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Abstract: This paper introduces a novel population-based bio-inspired meta-heuristic optimization
algorithm, called Blood Coagulation Algorithm (BCA). BCA derives inspiration from the process
of blood coagulation in the human body. The underlying concepts and ideas behind the proposed
algorithm are the cooperative behavior of thrombocytes and their intelligent strategy of clot formation.
These behaviors are modeled and utilized to underscore intensification and diversification in a given
search space. A comparison with various state-of-the-art meta-heuristic algorithms over a test suite
of 23 renowned benchmark functions reflects the efficiency of BCA. An extensive investigation is
conducted to analyze the performance, convergence behavior and computational complexity of BCA.
The comparative study and statistical test analysis demonstrate that BCA offers very competitive and
statistically significant results compared to other eminent meta-heuristic algorithms. Experimental
results also show the consistent performance of BCA in high dimensional search spaces. Furthermore,
we demonstrate the applicability of BCA on real-world applications by solving several real-life
engineering problems.

Keywords: nature-inspired meta-heuristics; bio-inspired algorithms; Blood Coagulation Algorithm;
swarm intelligence; optimization; meta-heuristics

1. Introduction

Inspired by the collective behavior in the natural and biological phenomenon in
organisms, researchers have developed a plethora of nature-inspired and bio-inspired
meta-heuristic algorithms. These algorithms have been efficiently applied to a wide range
of real-world, complex optimization problems. Remarkably, nature-inspired metaheuris-
tics have been employed in the areas of Engineering design, Digital image processing
and computer vision, Networks and communications, Power and energy management,
Data analysis and machine learning, Robotics, Medical diagnosis, etc. [1]. Apparently,
in recent years, we have witnessed an emerging attention to and understanding of the
competent application of a variety of evolutionary algorithms and swarm intelligence-
based algorithms. The increasing popularity of meta-heuristics is mainly due to their
simplicity and easy implementation, flexibility, avoidance of local optima entrapment, and
gradient-free mechanism [2].

Nature-inspired meta-heuristic algorithms are designed to tackle optimization prob-
lems by simulating some natural phenomena. In the literature, these algorithms have
been organized into four groups: Evolution-based, swarm-based, physics-based, and hu-
man behavior-based algorithms [1]. These categories of nature-inspired meta-heuristic
algorithms are summarized in Table 1.
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Table 1. Nature-inspired meta-heuristic algorithms.

Category Characteristics Examples

Evolution-based

• Inspired by the concept of natural
evolution

• Emulate the biological evolutionary
behaviors such as recombination,
mutation, and selection

Genetic Algorithm (GA) [3], Genetic Programming (GP) [4],
Differential Evolution (DE) [5], Biogeography Based Optimizer
(BBO) [6], and Evolutionary Strategy (ES) [7].

Swarm-based

• Emulate the social behaviors (e.g.,
decentralized, self- organized
systems) of organisms living in
swarms, flocks, or herds

• Inspired by the collective natural
behavior of living organisms, e.g.,
hunting, food search, mating, etc.

Particle Swarm Optimization (PSO) [8], Grey Wolf Optimizer
(GWO) [9], Whale Optimization Algorithm (WOA) [10],
Butterfly Optimization Algorithm (BOA) [11], Harris Hawk
Optimization (HHO) [12], Cuckoo Search (CS) [13], Moth-Flame
optimization (MFO) [14], Flower Pollination Algorithm
(FPA) [15], Firefly Algorithm (FA) [16], Salp Swarm
Optimization (SSA) [17], Ant colony optimization (ACO) [18],
Krill Herd (KH) [19], Improved Elephant Herding Optimization
(IEHO) [20], Emperor penguin and Salp Swarm
algorithm (ESA) [21], etc.

Physics-based
• Inspired by the physical laws

behind natural phenomena

Simulated Annealing (SA) [22], Gravitational Search Algorithm
(GSA) [23], Black Hole (BH) algorithm [24], Sine Cosine
Algorithm (SCA) [25], Big-Bang Big-Crunch (BB-BC)
optimization algorithm [26], Water Cycle Algorithm
(WCA) [27], Artificial Electric Field Algorithm (AEFA) [28], etc.

Human
behavior-based

• Emulate some human behaviors
• Inspired by the social behaviors of

humans

Interior Search Algorithm (ISA) [29], Mine Blast Algorithm
(MBA) [30], Harmony search (HS) algorithm [31], Imperialist
Competitive Algorithm (ICA) [32], Teaching-Learning Based
Optimization (TLBO) [33], Soccer League Competition (SLC)
algorithm [34], Exchange Market Algorithm (EMA) [35], Socio
Evolution and Learning Optimization Algorithm
(SELO) [36], etc.

Regardless of the nature and variety, population-based meta-heuristic optimization
algorithms impart a common attribute of diversification (exploration) and intensification
(exploitation) [37]. Diversification sustains the diversity and helps to delve into differ-
ent promising areas over a given search space. The effective utilization of randomized
operators assists in deep and global exploration of the solution space by randomized
perturbations of search agents (design variables). Therefore, the diversifying mechanism
of an effective optimizer must be equipped with adequate randomization for allocat-
ing a higher number of randomly created solutions throughout the problem topography
(i.e., the search landscape), in early stages of optimization. The absence of the diversifica-
tion tendency of an optimizer may lead to its premature convergence to some local optima.
On the other hand, intensification reveals the capability of local search in the promising
regions (discovered in the diversification phase) of the problem topography. This attribute
helps in intensifying the search process in a local area (vicinity of better-quality solutions)
rather than broad areas of the search landscape. In the absence of the intensification ten-
dency, the optimizer may not achieve convergence. Thus, an appropriate balance between
the diversification and intensification tendencies is essential for any meta-heuristic algo-
rithm to reach the global optima. Otherwise, local optima entrapment and premature
convergence may occur.

Despite the availability of a large number of existing meta-heuristic approaches and
their applications in techno-scientific and industrial domains, a fundamental question still
exists: Is there a need to develop new algorithms for optimization? The answer to this question is
positive. It is worth mentioning that the promising results of meta-heuristic techniques
for solving optimization problems are governed by the balance of diversification and
intensification [37]. Yet, every meta-heuristic approach embodies a unique mechanism
for applying the features of diversification and intensification. The No-free-lunch (NFL)
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theorem [38] proves that there is no optimization algorithm that can be used to solve
all types of optimization problems efficiently. More precisely, a versatile and universal
optimizer with best performance does not exist. This theory claims that even if a specific
optimizer may outperform others when applied to a large number of optimization prob-
lems, it may fail to perform in a particular set of problems and hence, can be useless. In
other words, with all the possible optimization problems taken into consideration, the
average performance of all algorithms is the same. Therefore, the NFL theorem encourages
the proposal of new efficient meta-heuristic optimizers to solve a wider range of com-
plex and unsolved problems. Thus, there is still a room to develop new and powerful
nature- or bio-inspired meta-heuristic algorithms besides improving the existing ones,
either to tackle the existing complex optimization problems more efficiently or to solve
new problems. This motivates our attempt to propose a novel optimizer to compete with
the existing algorithms.

In this paper, we propose a new bio-inspired meta-heuristic optimization algorithm
(namely, Blood Coagulation Algorithm, BCA). To the best of the knowledge of the author,
no previous study in this context is available in the optimization literature. The main idea
behind the proposed optimizer is to mimic the cooperative behavior of thrombocytes to
accomplish blood coagulation, leading to hemostasis. The behavior of thrombocytes can be
described as their cooperative movement towards the site of injury to form a stable clot.
The proposed BCA imitates this behavior to solve single-objective optimization problems
efficiently and find the optima in the hyper search space. The efficiency of the proposed
BCA is evaluated on a suite of 23 mathematical benchmark test functions. To show the
versatility of the proposed BCA, the optimization testbed contains unimodal, multimodal
and fixed dimensional benchmark functions. Moreover, to demonstrate that BCA performs
well for high dimensional problems, we conducted experiments on high-dimensional
functions. Further, to validate the proficiency and applicability of BCA to real world
problems, we evaluate its performance by solving six standard engineering design opti-
mization problems. We also test the efficiency of this meta-heuristic algorithm by applying
it to the falsification of Cyber-Physical systems. The optimization results reveal that BCA
is very competitive compared to the state-of-the-art algorithms. This population-based
stochastic meta-heuristic exhibits outstanding performance and optimization capability for
all the benchmark test functions and real-world engineering problems considered in the
present study.

The rest of the paper is structured as follows. Section 2 provides the background
inspiration and information about the blood coagulation process in the human body.
This section also presents the mathematical model and computational procedures of the
proposed BCA. Section 3 presents the details of the testbed of 23 benchmark optimization
functions (problems) considered in this work. It also outlines the experimental platform
utilized for carrying out the optimization tasks. The results are discussed in Section 4. The
performance of BCA is analyzed using six standard engineering optimization problems in
Section 5. Further, the competence of BCA is tested on real-world case study of falsification
of Cyber-Physical systems in Section 6. Finally, Section 7 concludes the work and suggests
directions for future research.

