-CT-RNN-T
SA-LTC
LSTM
CT-GRU
ANODE

Figure 6: Results for the Half-Cheetah kinematics-learning experiments. Left/Right and marker size as before.

whereas an SA-CT-RNN packs only 6176 parameters. This
roughly corresponds to an NA-CT-RNN with 63 neurons,
which packs a total of 8253 parameters.

The linear-input version of SA-LTCs is very similar. For-
mally, it is described as below:

C ẋi(t) = wli(eli − xi(t)) +
∑n

j=1 yji(t) +
∑m

j=1 zji(t)

yji(t) = wji σ(a
x
jixj(t) + bxji)(eji − xi(t))

zji(t) = vji uj(t)
(16)

An SA-LTC with 32 neurons, connected in an all to all fash-
ion and with 32 inputs, packs 5216 parameters. This roughly
corresponds to a linear-input NA-CT-RNN with 51 neurons,
which packs a total of 5355 parameters.

Neural activation. Like in the autonous case, one can also
consider NA-LTCs, where all outgoing synapses of a neuron
have the same activation parameters. For the sigmoidal-input
version one obtains the following equations:

C ẋi(t) = wli(eli − xi(t)) +
∑n

j=1 yji(t) +
∑m

j=1 zji(t)

yji(t) = wji σ(a
x
j xj(t) + bxj)(ei − xi(t))

zji(t) = vji σ(a
u
j uj(t) + buj)(ei − xi(t))

(17)

The linear-input version is similar, but in this case zji(t) =
vji uj(t). As for ALTCs, NA-LTCs are very similar to NA-
CT-RNNs, with the exception of the gating term eji −xi(t).

As discussed before, one can get rid of gating, by using a
hyperbolic-tangent activation function, with its associated
loss of linearity and biophysical meaning.

LTCs are universal approximators (Hasani 2020; Hasani
et al. 2021). This is true for both their autonomous and gen-
eral form, and for synaptic and linear inputs.

Experimental Evaluation
Sequential model structure
A three-layered sequential structure was used for all experi-
ments in this section. Let us denote by u(t) the input at time
t and by yi(t) the output of layer i at time t. The output of
the final layer is the predicted output ŷ(t) = y3(t).

The first layer maps the inputs to an RNN-layer with ei-
ther a linear (y1(t)=Ainu(t)+ bin) or a synaptic (as dis-
cussed above) transformation - dubbed linear or synaptic
input mapping, respectively. In case of synaptic input map-
ping these sensory synapses were implemented in accor-
dance with the RNN model used, i.e. they either used synap-
tic or neural activation, and did also incorporate the multi-
plication with a difference of potentials in case of LTCs.

The second layer contains the RNN cells and its output
is computed by employing an ODE-solver. The actual ODE
being solved is determined by the model type. The different
variants are explained in the preceding section. Unlike con-
ventional NeuralODEs, the RNN cells in our model retain a
state (and consequently information) after each time-step t.

The third layer, irrespective of the specific model type

600 2000 6000
Params

0.005

0.010

0.015

0.020

0.025

0.030

te
st

 lo
ss

600 2000 6000 20000
Params

0.005

0.010

0.015

0.020

0.025

0.030

te
st

 lo
ss

NA-CT-RNN-S
NA-CT-RNN-T
NA-LTC
SA-CT-RNN-S
SA-CT-RNN-T
SA-LTC
LSTM
CT-GRU
ANODE

Figure 7: Results for the Half-Cheetah Behavioural Cloning modeling experiments. Left/Right and marker size as before.

600 2000 6000
Params

0.1

0.2

0.3

0.4

0.5

te
st

 lo
ss

600 2000 6000 20000
Params

0.1

0.2

0.3

0.4

0.5

te
st

 lo
ss

NA-CT-RNN-S
NA-CT-RNN-T
NA-LTC
SA-CT-RNN-S
SA-CT-RNN-T
SA-LTC
LSTM
CT-GRU

Figure 8: Results for the Sequential MNIST classification experiments. Left/Right and marker size as before.

used, maps the final RNN state y2(t) to the output vector
y3(t) in a linear fashion, that is, y3(t)=Aout y2(t)+ bout.

