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Abstract

Modern tourism in the 21st century is facing numerous chal-
lenges. One of these challenges is the rapidly growing num-
ber of tourists in space limited regions such as historical city
centers, museums or geographical bottlenecks like narrow
valleys. In this context, a proper and accurate prediction of
tourism volume and tourism flow within a certain area is im-
portant and critical for visitor management tasks such as vis-
itor flow control and prevention of overcrowding. Static flow
control methods like limiting access to hotspots or using con-
ventional low level controllers could not solve the problem
yet. In this paper, we empirically evaluate the performance
of several state-of-the-art deep-learning methods in the field
of visitor flow prediction with limited data by using available
granular data supplied by a tourism region and comparing the
results to ARIMA, a classical statistical method. Our results
show that deep-learning models yield better predictions com-
pared to the ARIMA method, while both featuring faster in-
ference times and being able to incorporate additional input
features.

1 Introduction
With increasing population and travel capacities (e.g. easy
access to international flights) cultural tourism destinations
have seen a rise in visitor counts. In addition, recent needs
for social distancing and attendance limitations due to the
global COVID-19 pandemic have confronted tourism desti-
nations with significant challenges in preventing e.g. over-
crowded waiting-lines. The perceptions of tourists regard-
ing health hazards, safety and unpleasant tourism experiences
may be influenced by social distance and better physical sep-
aration [Sigala, 2020]. Therefore, future-oriented tourism re-
gions aim to control visitor flows in order to maximise visitor
satisfaction, which is directly connected to the economical
wealth of the specific tourism region.

Unfortunately, many real-world problems suffer from lim-
ited data availability due to data compliance issues, lack of
data collection or even lack of data transfer through stake-
holders. In the end there are not enough datasets to properly
train state-of-the art machine learning models. Since this is
a generic problem, this scientific work is focusing on what is

possible to achieve in the given environment considering the
given data and data history.

This paper illuminates the work in progress of austrian
based startup- and university-research. The first step in order
to control tourist flows is to predict authentic movement and
behavior patterns. However, since the tourist visitor flow is
affected by many factors such as the weather, cultural events,
holidays, and regional traffic, it is a very challenging task to
accurately predict the future flow [Liu et al., 2018]. Due to
the availability of large datasets and computational resources,
deep neural networks became the state-of-the-art methods in
the task of forecasting time-series data [Pan et al., 2021], in-
cluding tourism flow applications [Prilistya et al., 2020].

In this work, we focus on tourist flow prediction based on a
local dataset from the visitors of the tourist attractions of the
city of Salzburg. After data preprocessing and dataset prepa-
ration, we attempt to compare the performance of different
deep-learning based methods for time-series prediction with
ARIMA, a traditional statistics based method. According to
Li and Cao [Li and Cao, 2018], ARIMA is the most pop-
ular classical time forecasting method based on exponential
smoothing and it was made popular in 1970s when it was
proposed by Ahmed and Cook [Ahmed and Cook, 1979] to
be used for short-term freeway traffic predictions.

Deep neural networks are proven to work very well on
large datasets. However, their performance can degrade when
trained on limited data, resulting in poor predictions on the
test set. Since limited data is a common problem in tourism
time-series forecasting, we perform a comprehensive com-
parison of the DNNs and traditional techniques on a small
dataset to reveal the shortcomings and point out necessary fu-
ture improvements.

Deep-learning based models. Recurrent Neural Networks
(RNNs) are the state-of-the-art models for learning time-
series datasets. RNNs equip the neural networks with mem-
ory, making them successful at predicting the sequence-based
data. The introduction of gating mechanism to RNNs lead to
the great performance of LSTM [Hochreiter and Schmidhu-
ber, 1997] and GRU [Chung et al., 2014] networks.

RNNs have limitations when facing irregularly-sampled
time-series, present at many real-world forecasting problems
such as tourist flow prediction. To address this limitation,
phased-LSTM [Neil et al., 2016] adds a time gate to the
LSTM cells. GRU-D [Che et al., 2018] incorporates time in-
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Figure 1: Predicted and True visitor counts for the Funicular Railway (top) and Mozart’s Birthplace Museum (bottom). Predictions are
computed using CT-RNN (orange), GRU-D (green) and ARIMA (red).

tervals by a trainable decaying mechanism in order to handle
time-series with missing data and long-term dependencies.