2. Blood Coagulation Algorithm

In this section, we first present the inspiration of the proposed BCA. Then, we discuss
the mathematical model of the intensifying and diversifying phases of the proposed BCA. It
is important to note that BCA is a population-based, derivative-free optimization approach
and can be employed for solving any well-formulated optimization problem.

2.1. Inspiration

The idea of the proposed BCA is inspired from the natural and biological phenomenon
of blood coagulation in the human body. Blood is an essential part of the body that provides
vital elements (such as nutrients and oxygen) to the cells and carries the metabolic waste
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substances away from the cells. Blood cells and plasma are the main components of blood.
Usually, the blood cells consist of erythrocytes (Red blood cells), leukocytes (White blood cells)
and cell fragments known as thrombocytes (platelets). Thrombocytes play a very important
role in coagulation (also known as clotting). Coagulation is the process which changes the
state of blood from a liquid to a gel and results in the formation of blood clot [39]. Blood
coagulation potentially leads to hemostasis, the cessation of blood loss from a damaged
vessel, followed by repair. Thus, thrombocytes are the key players in hemostasis wherein a
ruptured blood vessel is sealed, and further loss of blood is prevented. The mechanism of
blood coagulation includes the stimulation, linkage and aggregation of thrombocytes, together
with the accumulation and maturation of fibrin [40]. The process of hemostasis initiates with
vasoconstriction (the constriction of the wall of blood vessels) to reduce the blood flow to the
injury site and decrease blood loss. This is followed by the adhesion of the thrombocytes to
the injured blood vessel, forming a soft plug. Thereafter, the thrombocytes activate the final
phase of hemostasis: blood coagulation, as shown in Figure 1.
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Two different biological models have been proposed to describe the phenomenon
of hemostasis: the Coagulation cascade model and the cell-centric model. Developed in
the mid-1960s, the Coagulation cascade model was the first widely accepted model of
coagulation [41,42]. However, the cascade model has serious flaws in relation to the physi-
ological coagulation model. Also, this model cannot satisfactorily explain all phenomena
related to in vivo hemostasis. In the early 2000s, the cell-centric model was proposed [43].
The cell-centric model of hemostasis replaces the traditional “cascade” hypothesis and
proposes that coagulation takes place on different cell surfaces in four phases: initiation,
amplification, propagation, and termination [44]. These four phases exemplify the intrigu-
ing phenomenon that safeguards the blood circulation in a liquid form restricted to the
vascular bed. These phases constitute the current coagulation theory centered around the
cell surfaces and are briefly discussed below [45]:

1. Initiation phase: The tissue factor (TF) from the subendothelial cells initiate the
clotting process. In this phase, small concentrations of some clotting factors (including
thrombin) are produced. Note that thrombin is the most important constituent of the
coagulation process;

2. Amplification phase: The amplification phase activates once sufficient amounts of
procoagulant substances are generated. In the amplification phase, the coagulation
process extends from the tissue factor (TF) bearing cells to the thrombocytes. The
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thrombin (generated in the initiation phase) triggers the thrombocytes, and the throm-
bocytes begin to adhere together, thereby forming a clot;

3. Propagation phase: Once the thrombocytes are activated, the other blood clotting
factors essential for forming fibrin (such as FV, FVIII, and FXI) link to the throm-
bocytes. These react together and consequently; even more thrombin production
occurs through a feedback process. This phase is only triggered when a threshold of
generated thrombin is reached [46];

4. Termination phase: Finally, the termination phase ends with the formation of the
stable clot.

Our proposed algorithm, i.e., BCA, is enthused by this cell-centric model of hemostasis for
blood coagulation which involves the activation of thrombocytes and the propagation (migra-
tion) of thrombocytes to the site of injury based on some stochastic chemotactic mechanisms.

2.2. Mathematical Model and Optimization Algorithm

In this subsection, we describe the various steps of the proposed BCA in which the
different phases of the blood coagulation process are mathematically modeled. We utilize
a very simple mapping to mimic the cell-centric model of hemostasis in the proposed
algorithm. Table 2 presents the description of the variables employed in the mathematical
formulation of BCA.

Table 2. Description of variables utilized in the mathematical formulation of BCA.

Variable(s) Description

AR Activation rate

θ Threshold

Pf Propagation factor

NPop Population size

n Number of dimensions/variables

x Position vector of the thrombocyte

x∗ Position vector of the best thrombocyte obtained so far

xrand
Random position vector (a random thrombocyte) selected from the
current population

dbest Distance of a thrombocyte from the best thrombocyte

p1 Uniformly distributed random number in the range [0, 1]

p2 Uniformly distributed random number in the range [0, 1]

Max_iter Maximum number of iterations

t Current iteration

r1 Uniformly distributed random number in the range [0, 1]

2.2.1. Initialization Phase

The BCA starts by defining the objective function and its solution space. The values of
BCA parameters are also assigned. The optimization problem is articulated in terms of an
objective function f (x) as follows:

f (x) x ∈ [LB, UB] (1)

For solving any optimization problem using population-based meta-heuristic tech-
niques, the variables are formed as an array. In the BCA, the thrombocyte position is an array
(similar to the Chromosome in GA and particle position in PSO). For an n-dimensional prob-
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lem, the thrombocyte position is an array of size 1× n, which is mathematically expressed
as follows:

Thrombocyte position, x = [x1, x2, x3, . . . ., xn] (2)

It is important to note that the range of values of each thrombocyte position
xi ∈ [LBi, UBi] where LBi and UBi, respectively, denote the lower and upper bounds
of thrombocyte position xi. In the initialization phase, we generate the population of throm-
bocyte positions (i.e., the solutions) (Equation (3)). Throughout this paper, we use the
terms solutions and thrombocyte position interchangeably. The positions of thrombocytes are
generated randomly (uniformly distributed) and mathematically expressed as a matrix of
thrombocyte position of size NPop × n. The number of rows of this matrix is the population
size while the number of columns is the number of dimensions of the optimization problem.
Note that the dimensions are also known as the design/decision/optimization variables.

Population of solutions =


thrombocyte position1
thrombocyte position2
thrombocyte position3

...
thrombocyte positionNPop

 =


x1

1 x1
2 · · · x1

n
x2

1 x2
2 · · · x2

n
...

...
. . .

...

x
Npop
1 x

Npop
2

... x
Npop
n

 (3)

The values of each of the decision variable [x1, x2, x3, . . . ., xn] can be denoted as real
values (floating point number) for continuous problems or as a predefined set for discrete
problems. The cost (fitness) of a thrombocyte position is acquired by computing the cost
function expressed as:

Costi = f
(

xi
1, xi

2, . . . , xi
n

)
, ∀ i = 1, 2, 3, . . . ., NPop (4)

The thrombocyte position which has the minimum cost (fitness) value among others
is considered as the best solution x∗. This ends the initialization phase, and the updating
phase of BCA begins wherein the algorithm performs intensification and diversification
tasks with the aim of achieving optimal solutions.

2.2.2. Updating Phase

Figure 2 shows all the updating phases of BCA. For updating the positions of the
thrombocytes, we use AR, i.e., Activation rate. After an injury, thrombocytes get activated
by the chemicals released from the site of injury. If the thrombocytes are not fully activated,
the coagulation process becomes slow. On the other hand, once the thrombocytes get
activated, they update their positions either based on some random thrombocyte or the
best thrombocyte. In this case, there is a high probability that we achieve fast convergence
towards the global optimum. Moreover, once the thrombocytes are activated, there are
high chances that they remain activated throughout the coagulation process. Hence, we
use a lower value of AR and set AR = 0.1 in this work. We use a uniformly distributed
random number p1 in the range [0, 1] for comparing with the activation rate AR.
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Once p1 > AR, the thrombocytes are activated and are ready to encounter some change
in their positions. We can update the positions based on either diversification (exploration)
or intensification (exploitation) as discussed below:

Diversification or Exploration
Once the concentration of the procoagulants surpasses the threshold (θ), rapid throm-

bin production is observed. This is achieved by the migration of a large number of
thrombocytes to the site of injury. We use a uniformly distributed random number p2 in the
range [0, 1] for comparing with the threshold θ. Once p1 > AR and p2 > θ, the thrombocytes
migrate and update their positions. The thrombocytes propagate in a random fashion based
on the position of other thrombocytes. In the diversification phase, we update the position
of a thrombocyte based on another thrombocyte selected randomly from the population.
Thus, (p1 > AR) ∧ (p2 > θ) emphasize diversification and permit the BCA to accomplish a
global search. The mathematical model is as follows:

d = |Cxrand(t)− x(t)| (5)

x(t + 1) = xrand(t)− Pf d (6)

Note that xrand(t) in Equations (5) and (6) are the same values, i.e., we do not sample
twice. Here, C is a coefficient and arbitrarily taken as C = 2r1 where r1 is a uniformly
distributed random number in [0, 1]. We introduce the Propagation factor (Pf ) which
is indeed a scaling parameter used to govern the step sizes of the random walks. This
parameter controls the strength of the randomness in BCA. In order to speed up the overall
convergence, the perturbation should be reduced gradually. Hence, the value of Pf is
reduced adaptively at each iteration using the reduction formulation as follows:

Pf (t) = 2
(

1− t
Max_iter

)
, f or t = 1, 2, 3, . . . , Max_iter (7)

The parameters Pf and C are responsible for better diversification and intensification
over the course of iterations.
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Intensification or Exploitation
The condition (p1 > AR) ∧ (p2 ≤ θ) emphasizes a local search and exploitation

of the search space. In this case, the best thrombocyte position is found, and all the
other thrombocytes update their positions depending on their distances from the best
thrombocyte. Mathematically, we express this behavior by the following equations:

dbest = |x∗(t)− x(t)| (8)

x(t + 1) = x∗(t)− x′ (9)

where, x′ = Pf x(t) + Cdbest.
It is important to note that we update x∗ in each iteration if a better solution is found.