Neural and synaptic dynamics were implemented as py-
torch-lightning modules, ensuring re-usability and portabil-
ity across different devices such as CPU and GPU. Upon
instantiating the module, the desired model type is specified
and the parameters are initialized accordingly. Initialization
bounds were taken from (Hasani et al. 2021), and are given
in the Supplementary Materials. In order to reduce the pa-
rameter space, some parameters were fixed at some value
and were not subject to training through backpropagation.

Since the resulting system of ODEs is stiff, the choice of
the ODE-solver has a strong impact on the performance. We
chose the explicit Euler solver with 10 unfolds for all the
experiments in this paper, as it gave good enough accuracy
with low time-complexity, compared to more sophisticated
solvers such as Runge-Kutta methods (rk4 or dopri5).

The chain of computations for a layer of synapses with
neural and synaptic activation is shown in Figure 4 top and
bottom respectively. Here, x and y are the state of the pre-
synaptic and post-synaptic neuron respectively. LTC-RNNs
extend CT-RNN synapses by multiplying the activation with
a difference-of-potential term (bottom part of the figures).
Synaptic activation was realised by extending vectors to ma-
trices throughout the computation graph while also replacing
each corresponding matrix-multiplication by the element-
wise (or Hadamard) product. Particularly, this means that
intermediary results are also represented as matrices while
they are vector-valued in case of neural activation.

Robotic Experiments
To explore the parameter-packing and the linear-gating ben-
efits of biophysical synapses we conducted four supervised-
learning time-series experiments: Walker2d prediction,
Half-Cheetah prediction, Half-Cheetah behavioural cloning,
and Sequential-MNIST classification.

The parameter-packing benefits are evaluated by using
CT-RNNs and LTCs with 8, 16, 32, and 64 neurons (con-
nected all-to-all) in the hidden layer, with both neural and
synaptic activation, and with both synaptic and linear in-
puts. The gating benefits are evaluated by using CT-RNNs
with both sigmoid and tanh activation functions.

We also provide results for LSTMs, CT-GRUs and AN-
ODEs with 10 augmenting dimensions. We use a linear input
mapping as this is the default for the first two. By lacking a
stabilization term, the simple NeuralODEs discussed before
perform worse than CT-RNNs, and we do not show them in
our results.

Although our results are mainly for robotic control and
they are restricted to LTCs and CT-RNNs, we claim that they
are applicable to any feedforward or recurrent ANN.

The CT-RNN and LTC models tested are abbreviated as
NA-CT-RNN and NA-LTC for neural activation, and SA-
CT-RNN and SA-LTC for synaptic activation. CT-RNNs
used either a sigmoidal or a hyperbolic-tangent activation,
marked with the suffix S and T, respectively. LTCs always
used a sigmoidal activation, because a hyperbolic tangent
not only fails to capture the biophysics of synapses, but also
renders the network very unstable. For all models we did ex-
periments with both linear- and synaptic-input mappings, as

the latter more closely capture sensory neurons. All experi-
ments used the Adam optimizer (Kingma and Ba 2014).

Learning Walker-2D kinematics. This robotic task is in-
spired by the physics simulation in (Rubanova, Chen, and
Duvenaud 2019), and implemented by using the gym envi-
ronment in (Brockman et al. 2016). It evaluates how well
various RNNs are suited to learn kinematic dynamics.

To create the training dataset, we used a non-recurrent
policy, pretrained via proximal policy optimization (PPO)
(Schulman et al. 2017), and the Rllib (Liang et al. 2017) re-
inforcement learning framework. To increase the task com-
plexity, we used the pretrained policy at 4 different training
stages (between 500 to 1200 PPO iterations). We then col-
lected 17-dimensional observation vectors, performing 400
rollouts of 1000 steps each on the Walker2d-v2 OpenAI
gym environment and the MuJoCo physics engine (Todorov,
Erez, and Tassa 2012). Note that there is no need to include
the actions in the training set, because the policy is determin-
istic. We used 15% percent of the dataset for testing, 10%
percent for validation and the rest for training.