Another approach is to introduce time-continuous models
with latent state defined at all times such as CT-RNN [ichi
Funahashi and Nakamura, 1993], CT-LSTM [Mei and Eis-
ner, 2017] and CT-GRU [Mozer et al., 2017]. A family
of continuous-time networks are NeuralODEs [Chen et al.,
2018] that define the hidden state of the network as a so-
lution to an ordinary differential equation. Some limita-
tions of NeuralODEs such as non-intersecting trajectories
can be aleviated by using augmentations strategies leading to
Augmented-NeuralODEs (ANODEs) [Dupont et al., 2019].
Continuous-time models share some favourable properties:
Adaptive computation as they can be implemented by numer-
ical ODE (ordinary differential equations) solvers and train-
ing with constant memory cost by using the adjoint sensitivity
method [Chen et al., 2018]. In addition, they can be statisti-
cally verified by using GoTube [Gruenbacher et al., 2022]
which constructs stochastic reachtubes (=the set of all reach-
able system states) of continuous-time systems and is made
deliberately for the verification of countinuous-depth neural
networks.

Traditional techniques. For time-series forecasting with
traditional techniques we use the Autoregressive Integrated
Moving Average (ARIMA) model. ARIMA has been used in
recent studies as a baseline for the evaluation of novel deep-
learning based models [Yao and Cao, 2020; Bi et al., 2020;
Li and Cao, 2018; Hassani et al., 2017] and is thus selected
as a baseline model for this paper as well.

Since limited data is a common problem in tourism time-
series forecasting, we summarize the specific contributions of
our paper as follows:

• We perform a comprehensive comparison of the DNNs
and ARIMA, a traditional technique, on a real-world
dataset to reveal the shortcomings and point out neces-
sary future improvements.

• The real-world dataset is considered small because of
limited historical entries.

• Per point-of-interest (POI), we perform granular predic-
tions on an hourly basis, which is critical for the task of
tourism flow control, see Figure 1.

• To the best of our knowledge, we are the first to apply a
wide range of RNN models to tourist flow prediction.

2 Related Work
Due to the importance of tourist flow prediction in the ever
growing tourism industry, visitor forecasting has gained some
attention over the past years [Burger et al., 2001; Hassani et
al., 2017]. Existing work examines tourist demand forecast-
ing using Recurrent Neural Networks such as LSTMs [Rizal
and Hartati, 2016; Li and Cao, 2018] or hidden Markov Mod-
els in conjunction with deep neural networks [Yao and Cao,
2020]. Most of these studies make predictions with only a
limited set of models.

Data granularity is another important aspect of tourism
data. Many studies focus on long-term predictions of



Hyperparameter Value
sequence length 30
batch size 16
epochs 300
optimizer adam
Learning-rate 1e−3

β1,2 (0.9, 0.999)
ε 1e−8

loss function mse, mae, huber
model size 32, 64, 128
normalized visitors True, False

Table 1: Hyperparameters used in RNN training.

monthly, quarterly and yearly, or in the best case daily num-
ber of visitors [Bi et al., 2020] in large regions as city
or country-level tourism demand [Asvikarani et al., 2020].
However, performing granular predictions on an hourly basis
and per POI is critical for the task of tourism flow control.

3 Methods
For this work, we built our own dataset on hourly data col-
lected from tourist attractions. We then perform predictions
with a rich set of models and do a comprehensive comparison
of the results. In this section we first introduce the dataset we
used for the experiments. Then we go over the methods we
chose to evaluate and compare their performances.

3.1 Data
The dataset we used stems from the ”Salzburg Card” which
was kindly provided to us by TSG Tourismus Salzburg
GmbH. Upon purchase of these cards, the owner has the abil-
ity to enter 32 different tourist attractions and museums in-
cluded in the portfolio of the Salzburg Card. The dataset con-
sists of the time-stamps of entries to each POI. Additionally,
we used data about weather and holidays in Austria.

