
Computational Offloading
for Non-Time-Critical Applications

Richard Patsch
University of Applied Sciences

Technikum Wien
Vienna, Austria

richard.patsch@technikum-wien.at

Abstract—The increasing demand for computational resources
keeps outpacing available User Equipment (UE). To overcome
intrinsic hardware limitations of UEs, computational offloading
was proposed. The combination of UE and seemingly endless
computational capacity in the cloud aims to cope with those lim-
itations. Numerous frameworks leverage Edge Computing (EC)
but a significant drawback of this is the required infrastructure.
Some use cases however, do not benefit from lower response time
and can remain in the cloud, where more potent resources are
at one’s disposal. Main contributions are to determine compu-
tational demands, allocate serverless resources, partition code
and integrate computational offloading into a modern software
deployment process. By focusing on non-time-critical use cases,
drawbacks of EC can be neglected to create a more developer-
friendly approach. Originality lies in the resource allocation of
serverless resources for such endeavours, appropriate deployment
of partitions and integration into CI/CD pipelines. Methodology
used will be Design Science Research. Thus, many iterations and
proof-of-concept implementations yield knowledge and artefacts.

Index Terms—computational offloading, mobile cloud comput-
ing, partitioning, serverless

I. INTRODUCTION

Although the performance of mobile phones and Internet

of Things (IoT) devices is rising, emerging use cases such as

image recognition, monitoring, and intense communication [1]

can overwhelm the executing devices. Besides timing, energy

usage must be considered, since some of those devices depend

on a battery. One possible solution to alleviate the drain on

battery and Central Processing Unit (CPU) is to offload the

computations [2]. Computational Offloading (CO) requires

infrastructure and effort, as well as sophisticated mechanisms.

Depending on what the initial reasoning for that offloading

was, several metrics need to be considered. Challenges in EC

and the lack of developer-friendly workflows in OC are the

reason this concept has not spilled over to the industry yet.

The combination of the latest theoretic offloading insights with

modern CI/CD lacks is rarely researched on.

II. CONTRIBUTION

Concrete problems that meet the criteria of this endeavour

are: (i) not time-critical but (ii) still benefiting from CO

This work has been supported by the Doctoral College Resilient Embedded
Systems, which is run jointly by the TU Wien’s Faculty of Informatics and
the UAS Technikum Wien.

compared to a regular web service. Potential use cases could

have a time/precision trade-off such as scientific computing.

Key idea of this dissertation is to introduce the concept of

CO to a broader audience by automating tedious tasks such as

partitioning and resource partitioning to later integrate them

into modern CI/CD pipelines. Main steps are (i) determine

computational demand, (ii) partition for offloading, (iii) deploy

partitions, (iv) handle communication between partitions and

(v) automate it in a CI/CD pipeline. In comparison to existing

work, the goal is to create a heuristic approach without making

it equivalent to an Application Programming Interface (API).

Focusing on non-time-critical applications allows to neglect

the usage of EC and therefore alleviates the burden of dealing

with the involved challenges. Furthermore, leveraging cloud

computing increases the target audience, since no additional

infrastructure is required and computational resources can be

provisioned by every cloud service provider.

III. STATE OF THE ART

Main considerations when building an offloadable appli-

cation are (i) granularity, (ii) mobility and (iii) destination.

Granularity determines how big the partitions are. Mobility de-

fines where the computational resources are situated and how

movement of the UE is dealt with. The cloud provides more

resources but also adds more latency, which rules out a few

use cases. To cope with the introduced latency, it is possible

to leverage EC, which is in close proximity to the UE but then

hand-overs as used in mobile phone networks are necessary to

deal with movement. The destination reveals whether just one

or multiple servers are assisting the constrained device. [3].

Offloading frameworks such as [4]–[6] lack public availability

of a working implementation.

Cloud Computing frameworks provide ubiquitous and rich

functionality, regardless of the resource limitations of mobile

devices [7]. Serverless computing can handle heterogeneous

devices, with different computational capabilities, and is ex-

pected to grow across the IoT-Fog-Edge-Cloud systems as

an extension of current cloud-based implementations to IoT

applications [8]. Serverless capabilities rely on vendor specific

solutions, so generalisations rely on abstractions, as in [9].

Resource allocation becomes more challenging as the number

of variables increase, as well as when these variables change

more often over time.

1260

2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)

2575-8411/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDCS54860.2022.00124

20
22

 IE
EE

 4
2n

d
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
is

tri
bu

te
d

C
om

pu
tin

g
Sy

st
em

s (
IC

D
C

S)
 |

97
8-

1-
66

54
-7

17
7-

0/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

D
C

S5
48

60
.2

02
2.

00
12

4

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 22,2023 at 12:26:37 UTC from IEEE Xplore. Restrictions apply.

The real competitor of CO is a common client-server web

API principle. It is simple and for most cases sufficiently fast.

Using serverless computing or looking further into provision-

ing more suitable resources in the cloud is something that are

relatively unexplored options.