We aligned the rollouts into sequences of length 20 and
then trained each of the models three times for 200 epochs.
This was done for 8, 16, 32, and 64 RNN cells.

Figure 5 shows for each model the median test loss and its
min and max values, for three runs, with respect to the num-
ber of neurons, and the associated number of parameters.

CT-RNNs perform better for the linear input-mapping,
whereas SA-LTCs for synaptic input-mapping. The pack-
ing benefit of biophysical synapses is seen in the fact that
SA-CT-RNNs and SA-LTCs pack essentially as many pa-
rameters as NA-CT-RNNs and NA-LTCs, with half of the
number of neurons. The gating benefit is exemplified by the
fact that CT-RNN-Ts perform better than CT-RNN-Ss. LTCs
perform better than CT-RNNs in all instances. LSTMs and
CT-GRUs attain (even greater) parameter packing through
a more elaborate concept of a structured cell, but not nec-
essarily with greater accuracy, when their number of cells
equals the number of neurons of SA-LTCs. Since LSTMs
and CT-GRUs have by default a linear input-mapping, they
appear only in the right figure. ANODEs, are also shown in
the right figure. They perform comparable to NA-LTCs.

Learning Half-Cheetah kinematics. Similar to the Wal-
ker-2D, we learned the kinematics of the Half-Cheetah.

For this experiment we collected 100 rollouts with a con-
troller that was trained using Truncated Quantile Critics
(TQC) (Kuznetsov et al. 2020). Just a single version pro-
vided by the stable-baselines zoo (Raffin 2018) was used
this time, making the task relatively easier than the previ-
ous one. Again, each rollout is composed of a series of 1000
datapoints consisting of a 27-dimension observation vector
generated by the MuJoCo physics engine and a 6-dimension
action vector that is produced by the controller. The same
data was used in the following two different tasks:

1. Kinematics modeling. Predicting the next observation af-
ter having seen 20 preceding observations. The action
vectors are not used for this task since the observations
serve both as inputs and as labels.

2. Behavioural cloning. Predicting the next action after hav-
ing seen 20 preceding observations. In this task the ob-
servations serve as inputs while the actions are the labels.

Figure 6 shows the results for the Half-Cheetah kinematic
modeling, and Figure 7 the ones for Half-Cheetah behavioral
cloning. The median, min and max test loss are represented
as before. The results in both figures follow a very similar
pattern as the ones for Walker-2D. However, in this case
the benefits of CT-RNN-Ts are evident only for the synaptic
input-mapping. LTCs remain more performant. In Figure 7,
LTSMs and CT-GRUs have a slightly better accuracy com-
pared to SA-LTCs, at the expense of more parameters.

Sequential-MNIST classification. The MNIST dataset
consists of 70,000 gray-scale images of 28×28 pixels, con-
taining hand-written digits (LeCun 1998). In order to make
this task as a sequential one, the images are transformed into
sequences of length 28, by taking each row vector, as an in-
put in time. The desired output is a one-hot encoded vec-
tor representing integers from 0 to 9. Consequently, a cross-
entropy loss was used when training the models.

The results shown in Figure 8 are as before, the median,
min and max test loss of three runs each. They follow a
similar pattern with the previous figures, but the LTCs with
synaptic inputs are less stable, and fail to properly converge
for the largest number of neurons. The best accuracy is at-
tained by NA-CTRNNs and LSTMs.

Discussion and Conclusion
The main goal of this paper was to investigate the synaptic-
activation and linear-gating benefits of biophysical synapses,
as they occur in LTCs. To this end, we asked:

• What happens if one uses neural activation in LTCs?
• What happens if linear gating is dropped in LTCs?

This resulted in two versions of LTCs, and four versions
of CT-RNNs, with either linear or synaptic input, and with
sigmoid or tanh activation, respectvely. We thoroughly ex-
amined the accuracy and parameter-packing ability of these
networks, for an increasing number of neurons, and com-
pared them to those of ANODEs, LSTMs, and CT-GRUs.