The best candidate solution in each iteration is considered as the best obtained solution or
nearly the optimum so far. Also, we can observe (from Equation (9)) that any thrombocyte
can update its position around the proximity of the current best thrombocyte (best throm-
bocyte obtained so far). Therefore, BCA allows good intensification (i.e., exploitation) of the
search space. Also, we assume that there is a 50% probability to select between either the
diversification or the intensification for updating the position of the thrombocytes during
optimization. Hence, we choose θ = 0.5 in this work. We observe that depending on the
value of p2, BCA permits to switch efficiently between diversification and intensification.

When p1 ≤ AR, the thrombocytes are not yet fully activated and are not ready for the
propagation phase (i.e., production of thrombin). We assume that the thrombocytes are par-
tially activated and form a thrombocyte (platelet) plug responsible for primary hemostasis.
(Instantly after an injury, the thrombocytes immediately form a plug at the site of injury;
this is called primary hemostasis.) We update the positions of the thrombocytes based
on the current best thrombocyte, i.e., exploiting the search space. This is mathematically
formulated as follows:

x(t + 1) = x∗(t)− kPf d′ (10)

where d′ = |Cx∗(t)− x(t)| and k = Pf (C− 1).

2.2.3. Termination Phase

The updating phase persists until the termination (i.e., stopping) criteria is not reached.
We can define the termination condition in a number of ways: tolerance limit (a specific
value of error rate is attained), Max_iter completed, no improvement in the fitness after the
maximum number of iterations, or another suitable condition. In this work, we consider
the maximum number of iterations (i.e., Max_iter) reached as the stopping criteria. Once
the updating phase is over, the termination phase initiates, and the termination criteria is
checked. BCA outputs the best solution (i.e., thrombocyte position) and the corresponding
best fitness value.

2.3. Pseudocode of BCA

The aforesaid three phases make up the whole structure of BCA. This modeling is
utilized to propose the new algorithm as exemplified in Algorithm 1 which explains the
pseudo code of BCA.
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Algorithm 1. Pseudo-code of Blood Coagulation Algorithm (BCA)

begin
Objective function f (x), x = (x1, x2, . . . . xn), n = number of dimensions
Initialize BCA parameters

• Choose the number of solutions/thrombocyte
(
i.e., NPop = Population size)

• Set the maximum number of iterations (i.e., Max_iter )
• Define the Activation Rate (AR), Threshold (θ )

Initialize randomly a population of solutions between LB and UB
Calculate the cost (fitness) of initial solutions
x∗ = The best thrombocyte position (i.e., solution)
while (t < Max_iter) do

for (each thrombocyte (xi)) do
Update Pf (i.e., Propagation factor), C, p1, p2
if (p1 > AR) then

if (p2 > θ) then
Select a random thrombocyte, xrand
Update the position of the current thrombocyte by Equation (6)
else if (p2 ≤ θ) then
Update the position of the current thrombocyte by Equation (9)
end if

else if (p1 ≤ AR) then
Update the position of the current thrombocyte by Equation (10)
end if

end for
Check if any thrombocyte violates the boundary and adjust it
Evaluate the fitness of each thrombocyte
Update x∗ if better solution is found
Update iteration counter t← t + 1

end while
return x∗ (the best solution/thrombocyte position)
end

2.4. Computational Complexity
2.4.1. Time Complexity

In general, the time complexity analysis of meta-heuristic algorithms depends on
the analysis of the following three processes [47]: initialization of the population, fit-
ness evaluation, and updating of the search agents (in our case, the search agents are
thrombocytes). Based on these three components, the time complexity analysis of the
proposed meta-heuristic algorithm is as follows: With the thrombocytes’ population size of
NPop, the time complexity of the initialization of BCA population is O

(
NPop × n

)
where n

indicates the number of dimensions (i.e., design variables) of the test function of the con-
sidered optimization problem. O(T) is the time complexity of evaluating the fitness value
(i.e., objective function value). Therefore, the time complexity of initial fitness evaluation
is bounded by O

(
NPop ×O(T)

)
. Also, the computational complexity of the main loop

(i.e., fitness evaluation and updating mechanism) is O
(

Max_iter× NPop × (n + O(T))
)
.

On the basis of this analysis, we can say that the proposed BCA (as summarized in
Algorithm 1) is a stochastic optimization method with polynomial time complexity.

2.4.2. Space Complexity

The space complexity of the proposed BCA quantifies the maximum amount of space
required at any time instance as considered during initialization of the algorithm. Therefore,
the total space complexity of BCA is O(Max_iter× n) where Max_iter is the maximum
number of iterations and n defines the dimensionality of the objective function.
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3. Optimization Testbed and Experimental Platform
3.1. Benchmark Set

In order to investigate the efficacy and versatility of the proposed BCA optimizer, we
benchmark its performance on a set of mathematical functions with known global optima.
For this, we consider a well-studied set of diverse benchmark functions from the literature
as the optimization test bed. The comprehensive test suite of benchmark functions consists
of the following two types of functions:

1. Unimodal benchmark functions: The unimodal functions have a unique global best. Since
they do not have local optima, they reveal the intensification (exploitation). These
functions are suitable for exploring the convergence behavior and the intensifying
strength of the proposed algorithm. The unimodal functions unimodal ( f1 to f7)
considered in this work are listed in Table 3 along with their mathematical definitions;

2. Multimodal benchmark functions: These functions may have many local optima. Hence,
the optimizer should be able to avoid stagnation around the local optimum for
reaching the global optima. Therefore, these functions can unveil the diversification
(or exploratory) capability of BCA and its ability to escape the local optima. The
multimodal functions ( f8 to f13) along with their details are presented in Table 3. It is
also worth mentioning here that that fixed-dimension multimodal functions ( f14 to
f23) are also considered in this work.

The search landscape of the objective functions i.e., unimodal ( f1 to f7), multimodal
( f8 to f13), and fixed-dimension multimodal ( f14 to f23) functions are illustrated in
Figures 3–5, respectively.

Table 3. List of Benchmark functions.

Function Type Function Mathematical Description Dim Range fmin

Unimodal

f1 f1(x) = ∑n
i=1 x2

i 30 [−100, 100] 0

f2 f2(x) = ∑n
i=1|xi|+ ∏n

i=1|xi| 30 [−10, 10] 0

f3 f3(x) = ∑n
i=1

(
∑i

j=1 xj

)2 30 [−100, 100] 0

f4 f4(x) = maxi{|xi|, 1 ≤ i ≤ n} 30 [−100, 100] 0

f5 f5(x) = ∑n
i=1[100

(
xi+1 − x2

i
)2

+ (xi − 1)2] 30 [−30, 30] 0

f6 f6(x) = ∑n
i=1([xi + 0.5])2 30 [−100, 100] 0

f7 f7(x) = ∑n
i=1 ix4

i + random[0, 1) 30 [−1.28, 1.28] 0

Multimodal

f8 f8(x) = ∑n
i=1−xisinsin

(√
|xi|
)

30 [500, 500] −418.982× n

f9 f9(x) = ∑n
i=1
[
x2

i − 10coscos (2πxi) + 10
]

30 [−5.12, 5.12] 0

f10
f10(x) = −20exp

(
−0.2

√
1
n ∑n

i=1 x2
i

)
−

exp
(

1
n ∑n

i=1 coscos (2πxi)
)
+ 20 + e

30 [−32, 32] 0

f11 f11(x) = 1
4000 ∑n

i=1 x2
i −∏n

i=1 coscos
(

xi√
i

)
+ 1 30 [−600, 600] 0

f12

f12(x) = π
n {10sinsin (πy1) + ∑n

i=1(yi − 1)2[
1 + 10sin2(πyi+1)

]
+ (yn − 1)2 }+

∑n
i=1 u(xi, 10, 100, 4)

yi = 1 + xi+1
4 u(xi, a, k, m) = k(xi − a)m, xi >

a 0,−a < xi < a k(−xi − a)m, xi < −a

30 [−50, 50] 0

f13

f13(x) = 0.1{sin2(3πx1) + ∑n
i=1(xi − 1)2[

1 + sin2(3πxi + 1)
]
+ (xn − 1)2[1 + sin2(2πxn)

]
}+

∑n
i=1 u(xi, 5, 100, 4)

30 [−50, 50] 0



Mathematics 2021, 9, 3011 11 of 40

Table 3. Cont.