3.2 Deep-Learning models
We use a large set of RNN variations on the tourist-
flow dataset to perform a comprehensive comparison of the
state-of-the art models and provide insight on their perfor-
mance. The set comprises vanilla-RNN, LSTM, phased-
LSTM, GRU-D, CT-RNN, CT-LSTM and Neural-ODE net-
works.

3.3 Traditional methods
In this study we use the non-seasonal variant of the ARIMA
model which does not consider the seasonal patterns in a
time-series. This model is usually denoted as ARIMA (p,d,q),
where p is the number of autoregressive terms, d is the
number of non-seasonal differences, and q is the number of
lagged forecast errors in the prediction equation [Burger et
al., 2001]. A generic expression for the non-seasonal ARIMA
process is given as [Hyndman and Khandakar, 2008]:

φ(B)(1−Bd)yt = c+ θ(B)εt

where {εt} is a white noise process, B is the backshift op-
erator, and φ(z) and θ(z) are polynomials of order p and

q respectively. A more detailed explanation of the ARIMA
method and its working principles can be found in [Hyndman
and Athanasopoulos, 2018].

4 Main Results
In this section we describe our pipeline comprising pre-
processing of the data, building different models and choos-
ing their hyper-parameters.

4.1 Data Preprocessing
We used the Salzburg card data from years 2017, 2018, and
2019 for our experiments. In order to create the time-series
data, we accumulated the hourly entries to each location. The
data then consists of the hour of the day, and the number of
entries at that hour to each of the 32 POIs.

For the RNN models, we added additional features to the
dataset: Year, Month, Day of month, Day of week, Holi-
days and Weather data. For the Holiday data we used the
national holidays and school holidays and count the days to
the next school day. For the Weather data, we use the hourly
weather data with these features: Temperature, Feels Like,
Wind speed, Precipitation, and Clouds as well as a One-
Hot-Encoded single word description of the weather (e.g.
”Snow”).

We performed further pre-processing by normalizing all
features to values between 0 and 1. To account for seasons,
we performed sine-cosine transformation for the month. Intu-
itively, since it is a circular feature we do not want to have the
values for December and January to be far from each other.

Finally, We split the data into sequences of length 30, and
used the data from years 2017 and 2018 as the training set,
and 2019 as the test set.

4.2 ARIMA
ARIMA parameters p, d, and q define how the function will
fit the given time-series which directly affects the quality
of future predictions. There are several recommended ap-
proaches for the manual selection of parameters and they all
rely on comparing the ARIMA model fit to the real values
of the time-series to try and minimize the deviation between
them [Ahmed and Cook, 1979; Hyndman and Khandakar,
2008; Hyndman and Athanasopoulos, 2018].

For this study, we have used the auto.arima function from
the R forecast library that automatically fits the ARIMA
model with different sets of parameters and returns the best
combination of p, d, and q for the given time-series [Hyn-
dman and Khandakar, 2008; Hyndman and Athanasopoulos,
2018]. Given that each of the 32 POIs in this study has a dif-
ferent time-series of visitor counts, we have determined dif-
ferent ARIMA parameters for each POI which were the best
fit for its time-series. ARIMA predictions models were then
built individually for each POI by fitting the ARIMA to that
POI’s training dataset with the best p, d, and q parameters
for that POI using the Python pmdarima library. Each time
after the number of visitors is predicted for the next hour in
the test data, the true value (i.e., number of visitors) for that
hour is added to update the existing ARIMA model and make
it aware of all previous true values before making the next
prediction.



Training time Prediction time only visitors external features
Model # Cells # Parameters (minutes) (milliseconds) MAE RMSE MAE RMSE

ARIMA - 224 - 69k 5.217 7.833 - -

ANODE 64.0 21.3k 145.6 3.01 4.599 6.965 4.410 6.663
Vanilla RNN 128.0 43.7k 5.9 0.18 3.958 6.321 3.802 6.160
LSTM 32.0 11.9k 1.5 0.24 3.713 6.209 3.630 6.113
Phased LSTM 32.0 11.8k 27.0 0.46 3.825 6.359 3.651 6.120
CT-LSTM 32.0 19.9k 18.1 0.31 3.734 6.239 3.700 6.185
CT-RNN 128.0 27.4k 57.1 0.60 3.694 6.131 3.629 5.983
GRU-D 64.0 27.7k 16.6 0.33 3.638 6.121 3.621 6.073

Table 2: The prediction results for models when using only the visitors count data and when using additional features from external data. Our
experimental results show that the errors were smaller for RNNs compared to ARIMA both with and without additional features were used.