We observed that LTCs and CT-RNNs with synaptic acti-
vation achieve essentially the same accuracy and parameter
packing, for half of the number of neurons, as LTCs and
CT-RNNs with neural activation. The linear gating of LTCs
further improved this accuracy. We also observed that the ac-
curacy and packing benefits of LTCs is comparable to those
of cells in LSTMs. However, the latter rely on a much more
elaborate concept of a structured cell.

We claimed that the benefits of biophysical synapses ap-
ply to any ANN. However, we showed them explicitly for
LTCs and CT-RNNs, only. Hence, the full version of this pa-
per would have to substantiate this claim. For example, for
feed-forward CNNs, one could use a standard CNN base,
and consistently replace its neural activations with synap-
tic ones. Similarly, for LTSMs and CT-GRUs, one could
make their recurrent connections synaptic, by using a tanh-
activation for each synapse, instead of one for each cell.

For clarity, we kept NeuralODEs as simple as possible, by
confining their right-hand-side transformation to one layer.
However, one could have used more powerful transforma-
tions, which might have led to better results. Nevertheless,
we think that the discussed benefits would still apply.

Finally, biophysical synapses may better support sparse
networks too, as it was claimed in (Lechner et al. 2020).
However, for obvious space reasons, a thorough investiga-
tion of this claim had to be postponed to future work.

References
Alon, U. 2007. Network Motifs: Theory and Experimental
Approaches. Nature Reviews, 8.
Alvarez-Melis, D.; and Jaakkola, T. 2018. Towards Robust
Interpretability with Self-Explaining Neural Networks. In
Proceedings of NIPS’18, the 32nd Conference on Neural In-
formation Processing Systems. Montreal, Canada.
Bishop, C. 1995. Neural Networks for Pattern Recognition.
Claredon Press, Oxford.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. Openai gym.
arXiv preprint arXiv:1606.01540.
Chen, T.; Rubanova, Y.; Bettencourt, J.; and Duvenaud, D.
2018. Neural Ordinary Differential Equations. In Advances
in Neural Information Processing Systems, 6571–6583.
Dupont, E.; Doucet, A.; and Teh, Y. 2019. Augmented Neu-
ral ODEs. ArXiv, eprint 1904.01681, arXiv:1904.01681.
E, W. 2017. A Proposal on Machine Learning via Dynamical
Systems. Communications in Mathematics and Statistics, 5:
1–11.
Funahashi, K.; and Nakamura, Y. 1993. Approximation of
Dynamical Systems by Continuous Time Recurrent Neural
Networks. Neural networks, 6(6): 801–806.
Goodfellow, I.; Bengio, Y.; and Courville, A. 2016. Deep
Learning. MIT Press.
Hasani, R. 2020. Interpretable Recurrent Neural Networks
in Continuous-time Control Environments. Ph.D. thesis,
Wien.
Hasani, R.; Lechner, M.; Amini, A.; Rus, D.; and Grosu,
R. 2021. Liquid Time-constant Networks. Proceedings of
the AAAI Conference on Artificial Intelligence, 35(9): 7657–
7666.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Identity Map-
pings in Deep Residual Networks. CoRR, abs/1603.05027.
Kandel, E.; Schwartz, J.; Jessel, T.; Siegelbaum, S.; and
Hudspeth, A. 2013. Principles of Neural Science. McGraw-
Hill Education / McGraw-Hill Medical, 5 edition.
Kingma, D.; and Ba, J. 2014. Adam: A Method for Stochas-
tic Optimization. arXiv preprint arXiv:1412.6980.
Kuznetsov, A.; Shvechikov, P.; Grishin, A.; and Vetrov,
D. 2020. Controlling Overestimation Bias with Trun-
cated Mixture of Continuous Distributional Quantile Critics.
arXiv:2005.04269 [cs, stat].
Lechner, M.; Hasani, R.; Amini, A.; Henzinger, T.; Rus, D.;
and Grosu, R. 2020. Neural circuit policies enabling au-
ditable autonomy. Nature Machine Intelligence, 2: 642–652.