IV. ORIGINALITY

Adapting to emerging opportunities, the usage of serverless

computing deserves more attention. The main difference in this

dissertation to already published work is that it will focus on

non-time-critical use cases and closely inspect better ways for

resource allocation, particularly toward serverless computing

for different categories of applications. The envisioned result

has the following workflow: (i) a suitable application that is

designed according to the resulting guidelines is added to a

repository, (ii) dynamic analysis will be performed to find

appropriate resources to provision, (iii) (serverless) resources

will be allocated and necessary services are set up, (iv) tests

will be run, and (v) deployed serverless functions are ready

for invocation. Proposed workflow aims to integrate the whole

offloading process into a modern CI/CD pipeline and automate

as many steps as possible to finally make the concept of CO

more palatable to developers. It will combine the convenience

of an API with the resource related opportunities of CO and

thus, provide a better software engineering process.

V. RESEARCH QUESTIONS

#RQ1 How to determine the bottleneck on the local
machine for the task at hand, provision adequate resources
for assistance and deal with costs?
Answering this question involves static- or dynamic code

analysis as seen in [10]–[12]. This has to be the first step

since one of the first decisions is which resources should

be provisioned. Even when using serverless computing,

executing containers have to be chosen judiciously. To cope

with the pricing aspect, [13] tried to answer this question

with a mathematical approach. However, determining the cost

of offloading is not trivial when taking into account more

metrics than just the price tag of the provisioned resource

itself.

#RQ2 How is code ideally prepared/partitioned for
distribution? Which problems require which partitions
and are there problems that can’t be distributed?
Partitioning is not a new discipline and had also to be

considered for a regular distributed system. Particularly

interesting here, is if there are additional requirements when

dealing with a cloud environment or serverless computing.

#RQ3 How can these partitions be deployed on different
platforms such as EC2-instances or lambda functions.
Deployment to EC2-instances is easier than deploying lambda

functions since the lambda environment is more limited and

also has a time limit of 15 minutes. After this time frame,

the function terminates, regardless of the progress made.

#RQ4 How should data exchange and communication
between instances be handled? Via the local instance or
within the cloud?
Especially parallelised functions that run on more than one

server need to communicate. Possibly, via the invoking device

or by using the cloud infrastructure. By setting up the required

security policies to allow the instances to communicate with

each other one could get rid of the additional communication

between the local instance and the cloud.

#RQ5 Can such a code deployment be done
automatically, s.t. this option can be migrated into
a CI/CD pipeline?
Build a framework that automates and answers #RQ1 - #RQ4

as much as possible to a degree where the developer does

not need to worry too much about the magic that happens

when offloading. Of course there need to be manually set

parameters since offloading descisions’ veracity is individual.

REFERENCES

[1] A. Mehonic and A. Kenyon, “Brain-inspired computing: We need a
master plan,” 04 2021.

[2] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” Computer, vol. 43, pp. 51–56,
2010.

[3] J. Wang, J. Pan, F. Esposito, P. Calyam, Z. Yang, and P. Mohapatra,
“Edge cloud offloading algorithms: Issues, methods, and perspectives,”
vol. 52, no. 1, 2019.

[4] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: Making smartphones last longer with
code offload.” New York, NY, USA: Association for Computing
Machinery, 2010.

[5] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in 2012 Proceedings IEEE INFOCOM, 2012,
pp. 945–953.

[6] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic execution between mobile device and cloud.” New York, NY,
USA: Association for Computing Machinery, 2011.

[7] M. R. Rahimi, J. Ren, C. H. Liu, A. V. Vasilakos, and N. Venkatasub-
ramanian, “Mobile cloud computing: A survey, state of art and future
directions,” Mobile Networks and Applications, vol. 19, no. 2, pp. 133–
143, Apr 2014.

[8] “The internet of things, fog and cloud continuum: Integration and
challenges,” Internet of Things, vol. 3-4, pp. 134–155, 2018.

[9] M. Villari, M. Fazio, S. Dustdar, O. Rana, and R. Ranjan, “Osmotic
computing: A new paradigm for edge/cloud integration,” IEEE Cloud
Computing, vol. 3, no. 6, pp. 76–83, 2016.

[10] P. Hellström, “Tools for static code analysis: A survey,” p. 119, 2009.
[11] P. Korhonen and M. Syrjänen, “Resource allocation based on efficiency

analysis,” Management Science, vol. 50, no. 8, pp. 1134–1144, 2004.
[12] M. Verma, G. R. Gangadharan, N. Narendra, R. Vadlamani, V. Inamdar,

L. Ramachandran, R. Calheiros, and R. Buyya, “Dynamic resource
demand prediction and allocation in multi-tenant service clouds,” Con-
currency and Computation: Practice and Experience, vol. 28, 12 2016.

[13] A. u. R. Khan, M. Othman, N. Khan, J. Shuja, and S. Mustafa,
“Computation offloading cost estimation in mobile cloud application
models,” Wireless Personal Communications, vol. 97, p. 4897–4920, 12
2017.

1261

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 22,2023 at 12:26:37 UTC from IEEE Xplore. Restrictions apply.