Function Type Function Mathematical Description Dim Range fmin

Fixed-
dimension

Multimodal

f14 f14(x) =
(

1
500 + ∑25

j=1
1

j+∑2
i=1(xi−aij)

6

)−1
2 [−65, 65] 1

f15 f15(x) = ∑11
i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
4 [−5, 5] 0.00030

f16 f16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5] −1.0316

f17
f17(x) =

(
x2 − 5.1

4π2 x2
1 +

5
π x1 − 6

)2
+

10
(

1− 1
8π

)
coscos x1 + 10

2 [−5, 5] 0.398

f18

f18(x) = [1 + (x1 + x2 + 1)2(
19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2
)
]

[30 + (2x1 − 3x2)
2(18− 32x1 + 12x2

1 + 48x2−
36x1x2 + 27x2

2)]

2 [−2, 2] 3

f19 f19(x) = −∑4
i=1 ci exp

(
∑3

j=1 aij

(
xj − pij

)2
)

3 [1, 3] −3.86

f20 f20(x) = −∑4
i=1 ci exp

(
∑6

j=1 aij

(
xj − pij

)2
)

6 [0, 1] −3.32

f21 f21(x) = −∑5
i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.1532

f22 f22(x) = −∑7
i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.4028

f23 f23(x) = −∑10
i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.5363

Note: Dim = the dimensionality of the search space (i.e., number of variables); Range = the boundary of the search space [Lower Bound,
Upper Bound]; fmin = global optimum.
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3.2. Experimental Setup

The proposed algorithm is implemented in MATLAB® (R2020b) programming plat-
form. Our experiments are performed on a system with an Apple M1 chip and 16 GB RAM,
running macOS Big Sur. In each run, the maximum number of iterations (Max_iter) is
chosen as the termination criterion of BCA. The value of Max_iter is set to 1000. Also, the
population size is taken as 30. The activation rate and threshold are set to 0.1 and 0.5, re-
spectively. For generating meaningful (significant) statistical results and reducing statistical
errors, we repeat the simulations for each function for 30 independent runs. Additionally,
we record the mean (average fitness value) and standard deviation (SD) of BCA for each
benchmark function.

In order to manifest the adeptness of the proposed BCA on the benchmark test
functions, we compare its performance with other well-regarded nature-inspired meta-
heuristic algorithms. For this purpose, we construct a suite of 12 state-of-the-art optimizers
as listed in Table 4. The details of parameters settings of these optimizers are also provided
in Table 4. For achieving the best results, the parameters are set to the values as reported
in the literature. We assume that the chosen parameters for the other methods (in Table 4)
are the best possible parameters for the optimization task. To ensure a fair comparison,
the population size and the maximum number of iterations for each optimizer is set to 30
and 1000, respectively.

Table 4. Parameter settings of various algorithms.

Algorithm Parameter Value

# (For all algorithms)
Population size 30

Maximum number of iterations 1000

DE [48]
Scaling factor 0.5

Crossover probability 0.5

PSO [8]

Topology fully connected

Inertia factor Linear reduction from 0.9 to 0.1

c1 2

c2 2

Velocity limit 10% of dimension range

GA [49]

Type Real coded

Selection Roulette wheel (Proportionate)

Crossover Whole arithmetic (Probability 0.8)

Mutation Gaussian (Probability 0.05)

CS [13] Discovery rate of alien solutions (pa ) 0.25

GWO [9] Convergence parameter (a ) Linear reduction from 2 to 0

MFO [14]
Convergence constant (a) [−2 −1]

Spiral factor (b) 1

FPA [15] Probability switch (p) 0.8

FA [16]

α 0.5

β 0.2

γ 1

BAT [50]

Qmin(Minimum frequency) 0

Qmax(Maximum frequency) 2

A (Loudness) 0.5

r (Pulse rate) 0.5
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Table 4. Cont.

Algorithm Parameter Value

GSA [23]
Gravitational constant 100

Alpha coefficient 20

AOA [51]
α 5

µ 0.5

BBO [6]

Habitat modification probability 1

Immigration probability limits [0, 1]

Step size 1

Max immigration (I) and Max emigration (E) 1

Mutation probability 0.005

Furthermore, for identifying significant differences in the results acquired by various
optimizers, we also perform the non-parametric Wilcoxon statistical test [52] with 5% degree
of significance, besides the experimental simulations and the basic statistical analysis.

4. Experimental Results and Discussion

For each benchmark function, we performed 30 simulations of each algorithm (includ-
ing BCA and other algorithms listed in Table 4) with randomly generated populations. The
statistical results (Mean and standard deviation) are reported in Table 5.

4.1. Intensification and Diversification Capabilities of BCA

The intensification (exploitation) capability of BCA is evaluated by using the unimodal
benchmark functions ( f1 to f7). Moreover, to test the capability of BCA to investigate different
promising regions of the search space (i.e., diversification), we solve multimodal benchmark
functions ( f8 to f23) with many local optima. The statistical results (based on the evaluation
metrics: mean and SD) reported in Table 5 prove that BCA is very competitive with other
meta-heuristic algorithms. It is seen that BCA provides considerably better results than other
algorithms for most of the functions, demonstrating its worthy performance.

The results presented in Table 5 indicate that the proposed BCA can acquire the best
results against its competitor algorithms on f1 − f5 (the unimodal test cases) and f8 − f13
(the multimodal test cases). It is observed that the results acquired by BCA are substantially
better than its competitors in handling 84.6% of the functions f1 − f13 over 30 dimensions.
This validates the superior performance of BCA over other algorithms. Also, for fixed-
dimensional multimodal benchmark f14, the results are superior and competitive. For f15,
BCA gives superior results, as can be verified from Table 5. The results on the functions
f16 − f19 are very competitive, and good results are acquired by most of the approaches.
Thus, based on the results in Table 5, the proposed BCA has always achieved the best (high
quality solutions) results on f14 − f23 (fixed-dimension multimodal) test cases compared
to other algorithms.
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Table 5. Comparison of the results obtained by BCA with other state-of-the-art meta-heuristic algorithms. The best results are kept in bold.

F Metric BCA DE PSO GA CS GWO MFO FPA FA BAT GSA AOA BBO

f1
Mean 9.80×10−28 1.33× 10−3 1.83× 104 1.03× 103 9.06× 10−4 1.18× 10−27 1.01× 103 2.01× 103 7.11× 10−3 6.59× 104 6.08× 102 6.67× 10−7 7.59× 101

SD 1.70× 10−22 5.92× 10−4 3.01× 103 5.79× 102 4.55× 10−4 1.47× 10−27 3.05× 103 5.60× 102 3.21× 10−3 7.51× 103 4.64× 102 7.45× 10−7 2.75× 101

f2
Mean 8.91×10−17 6.83× 10−3 3.58× 102 2.47× 101 1.49× 10−1 9.71× 10−17 3.19× 101 3.22× 101 4.34× 10−1 2.71× 108 2.27× 101 0.01 1.36× 10−3

SD 1.3× 10−11 2.06× 10−3 1.35× 103 5.68 2.79× 10−2 5.60× 10−17 2.06× 101 5.55 1.84× 10−1 1.30× 109 3.36 0.00 7.45× 10−3

f3
Mean 7.63×10−16 3.97× 104 4.05× 104 2.65× 104 2.10× 10−1 5.12× 10−5 2.43× 104 1.41× 103 1.66× 103 1.38× 105 1.35× 105 6.87× 10−6 1.21× 104

SD 2.46× 10−15 5.37× 103 8.21× 103 3× 103 5.69× 10−2 2.03× 10−4 1.41× 104 5.59× 102 6.72× 102 4.72× 104 4.86× 104 6.87× 10−6 2.69× 103

f4
Mean 7.01×10−10 1.15× 101 4.39× 101 5.17× 101 9.65× 10−2 1.24× 10−6 7.00× 101 2.38× 101 1.11× 10−1 8.51× 101 7.87× 101 1.40× 10−3 3.02× 101

SD 1.77× 10−9 2.37 3.64 1.05× 101 1.94× 10−2 1.94× 10−6 7.06 2.77 4.75× 10−2 2.95 2.81 1.90× 10−3 4.39

f5
Mean 3.72 1.06× 102 1.96× 107 1.95× 104 2.76× 101 2.70× 101 7.35× 103 3.17× 105 7.97× 101 2.10× 108 7.41× 102 2.49× 101 1.82× 103