4.3 RNN training
All of the Neural Networks were trained with
Backpropagation-Through-Time and the Adam opti-
mizer [Kingma and Ba, 2014] using the parameters given in
Table 1. In order to find optimal model size, loss function,
and whether to use normalized visitor counts, we did a grid
search conducting three runs per configuration and keeping
the one which achieved the lowest RMSE. The loss func-
tions listed in Table 1 correspond to Mean-Squared-Error,
Mean-Absolute-Error and Huber-Loss respectively.

4.4 Comparing ARIMA with Neural Networks
Before proceeding to the empirical comparison of the pre-
dictions made by each model, we mention some of the ad-
vantages of the deep-learning (DL) models over the ARIMA
model.

• ARIMA can not handle additional features and makes
predictions merely on the number of visitors in the past.
The DL models were equipped with additional features
of time, weather and holidays.

• ARIMA fails when given only short sequences as in-
put. The DL models can handle shorter sequences when
trained on the whole training set. To ensure fairness, we
feed the whole past sequence to ARIMA when evaluat-
ing at each time-step.

• ARIMA makes predictions for each POI separately,
while the DL models are trained with the visitors to all
POIs in a single vector and make predictions for all at the
same time. Thus, ARIMA loses the implicit data about
the total number of visitors in the city.

• ARIMA takes a lot of time for the prediction of each
time-step and each POI, while using the DL models re-
quires only a one-time cost of training and afterwards
the evaluation is fast.

5 Experimental Evaluation
We perform a diverse set of experiments with ARIMA and
DL models to evaluate their forecasting accuracy, execution
time and prediction time and compare the models. We run our
evaluations on a standard workstation machine setup (4 CPU

cores with 3.9 GHz, 8GB DDR3 memory) equipped with a
single GPU (GeForce GTX 1050 Ti, 4GB memory).

Table 2 shows the Mean-Absolute-Error (MAE) and Root-
Mean-Squared-Error (RMSE) achieved for each method.
ARIMA was not able to use the external features. Hence,
in order to ensure the fairness in our comparisons, we report
the results with and without using the additional features of
weather and holidays for DL models. For the deep-learning
models model size, corresponding number of parameters and
training and prediction times of the best run are listed ad-
ditionally. Since using normalized visitor counts led to bet-
ter results in every single model, we omitted non-normalized
models from the table. All of the models except the ANODE
achieved best results when trained with MAE as the loss func-
tion. For ANODE huber loss was best. The phased LSTM
uses the least number of parameters for comparable results.

All of our deep-learning models were able to outperform
the ARIMA method in both metrics, with and without addi-
tional features. Providing the additional features to the mod-
els resulted in a slightly better performance for the DL mod-
els. However, the improvements were quite marginal over
the results when only using the number of visitors. This can
be because we have limited training data available and thus
increasing the number of features does not pay off, or even
might result in over-fitting.

Interestingly, using MAE as loss function during training
led to best results in the majority of cases. Since MAE is com-
puted by summing up the absolute errors, it doesn’t weigh
outliers as strongly as MSE does. For the purpose of com-
paring the precision of the prediction, we used RMSE as it is
very important to avoid huge differences between the actual
visitors and the prediction for it. Small differences are not
that relevant in the real world.