Lechner, M.; Hasani, R.; Zimmer, M.; Henzinger, T.; and
Grosu, R. 2019. Designing Worm-Inspired Neural Networks
for Interpretable Robotic Control. In Proceedings of the
2019 International Conference on Robotics and Automation
(ICRA). Montreal, Canada.
LeCun, B., Cortes. 1998. MNIST Handwritten Digit
Database, Yann LeCun, Corinna Cortes and Chris Burges.
http://yann.lecun.com/exdb/mnist/.
Liang, E.; Liaw, R.; Nishihara, R.; Moritz, P.; Fox, R.; Gon-
zalez, J.; Goldberg, K.; and Stoica, I. 2017. Ray RLLib: A
Composable and Scalable Reinforcement Learning Library.
CoRR, abs/1712.09381.
Poli, M.; Massaroli, S.; Yamashita, A.; Asama, H.; and Park,
J. 2020. TorchDyn: A Neural Differential Equations Library.
arXiv preprint arXiv:2009.09346.
Raffin, A. 2018. RL Baselines Zoo.
Rubanova, Y.; Chen, R. T.; and Duvenaud, D. 2019. La-
tent odes for irregularly-sampled time series. arXiv preprint
arXiv:1907.03907.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Todorov, E.; Erez, T.; and Tassa, Y. 2012. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 5026–
5033. IEEE.
Wicks, S.; Roehrig, C.; and Rankin, C. 1996. A Dynamic
Network Simulation of the Nematode Tap Withdrawal Cir-
cuit: Predictions Concerning Synaptic Function Using Be-
havioral Criteria. Journal of Neuroscience, 16(12): 4017–
4031.
Çimen, T. 2008. State-Dependent Riccati Equation (SDRE)
Control: A Survey. Proceedings of the 17th World Congress
of the International Federation of Automatic Control, 6–11.

Appendix
Our implementation is using the torchdyn pack-
age (Poli et al. 2020) which in turn is based on
pytorch-lightning. It comprises several different
ODE-solvers supporting automatic differentiation. Since
the package by itself was intended for implementing au-
tonomous NeuralODEs, a small trick was necessary for cre-
ating CT-RNNs and LTC-RNNs that receive inputs. Au-
tonomous NeuralODEs encapsulate a non-trivial function
(such as a neural network) that is used for computing
the derivative at each ODE-solver step dx

dt = F (x). For
achieving the non-autonomous behavior dx

dt = F ′(x, u)
the input was appended to the state at each step when
passed to the ODE-solver and it’s derivative was set to zero
[dxdt , 0] = F ([x, u]). Consequently, the solution computed
by the ODE-solver amounts to being the unaltered input ap-
pended to the desired final state.

C ẋi(t) = wli (eli − xi(t)) +
∑n

j=1 yji(t)

yji(t) = wji σ(ajixj(t)+ bji) (eji − xi(t))
(18)

Table 2: Parameters of the recurrent layer and their initial-
ization bounds. ∗ only present in LTC-RNNs.

Name Description Initialization
synaptic parameters
C ∗ Membrane capacitance 1 (fixed)
w Synaptic strength 0.01 - 1.0
b Synaptic midpoint 0.3 - 0.8
a Synaptic slope 3 - 8
e ∗ Reversal potential -1 or +1

cell body parameters
el Resting potential 0 (fixed)
wl Leakage conductance 0.01 - 1.0

Table 2 shows the initialization ranges used for the LTC
layer parameters taken from previous work. Since LTC dy-
namics tend to diverge rapidly if leaving the parameters un-
constrained, the following conditions were enforced during
training: C ≥ 0, w ≥ 0, a ≥ 0. These constraints are a
direct consequence of the capacitor equation Eq. 18 from
which LTCs are derived wherein neither conductance (w),
capacitance (Cm) nor synaptic gating (a) may be negative.
Similar constraints are also assumed in the proof of universal
approximation found in (Hasani et al. 2021).