SD 8.72 1.01× 102 6.25× 106 1.31× 104 4.51× 10−1 7.78× 10−1 2.26× 104 1.75× 105 7.39× 101 4.17× 107 7.81× 102 3.64× 10−1 9.40× 102

f6
Mean 1.36× 10−2 1.44× 10−3 1.87× 104 9.01× 102 3.13× 10−3 8.44× 10−1 2.68× 103 1.70× 103 6.94× 10−3 6.69× 104 3.08× 103 3.47×10−4 6.71× 101

SD 9.83× 10−3 5.38× 10−4 2.92× 103 2.84× 102 1.30× 10−3 3.18× 10−1 5.84× 103 3.13× 102 3.61× 10−3 5.87× 103 8.98× 102 3.47× 10−4 2.20× 101

f7
Mean 3.95× 10−4 5.24× 10−2 1.07× 101 1.91× 10−1 7.29× 10−2 1.70× 10−3 4.50 3.41× 10−1 6.62× 10−2 4.57× 101 1.12× 10−1 3.92×10−6 2.91× 10−3

SD 4.78× 10−4 1.37× 10−2 3.05 1.50× 10−1 2.21× 10−2 1.06× 10−3 9.21 1.10× 10−1 4.23× 10−2 7.82 3.76× 10−2 3.92× 10−6 1.83× 10−3

f8
Mean −1.25×104 −6.82× 103 −3.86× 103 −1.26× 104 −5.19× 1019 −5.97× 103 −8.48× 103 −6.45× 103 −5.85× 103 −2.33× 103 −2.35× 103 −1.22× 104 −1.24× 104

SD 4.30× 101 3.94× 102 2.49× 102 4.51 1.76× 1020 7.10× 102 7.98× 102 3.03× 102 1.16× 103 2.96× 102 3.82× 102 1.22× 103 3.50× 101

f9
Mean 1.70×10−14 1.58× 102 2.87× 102 9.04 1.51× 101 2.19 1.59× 102 1.82× 102 3.82× 101 1.92× 102 3.10× 101 3.42× 10−7 0.01

SD 3.04× 10−14 1.17× 101 1.95× 101 4.58 1.25 3.69 3.21× 101 1.24× 101 1.12× 101 3.56× 101 1.36× 101 3.42× 10−7 0.00

f10
Mean 8.88×10−16 1.21× 10−2 1.75× 101 1.36× 101 3.29× 10−2 1.03× 10−13 1.74× 101 7.14 4.58× 10−2 1.92× 101 3.74 8.88×10−16 2.13

SD 2.89× 10−11 3.30× 10−3 3.67× 101 1.51 7.93× 10−3 1.70× 10−14 4.95 1.08 1.20× 10−2 2.43× 10−1 1.71× 10−1 8.88× 10−16 3.53× 10−1

f11
Mean 3.49×10−15 3.52× 10−2 1.70× 102 1.01× 101 4.29× 10−5 4.76× 10−3 3.10× 101 1.73× 101 4.23× 10−3 6.01× 102 4.86× 10−1 1.00× 10−6 1.46

SD 1.86× 10−14 7.20× 10−2 3.17× 101 2.43 2.00× 10−5 8.57 5.94× 101 3.63 1.29× 10−3 5.50 4.97× 10−2 1.21× 106 1.69× 10−1

f12
Mean 4.19×10−6 2.25× 10−3 1.51× 107 4.77 5.57× 10−5 4.83× 10−2 2.46× 102 3.05× 102 3.13× 10−4 4.71× 108 4.63× 10−1 4.28× 10−6 6.68× 10−1

SD 5.43× 10−4 1.70× 10−3 9.88× 106 1.56 4.96× 10−5 2.12× 10−2 1.21× 103 1.04× 103 1.76× 10−4 1.54× 108 1.37× 10−1 4.28× 10−6 2.62× 10−1

f13
Mean 1.99×10−3 9.12× 10−3 5.73× 107 1.52× 101 8.19× 10−3 5.96× 10−1 2.73× 107 9.59× 104 2.08× 10−3 9.40× 108 7.61 3.10× 10−1 1.82

SD 5.37× 10−3 1.16× 10−2 2.68× 107 4.52 6.74× 10−3 2.23× 10−1 1.04× 108 1.46× 105 9.62× 10−4 1.67× 108 1.22 3.10× 10−1 3.41× 10−1
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Table 5. Cont.

F Metric BCA DE PSO GA CS GWO MFO FPA FA BAT GSA AOA BBO

f14
Mean 9.98×10−1 1.23 1.39 9.98×10−1 1.27× 101 4.17 2.74 9.98 × 10−1 3.51 1.27× 101 9.98×10−1 9.98×10−1 9.98×10−1

SD 3.02× 10−10 9.23× 10−1 4.60× 10−1 4.52× 10−16 1.81× 10−15 3.61 1.82 2.00× 10−4 2.16 6.96 4.52× 10−16 5.54× 10−1 4.52× 10−16

f15
Mean 3.07×10−4 5.63× 10−4 1.61× 10−3 3.33× 10−2 3.13× 10−4 6.24× 10−3 2.35× 10−3 6.88× 10−4 1.01× 10−3 3.00× 10−2 1.03× 10−3 3.12× 10−4 1.66× 10−2

SD 4.59× 10−4 2.81× 10−4 4.60× 10−4 2.70× 10−2 2.99× 10−5 1.25× 10−2 4.92× 10−3 1.55× 10−4 4.01× 10−4 3.33× 10−2 3.66× 10−3 2.64× 10−4 8.60× 10−3

f16
Mean −1.03 −1.03 −1.03 −3.78× 10−1 −1.03 −1.03 −1.03 −1.03 −1.03 −6.87× 10−1 −1.03 −1.03 −8.30× 10−1

SD 6.32× 10−6 6.78× 10−16 2.95× 10−3 3.42× 10−1 6.78× 10−16 6.78× 10−16 6.78× 10−16 6.78× 10−16 6.78× 10−16 8.18× 10−1 6.78× 10−16 5.48× 10−5 3.16× 101−

f17
Mean 3.98×10−1 3.98×10−1 4.00× 10−1 5.24× 10−1 3.98×10−1 3.98×10−1 3.98×10−1 3.98×10−1 3.98×10−1 3.98×10−1 3.98×10−1 3.98×10−1 5.49× 10−1

SD 9.31× 10−5 1.69× 10−16 1.39× 10−3 6.06× 10−2 1.69× 10−16 1.69× 10−16 1.69× 10−16 1.69× 10−16 1.69× 10−16 1.58× 10−3 1.69× 10−16 2.54× 10−6 6.05× 10−2

f18
Mean 3.00 3.00 3.10 3.00 3.00 3.00 3.00 3.00 3.00 1.47× 101 3.00 3.00 3.00

SD 1.28× 10−4 0.00 7.60× 10−2 0.00 0.00 4.07× 10−5 0.00 0.00 0.00 2.21× 101 0.00 1.00× 10−2 0.00

f19
Mean −3.86 −3.86 −3.86 −3.42 −3.86 −3.86 −3.86 −3.86 −3.86 −3.84 −3.86 −3.86 −3.78

SD 3.69× 10−3 3.16× 10−15 1.24× 10−3 3.03× 10−1 3.16× 10−15 3.14× 10−3 1.44× 10−3 3.16× 10−15 3.16× 10−15 1.41× 10−1 3.16× 10−15 4.29× 10−4 1.26× 10−1

f20
Mean −3.32 −3.27 −3.11 −1.61 −3.32 −3.25 −3.23 −3.29 −3.28 −3.25 −3.24 −3.32 −2.70

SD 3.33× 10−1 5.89× 10−2 2.91× 10−2 4.60× 10−1 1.77× 10−15 6.43× 10−2 6.42× 10−2 1.95× 10−2 6.36× 10−2 5.89× 10−2 1.51× 10−1 1.25× 101 3.57× 10−1

f21
Mean −1.01 −9.64 −4.14 −6.66 −5.05 −8.64 −6.88 −5.21 −7.67 −4.26 −8.65 −8.85 −8.31

SD 2.00 1.51 9.19× 10−1 3.73 1.77× 10−15 2.56 3.18 8.15× 10−2 3.50 2.55 1.77 1.25 2.88

f22
Mean −1.04 −9.74 −6.01 −5.58 −5.08 −1.04 −8.26 −5.34 −9.63 −5.60 −1.02× 101 −1.04×101 −9.38

SD 2.51× 10−4 1.98 1.96 2.60 8.88× 10−16 6.78× 10−4 3.07 5.36× 10−2 2.29 3.02 7.27× 10−3 2.21 2.59

f23
Mean −1.05×101 −1.05×101 −4.72 −4.69 −5.12 −1.08× 101 −7.65 −5.29 −9.75 −3.97 −1.01× 101 −1.05×101 −6.23