We measured training times for the DL models and predic-
tion times for all models. As shown in Table 2 ARIMA took
69s to perform a single prediction for all POIs and the DL
took for the same task fractions of milliseconds, while having
used once y minutes for training. It is not possible to directly
compare training and testing runtimes between them because
ARIMA does not have a dedicated training step where the
model is built. Instead, before every new prediction at time t,
ARIMA model is fitted to the known time series up until the
time t-1 (i.e., training and testing are integrated for every pre-
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Figure 2: Predicted and True visitor counts for the Funicular Railway around New Year’s Eve (top) and the Festival Hall (bottom).

diction). Therefore, our approach favors ARIMA accuracy
over prediction time. For this particular use case where pre-
dictions of the number of visitors are performed hourly with
the latest information, we considered the runtime of a single
prediction as the DL models only need to be trained once.

In order to visually explore the predictions made by the
models, we plotted the predictions and the ground truth for
a few selected time-windows. We plot the predictions made
by the DL models (including the external features) with the
best MAE and RMSE, which were the GRU-D and CT-RNN
respectively. The prediction made by the DL models with
the visitors only data was only slightly worse than the others,
which is why we omit these evaluations in the plots. Our
plots show that although ARIMA is out-performed by the DL
methods in the average error of all predictions, there are cases
where it actually performs better than the other models.

Figure 1 top shows the forecast and real values for the
tourists entered the Funicular Railway descend which is the
cable car ride leading up to Salzburg Castle. As visible in the
plot, the DL models show a better performance, especially in
the valleys where the ARIMA fails to predict the downfalls
accurately.

Figure 1 bottom shows visitor predictions for Mozart’s
Birthplace Museum around the time of New Year’s Eve. The
reduced numbers of visitors on the 1st and 2nd of January is
expected but nonetheless overestimated by all our models.

Figure 2 top again shows the data for the cable car but
around New Year’s Eve. Neither CT-RNN nor GRU-D were
able to correctly predict the visitors in those days while
ARIMA gets it right on the 31st of December. Apparently,

the ride was closed on Jan 1st since the true visitor count stays
at 0. None of our predictions saw that coming.

Figure 2 bottom shows the predcitions for the Festival Hall
Festspielhaus tour which is with sparse entries since it takes
place daily at 2 pm. All models fail in prediction for the sec-
ond and third peak at this location. However, CT-RNN shows
a very good performance in predicting the first and last peak
and at least shows an upward trend for the second and third
peak. ARIMA can not handle this type of sparse data at all.

6 Conclusions and future work
We performed a thorough evaluation of deep-learning (DL)
versus ARIMA, a traditional method, on the task of forecast-
ing tourist flow time-series. We found that all of the DL mod-
els were able to outperform the established ARIMA method
when using only visitor counts as the training data. Extend-
ing the dataset with additional features of time, holidays, and
weather improved the predictions of the DL models, while
ARIMA is not able to handle additional features. While
the improvements were little, the performance might still get
boosted by performing feature selection for the weather data
and improving the holidays features. In terms of the predic-
tion time, DL models are meaningfully faster than ARIMA,
which is an important aspect since most real-world applica-
tions require fast inference time.

This paper opens many avenues for future research. The
most straightforward next step is to try to improve the per-
formance of the DL methods using additional training tech-
niques such as regularization or learning rate scheduling. Ad-
mittedly, the ARIMA method is most suitable for predicting



univariate data which is why our classical methods should be
extended by also considering methods for multivariate fore-
casting such as Vector autoregression (VAR). Furthermore,
there also exist online methods (e.g. Online ARIMA [Liu et
al., ]) that allow for adjusting the model for new datapoints.

In this work we did not include the spatial data of the loca-
tions. Working on finding the best way to incorporate the ge-
ographical features and distances of the POIs is another future
direction, since it’s critical to include them while working on
the tourism flow datasets. Another challenging direction is
to attempt predictions on unfamiliar situations with limited
data. We did not include the post-COVID years in this study,
since there is a lot of anomalies in the tourism section in these
years. We are confident however, that by incorporating in-
ductive biases such as information about lockdowns imposed
by the government our deep-learning models could produce
useful predictions. In addition, we want to use the knowl-
edge gained to build specialised models which outperforms
state-of-the art models in terms of short-term prediction with
limited data. Another direction is to work on predictions for
a longer time horizon and incorporate these predictions into
a recommender system for tourists. Therefore we would go
one step further into the direction of giving tourism regions
the ability to control the visitor flow.
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