Type-descriptors
The form of the derivative used whithin the NeuralODE is
configured by passing a type descriptor which is a string of
the form:

ctrnn [w-mode]act[factor][rec-type] in-mode [lis]

In any case the derivative is computed using the following
formula: ẋ = Synapses(x, x) + Input(u, x) − decay(x).
The type descriptor determines how the individual terms are
calculated.

Sizes of E, b and α depend on the recurrence type used:

Table 3: Type descriptor components and resulting formulas

w-mode Synapses(x, y)

None a σ(wx+ b) ∗ Factor(y)
r w σ(x+ b) ∗ Factor(y)
v w σ(a(x+ b)) ∗ Factor(y)
act σ(x)

’sigm’ 1/(1 + e−x)
’tanh’ tanh(x)

factor Factor(x)

None 1
’*’ (1− x)
’+’ (e− x)

rec-type
None neuronal activation
’s’ synaptic activation

in-mode Input(u, x)

’linear’ Iu+ bi
’synaptic’ Synapses(u, x)

lis decay(x)

None τx
’lis’ τ(x− x0)

Recurrence type Shape of parameters
neuronal (None) (model size)
synaptic (’s’) (model size, model size)

The different w-modes allow for adjusting the way
Synapses are parameterized, act determines the activation
function used, the factor distinguishes LTCs from CT-
RNNs, rec-type is used for switching between Neuronal and
Synaptic activation, in-mode determines the input mode and

Table 1: Results for the INSERT experiments

Model n = 8 n = 16 n = 32 n = 64
Par MSE ×10−2 # Par MSE ×10−2 # Par MSE ×10−2 # Par MSE ×10−2

ANODE 1663 0.62± 0.04 2263 0.46± 0.01 3463 0.40± 0.02 5863 0.31± 0.01
CT-GRU 5139 0.84± 0.05 12427 0.50± 0.02 - -
LSTM 1427 0.94± 0.00 3339 0.53± 0.02 8699 0.38± 0.00 -

NA-CT-RNN linear 555 1.10± nan 1211 0.60± nan 2907 0.41± 0.01 7835 0.45± 0.02
NA-CT-RNN synaptic 601 1.04± 0.04 1249 0.58± 0.02 2929 0.45± 0.08 7825 0.57± 0.04

NA-LTC linear 571 1.15± 0.07 1243 0.56± 0.01 2971 0.40± nan 7963 0.32± 0.07
NA-LTC synaptic 617 1.08± nan 1281 0.67± nan 2993 0.52± 0.01 7953 0.61± 0.06

SA-CT-RNN linear 667 1.01± 0.02 1691 0.54± 0.00 4891 0.36± nan -
SA-CT-RNN synaptic 1091 0.88± 0.04 2539 0.61± nan 6587 0.50± 0.04 -

SA-LTC linear 947 0.93± nan 2379 0.46± 0.02 6779 0.33± 0.03 -
SA-LTC synaptic 1371 0.82± 0.03 3227 0.47± 0.03 8475 0.28± nan -

lis is used when the initial state (= leakage potential) should
be learnable.

The recurrence type determines how recurrenct connec-
tions are implemented:

• neuronal: corresponds to the ctrnn model. Connections
can be thought of being only of linear nature, all incom-
ing synapses of a particular cell share the same bias and
summation happens before applying the activation func-
tion.

• synaptic: each synapse has a separate bias b, scale w
and reference potential E. An additional summation step
happens after calculating individual synaptic activations.
ẋ =

∑
[Synapses(x, x)] + Input(u, x)− decay(x)

Examples
• Vanilla CT-RNN: ctrnn vtanh linear

• SA-LTC: ctrnn vsigm+s synaptic

	Introduction
	A Fresh Look at Neural Networks
	Artificial Neural Networks
	Residual Neural Networks
	Neural Ordinary Differential Equations
	Continuous-Time Recurrent Neural Networks
	Liquid Time Constant Networks

	Experimental Evaluation
	Sequential model structure
	Robotic Experiments

	Discussion and Conclusion
	Type-descriptors
	Examples