SD 2.93× 10−7 8.88 × 10−15 1.74 3.25 1.77× 10−15 1.72 3.57 3.56× 10−1 2.34 3.00 1.70 1.02 3.78
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To better understand and visualize the intensification and diversification capabilities
of BCA, we record the search history of the thrombocytes. Figure 6 presents the search
history of thrombocytes for some of the benchmark functions. Note that we consider 2D
versions of the functions for visualization of the search history (positions of thrombocytes
over the course of iterations). Referring to Figure 6, the distribution of the thrombocytes
indicates that BCA efficiently searches different promising regions over the search space.
Further, it exploits the vicinity of the favorable regions to reach the global optimal solutions.
The thrombocytes converge at the global optima and hence prove the avoidance of local
optima by BCA. This can also be verified by investigating the trajectories of some randomly
chosen thrombocytes (2D visualization) (Figure 7). Different colors are used to denote the
trajectories of different thrombocytes. From Figure 7, it can be observed that the trajectories
(zig-zag patterns) pass through different regions of the search space, thereby validating the
diversification potential of BCA. These zig-zag paths, therefore, assist us to understand the
searching behavior of the thrombocytes over the solution space. Moreover, the trajectories
terminate in the region where the global optimum is located, demonstrating the ability to
escape local optima in case of multimodal functions.

4.2. Convergence Analysis

An efficient optimization algorithm should strike a good balance between intensifi-
cation and diversification to overcome the exploration/exploitation dilemma. It should
not converge prematurely and exhibit avoidance from local optima. To understand the
convergence behavior, the convergence curves of BCA for some of the benchmark functions
are compared with few other meta-heuristic approaches (DE, BAT, MFO and GWO) and
shown in Figure 8. The curves represent the plot of the fitness value of the objective
function versus the number of iterations. The plots reveal that BCA is very competitive and
exhibits good convergence behavior as compared with other state-of-the-art optimizers for
the benchmark functions.

Moreover, as it can be observed in Figure 8, the BCA demonstrates three different
convergence behaviors towards function optimization. Firstly, it is observed that the
convergence speeds up with the increasing number of iterations for f1, f3 and f9. Sec-
ondly, we observe rapid convergence from the early stages of iterations as can be seen for
unimodal functions. The convergence curves of the unimodal benchmark functions No
bol( f1, f3, f5, f7) demonstrate that BCA exploits the favorable areas of the solution space
quickly and easily. Another observation is the quick avoidance of the local optima for mul-
timodal benchmark functions ( f9, f11, f13). Figure 8 also shows that the convergence to the
global optima is achieved in early iterations for fixed-dimensional multimodal functions
( f15, f17, f19). For these test cases, BCA exhibits its capability of extensive diversification in
fewer iterations. In addition, quick convergence is observed due to sufficient intensification
of the promising areas in the search space. This behavior is witnessed due to different
position-updating mechanisms and linear reduction in the propagation factor (Pf ) over
the course of iterations. The third behavior is convergence towards the global optima only
in the final iterations, as evident from the curves of the fixed-dimensional multimodal test
functions f21 and f23. This behavior is most likely because BCA is unable to find a good
solution in the early iterations, and hence it continues to search for good solutions in the
problem topography to achieve convergence at global optimum.
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The convergence at the global optima can also be verified by observing the search
history (Figure 6) and the trajectories (Figure 7) of the thrombocytes. In Figure 6, the
dense (crowded) region in the contour plots of the benchmark functions indicate that the
thrombocytes converge in that region. Moreover, it is evident that BCA does not converge
prematurely as the optimal solution resides in that dense region. The convergence at the
global optima is also substantiated by the trajectories of the thrombocytes (Figure 7) which
terminate in the region where the global optima is situated. Therefore, these plots validate
that BCA is equipped with a fair balance of intensification and diversification, which helps
in achieving the global optimal solution. On the whole, we can conclude that BCA has a
high success rate in dealing with optimization problems.

4.3. Statistical Significance Analysis

Several non-parametric statistical tests are available in the literature for evaluating
the statistical significance of the comparative results of algorithms [52]. In this paper,
we utilize the well-known and frequently used Wilcoxon rank-sum test for statistical
evaluation of the strength of BCA. The test is performed at a significance level of 0.05, for
inspecting the significant differences between the results of BCA and other optimizers. The
results (p-values) of the pair-wise comparison of BCA and other approaches are tabulated
in Table A1 (see Appendix A). The p-values < 0.05 reveal the superiority of BCA. With
regard to the obtained p-values in Table A1, we observe that the proposed BCA significantly
outperforms its competitors. Statistically meaningful differences in the results are witnessed
for the majority of the test cases.

4.4. Influence of High Dimensionality

In this subsection, we utilize a scalability assessment to demonstrate the efficient
performance of BCA in dealing with high dimensional problems. The scalability analysis
reveals the influence of dimensionality on the solution quality and helps in identifying the
efficacy of the optimizer for not only low-dimensional problems but also for problems with
large dimensions. In this paper, we evaluate the efficiency of BCA by utilizing it to tackle
both unimodal ( f1− f7) and multimodal ( f8− f13) problems with different dimensions. All
these scalable benchmark functions are solved with 30, 50, 80, 100, 500 and 1000 dimensions.
Figure 9 illustrates the scalability results (performance) of BCA for various test functions
on different dimensionality. Referring to Figure 9, the convergence curves reveal that
the proposed BCA exhibits good performance and validates its applicability on high
dimensional environments as well. It is observed that BCA is capable of finding the optimal
solutions in early iterations. As per the curves in Figure 9, BCA upholds a good balance
between the intensification and diversification tendencies on multivariable optimization
problems. Moreover, we record the mean and SD of the acquired results over 1000 iterations
and 30 runs of BCA for 30, 100 and 1000 dimensions. The acquired results in dealing with
f1 − f13 test cases with different dimensions are reported in Table 6. As can be seen in
Table 6, the proposed BCA demonstrates consistent performance when dealing with many
variables for the majority of the test functions. In a nutshell, the experimental results show
the scalability of the proposed BCA and prove its efficiency for high-dimensional tasks.
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Table 6. Influence of high dimensionality on the performance of BCA: Results of benchmark functions ( f1 − f13) with
different dimensions.

Benchmark
Dimensions = 30 Dimensions = 100 Dimensions = 1000

Mean SD Mean SD Mean SD

f1 9.80 × 10−28 1.70 × 10−22 5.06 × 10−15 1.95 × 10−14 1.24 × 10−13 3.93 × 10−13

f2 8.91 × 10−17 1.36 × 10−11 9.80 × 10−8 5.24 × 10−7 2.60 × 10−7 8.97 × 10−7

f3 7.63 × 10−16 2.46 × 10−15 2.40 × 10−11 9.48 × 10−11 1.35 × 10−8 5.71 × 10−8

f4 7.01 × 10−10 1.77 × 10−9 1.95 × 10−8 8.32 × 10−8 5.08 × 10−8 1.52 × 10−7

f5 3.72 8.72 3.34 × 101 3.69 × 101 5.41 × 101 3.85 × 101

f6 1.36 × 10−2 9.83 × 10−3 3.25 × 10−1 2.59 × 10−1 7.73 × 101 4.58 × 101

f7 3.95 × 10−4 4.78 × 10−4 5.25 × 10−4 4.79 × 10−4 6.34 × 10−4 7.71 × 10−4

f8 −1.25 × 104 4.30 × 101 −4.18 × 104 2.01 × 102 −4.18 × 105 4.36 × 103

f9 1.70 × 10−14 3.04 × 10−14 4.92 × 10−14 1.06 × 10−13 1.81 × 10−12 2.70 × 10−12

f10 8.88 × 10−16 2.89 × 10−11 7.27 × 10−10 2.34 × 10−9 9.14 × 10−9 2.78 × 10−8

f11 3.49 × 10−15 1.86 × 10−14 2.16 × 10−15 7.31 × 10−15 5.55 × 10−15 2.60 × 10−14

f12 4.19 × 10−6 5.43 × 10−4 2.31 × 10−3 1.28 × 10−3 2.74 × 10−3 1.64 × 10−3

f13 1.99 × 10−3 5.37 × 10−3 7.14 × 10−2 5.95 × 10−2 1.01 7.95 × 10−1

5. BCA for Standard Engineering Problems

In this section, the proficiency and capability of the proposed algorithm (BCA) in
addressing real-world engineering optimization (constrained and unconstrained) problems
is demonstrated by employing it on standard engineering design tasks. The BCA is utilized
to solve six well-known benchmark engineering design problems: welded beam design
problem, pressure vessel design problem, tension/compression spring design problem,
three-bar truss design problem, speed reducer design problem and gear train design
problem. Figure 10 illustrates the schematic views of these design problems. Table 7
presents an overview of the undertaken engineering design optimization tasks and the
variables involved in these problems. To solve these problems, the BCA is applied based
on 30 independent runs with the population size

(
NPop

)
of 30 and 1000 iterations in

each run. The results of BCA are compared with other state-of-the-art powerful meta-
heuristic approaches in the literature. Since the engineering design problems have various
constraints, we need to incorporate a constraint handling method with the BCA. For the
sake of simplicity, we utilize the death penalty (scalar penalty function) as the method for
handling the constraints [53]. In this constraint handling technique, solutions which violate
any of the constraints are penalized by a large fitness value (in case of minimization).
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Table 7. Brief description of the tackled engineering design optimization problems.

No. Problem Dim Constr Objective Description of variables

1 Welded beam
design 4 7 Minimize cost

• thickness of weld (h )
• length of the clamped bar (l )
• height of the bar (t )
• thickness of the bar (b )

2 Pressure vessel
design 4 4 Minimize cost

• the thickness of the shell (Ts )
• the thickness of the head (Th )
• the inner radius (R )
• the length of the cylindrical section

without considering the head (L )

3 Tension/compression
spring design 3 4 Minimize

weight

• wire diameter (d )
• mean coil diameter (D )
• number of active coils (N )

4 Three-bar truss
design 2 3 Minimize

weight
• area of bars 1 and 3 (A1 )
• area of bar 2 (A2 )

5 Speed reducer
design 7 11 Minimize

weight

• Face width (x1 )
• Teeth module (x2 )
• Number of teeth (x3 )
• First shaft length (x4 )
• Second shaft length (x5 )
• First shaft diameter (x6 )
• Second shaft diameter (x7 )

6 Gear train
design 4 0 Minimize gear

ratio Gear teeth: Ta, Tb, Td, Tf

Note: Dim = number of variables, Constr = total number of constraints.
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5.1. Welded Beam Design Problem

The welded beam design problem is one of the classical benchmark problems whose
objective is to minimize the fabrication cost of the welded beam. The schematic of the
welded beam structure is shown in Figure 10a. This design problem is subject to constraints
on shear stress (τ) and bending stress in the beam (σ), buckling load (Pc), end deflection of
the beam (δ). The design variables are tabulated in Table 7. The optimization task for this
design problem can be mathematically formulated as follows:

Consider x = [x1 x2 x3 x4] = [h l t b]
Minimize f (x) = 1.10471x2

1x2 + 0.04811x3x4(14.0 + x2)

Subject to

g1(x) = τ(x)− τmax ≤ 0
g2(x) = σ(x)− σmax ≤ 0,
g3(x) = δ(x)− δmax ≤ 0,
g4(x) = x1 − x4 ≤ 0,
g5(x) = P− Pc(x) ≤ 0,
g6(x) = 0.125− x1 ≤ 0,
g7(x) = 1.10471x2

1 + 0.04811x3x4(14.0 + x2)− 5.0 ≤ 0,

Variable range

0.1 ≤ x1 ≤ 2,
0.1 ≤ x2 ≤ 10,
0.1 ≤ x3 ≤ 10,
0.1 ≤ x4 ≤ 2

where

τ(x) =
√
(τ′)2 + 2τ′τ′′ x2

2R + (τ′′ )2,

τ′ = P√
2x1x2

, τ′′ = MR
J , M = P

(
L + x2

2
)
,

R =

√
x2

2
4 +

( x1+x3
2
)2,

J = 2
{√

2x1x2

[
x2

2
4 +

( x1+x3
2
)2
]}

,

σ(x) = 6PL
x4x2

3
, δ(x) = 6PL3

Ex4x2
3

Pc(x) =
4.013E

√
x2

3 x6
4

36

L2

(
1− x3

2L

√
E

4G

)
,

P = 6000 lb, L = 14 in., δmax = 0.25 in.,
E = 30× 106 psi, G = 12× 106 psi,
τmax = 13, 600 psi, σmax = 30, 000 psi

This engineering design optimization problem has been addressed by many re-
searchers using a number of algorithms. The comparative results of the best solution
obtained by BCA and other algorithms are presented in Table 8. From the results in Table 8,
it is evident that the proposed BCA yields an optimal design with minimum cost and out-
performs all other algorithms. Moreover, the statistical results (obtained by 30 independent
executions of BCA) in terms of the best value, worst value, mean value, and standard
deviation are compared with existing algorithms in the literature and reported in Table 9.
The statistical results for the welded beam design problem in Table 9 show that BCA finds
the best values and exhibits better performance as compared to the other optimizers. This
confirms the competence of BCA in addressing this optimization problem.
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Table 8. Comparison of the best solution obtained by BCA with other algorithms in the literature for the welded beam
design problem.

Algorithm
Optimal Values of Design Variables

Optimal Cost
h l t b

BCA 0.205729 3.470471 9.036622 0.205729 1.72484

HHO [12] 0.204039 3.531061 9.027463 0.206147 1.73199057

RANDOM [54] 0.4575 4.7313 5.0853 0.66 4.1185

DAVID [54] 0.2434 6.2552 8.2915 0.2444 2.3841

SIMPLEX [54] 0.2792 5.6256 7.7512 0.2796 2.5307

APPROX [54] 0.2444 6.2189 8.2915 0.2444 2.3815

GA [55] 0.248900 6.173000 8.178900 0.253300 2.433116

GA [56] 0.208800 3.420500 8.997500 0.210000 1.748310

HS [57] 0.2442 6.2231 8.2915 0.2443 2.3807

ESs [58] 0.199742 3.61206 9.0375 0.206082 1.7373

CDE [59] 0.203137 3.542998 9.033498 0.206179 1.733462

MFO [14] 0.203567 3.443025 9.230278 0.212359 1.732541

MVO [60] 0.205611 3.472103 9.040931 0.205709 1.725472

SCA [25] 0.204695 3.536291 9.004290 0.210025 1.759173

GA [49] 0.164171 4.032541 10.00000 0.223647 1.873971

ES [61] 0.199742 3.612060 9.037500 0.20682 1.73730

SA [62] 0.20564426 3.472578742 9.03662391 0.2057296 1.7250022

Co-evolutionary PSO [63] 0.20573 3.47049 9.03662 0.20573 1.72485084

GSA [23] 0.18219 3.856979 10.0000 0.202376 1.879952

Improved PSO [64] 0.205729 3.470488 9.036624 0.205729 1.724852

DE [65] 0.20573 3.470489 9.0336624 0.205730 1.724852

CS [13] 0.2015 3.562 9.0414 0.2057 1.73121

ABC [66] 0.205730 3.470489 9.036624 0.205730 1.724852

ACO [67] 0.205700 3.471131 9.036683 0.205731 1.724918

PO [47] 0.205730 3.470472 9.036624 0.205730 1.724851

CAEP [68] 0.205700 3.470500 9.036600 0.205700 1.724852

HGA [69] 0.205700 3.470500 9.036600 0.205700 1.7249

WCA [27] 0.205728 3.470522 9.036620 0.205729 1.724856

CGWO [70] 0.343891 1.883570 9.031330 0.212121 1.725450

GWO [9] 0.205676 3.478377 9.036810 0.205778 1.726240

CPSO [71] 0.202369 3.544214 9.048210 0.205723 1.728024

GA [72] 0.205986 3.471328 9.020224 0.206480 1.728226

WOA [10] 0.205396 3.484293 9.037426 0.206276 1.730499

CS [73] 0.182200 3.795100 9.998100 0.211100 1.946000

BA [74] 0.154300 5.736100 8.862700 0.229700 2.084000

CapSA [75] 0.205723 3.470789 9.036622 0.205737 1.7249
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Table 9. Comparison of statistical results of BCA with other optimization algorithms in the literature for solving the welded
beam design problem.

Algorithm Best Worst Mean SD #

BCA 1.72484 1.7272306 1.7254101 4.237× 10−7

MFO [14] 1.732541 1.802364 1.775231 0.012397

MVO [60] 1.725472 1.741651 1.729680 0.004866

SCA [25] 1.759173 1.873408 1.817657 0.027543

GA [49] 1.873971 2.320125 2.119240 0.034820

ES [61] 1.728226 1.993408 1.792654 0.07471

SA [62] 1.7250022 1.8843960 1.7564428 NA

Co-evolutionary PSO [63] 1.728024 1.782143 1.748831 0.012926

Improved PSO [64] 1.724852 NA * 2.0574 0.2154

DE [65] 1.724852 1.725000 1.725 1.0× 10−15

CS [13] 1.7312065 2.3455793 1.8786560 0.2677989

ABC [66] 1.724852 NA 1.741913 0.031

ACO [67] 1.72918 1.775961 1.729752 0.009200

PO [47] 1.724851 1.724852 1.724851 2.53× 10−7

CAEP [68] 1.724852 3.179709 1.971809 0.443000

WCA [27] 1.724856 1.744697 1.726427 0.004290

CGWO [70] 1.725450 2.435700 2.428900 1.357800

CPSO [71] 1.728024 1.782143 1.748831 0.012900

CapSA [75] 1.72481904 1.72723071 1.72541110 4.2376× 10−7

PSO-DE [76] 1.724852 1.724852 1.724852 6.7× 10−16

COMDE [77] 1.724852 1.724852 1.724852 1.6× 10−12

DELC [78] 1.724852 1.724852 1.724852 4.1× 10−13

MADE [79] 1.724852 1.724852 1.724852 9.6× 10−16

AMDE [80] 1.724852 1.724852 1.724852 1.1× 10−15

* NA is Not available, # Standard Deviation.

5.2. Pressure Vessel Design Problem

Another widely accepted structural design benchmark problem is the design of the
pressure vessel. In this well-regarded case, the objective is to minimize the total fabrication
cost (material, forming and welding) of the cylindrical pressure vessel. The vessel is
capped at both the ends wherein the heads have a hemi-spherical shape. The schematic is
illustrated in Figure 10b and the design variables are described in Table 7. The mathematical
formulation of the optimization model for this design problem is as follows:

Consider x = [x1 x2 x3 x4] = [Ts Th R L]
Minimize f (x) = 0.6224x1x3x4 + 1.7781x2x2

3 + 3.1661x2
1x4 + 19.84x2

1x3

Subject to

g1(x) = −x1 + 0.0193x3 ≤ 0
g2(x) = −x2 + 0.00954x3 ≤ 0,
g3(x) = −πx2

3x4 − 4
3 πx3

3 + 1, 296, 000 ≤ 0,
g4(x) = x4 − 240 ≤ 0,

Variable range

0 ≤ x1 ≤ 99,
0 ≤ x2 ≤ 99,
10 ≤ x3 ≤ 200,
10 ≤ x4 ≤ 200
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This design problem has been addressed by many researchers using different algo-
rithms, including meta-heuristic approaches as well as mathematical techniques. Table 10
presents a comparison of the optimal solutions acquired by BCA and other eminent al-
gorithms in the erstwhile literature for the pressure vessel design problem. Inspecting
the results in Table 10, we observe that the BCA offers competitive results to PO and
superior results when compared with other optimizers. Therefore, we conclude that the
proposed BCA is capable of finding feasible optimal design for the pressure vessel at
minimum cost (of 5885.3991). Further, the statistical results (i.e., the best, worst, mean and
standard deviation values) of BCA and other optimizers for the pressure vessel design
problem are presented in Table 11. According to the results in this table, it is shown that the
performance of proposed BCA is superior and significantly better than other optimizers.
BCA outperforms most of the algorithms mentioned in Table 11. We observe that the
standard deviation acquired by BCA is 8.4237, which is considerably lower when com-
pared to other algorithms. Thus, BCA proves to be reliable and efficient for solving this
optimization problem.

Table 10. Comparison of the best solution obtained by BCA with other algorithms in the literature for the pressure vessel
design problem.

Algorithm
Optimal Values of Design Variables

Optimal Cost
Ts Th R L

BCA 0.7782 0.3847 40.3215 199.973 5885.3991

MFO [14] 0.835241 0.409854 43.578621 152.21520 6055.6378

MVO [60] 0.845719 0.418564 43.816270 156.38164 6011.5148

SCA [25] 0.817577 0.417932 41.74939 183.57270 6137.3724

GA [49] 0.752362 0.399540 40.452514 198.00268 5890.3279

HS [81] 1.099523 0.906579 44.456397 179.65887 6550.0230

DA [82] 0.782825 0.384649 40.3196 200 5923.11

Co-evolutionary PSO [63] 0.812500 0.437500 42.091266 176.746500 6061.077

ES [61] 0.812500 0.437500 42.098087 176.640518 6059.7456

CS [13] 0.812500 0.437500 42.0984456 176.6363595 6059.7143348

ABC [83] 0.812500 0.437500 42.098446 176.636596 6059.714339

Improved PSO [84] 0.812500 0.437500 42.098445 176.6365950 6059.7143

Penalty guided ABC [85] 0.7781686 0.3846491 40.3210545 199.9802367 5885.40322828

DE [65] 0.812500 0.437500 42.098446 176.6360470 6059.701660

WOA [10] 0.812500 0.437500 42.0982699 176.638998 6059.7410

PO [47] 0.7782 0.3847 40.3215 199.9733 5885.3997

NMPSO [86] 0.8036 0.3972 41.6392 182.4120 5930.3137

GWO [9] 0.8125 0.4345 42.0892 176.7587 6051.5639

HPSO [87] 0.8125 0.4375 42.0984 176.6366 6059.7143

G-QPSO [88] 0.8125 0.4375 42.0984 176.6372 6059.7208

CDE [59] 0.8125 0.4375 42.0984 176.6376 6059.7340

DE [5] 0.8125 0.4375 42.0984 176.6377 6059.7340

GA [72] 0.8125 0.4375 42.0974 176.6540 6059.9463

CPSO [71] 0.8125 0.4375 42.0913 176.7465 6061.0777

GSA [23] 1.1250 0.6250 55.9887 84.4542 8538.8359

HHO [12] 0.81758383 0.4072927 42.09174576 176.7196352 6000.46259
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Table 10. Cont.

Algorithm
Optimal Values of Design Variables

Optimal Cost
Ts Th R L

GA [55] 0.812500 0.437500 42.097398 176.654050 6059.9463

Lagrangian multiplier
(Kannan) [10] 1.125000 0.625000 58.291000 43.6900000 7198.0428

Branch-bound (Sandgren) [10] 1.125000 0.625000 47.700000 117.701000 8129.1036

DELC [78] 0.812500 0.437500 42.0984456 176.6365958 6059.7143

CSS [89] 0.812500 0.437500 42.103624 176.572656 6059.0888

ESs [58] 0.812500 0.437500 42.098087 176.640518 6059.7456

Table 11. Comparison of statistical results of BCA with other optimization algorithms in the literature
for solving the pressure vessel design problem.

Algorithm Best Worst Mean SD #

BCA 5885.3991 5910.5321 5891.3265 8.4237

MFO [14] 6055.6378 7023.8521 6360.6854 365.597

MVO [60] 6011.5148 7250.9170 6477.3050 327.007

SCA [25] 6137.3724 6512.3541 6326.7606 126.609

GA [49] 5890.3279 7005.7500 6264.0053 496.128

HS [81] 6550.0230 8005.4397 6643.9870 657.523

DA [82] 5923.11 222536 21342.2 47044.2

Co-evolutionary PSO [63] 6061.077 6363.8041 6147.1332 86.4545

ES [61] 6059.7456 7332.8798 6850.004 9426.000

CS [13] 6059.714 6495.3470 6447.7360 502.693

ABC [83] 6059.714339 NA * 6245.308144 205

Improved PSO [84] 6059.7143 NA 6289.92881 305.78

WOA [10] NA NA 6068.0500 65.6519

GSA [23] NA NA 8932.9500 683.5475

PO [47] 5885.3997 5908.0250 5891.8068 8.4746

NMPSO [86] 5930.3137 5960.0557 5946.7901 9.1610

PSO-DE [76] 6059.7140 NA 6059.7140 NA

HPSO [87] 6059.7143 6288.6770 6099.9323 86.2000

CPSO [71] 6061.0777 6363.8041 6147.1332 86.4500

GWO [9] 6051.5630 6395.3600 6159.3200 379.6740

G-QPSO [88] 6059.7208 7544.4925 6440.3786 448.4711

* NA is Not available, # Standard Deviation.

5.3. Tension/Compression Spring Design Problem

The goal of the tension/compression spring design problem [90] is to minimize the
weight of the spring shown in Figure 10c. The constraints for optimum design are based
on shear stress, surge frequency and deflection. The design variables of this optimization
problem are defined in Table 7. The optimization problem is mathematically represented
as follows:
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Consider x = [x1 x2 x3] = [d D N]
Minimize f (x) = (x3 + 2)x2x2

1

Subject to

g1(x) = 1− x2
2 x3

71785x4
1
≤ 0,

g2(x) = 4x2
2−x1x2

12566(x2x3
1−x4

1)
+ 1

5108x2
1
≤ 0,

g3(x) = 1− 140.45x1
x2

2 x3
≤ 0,

g4(x) = x1+x2
1.5 − 1 ≤ 0,

Variable range
0.05 ≤ x1 ≤ 2.00,
0.25 ≤ x2 ≤ 1.30,2.00 ≤ x3 ≤ 15.0

Several optimizers have been previously applied to solve this design problem. Table 12
presents the comparison of the optimal results achieved by BCA and other algorithms for the
tension/compression spring design problem. Table 12 suggests that BCA is able to find an
optimum design of the spring with the minimum weight. Further, the statistical results are
compared with other approaches in the literature and reported in Table 13. It can be seen that
BCA either outperforms or performs equivalently to all other algorithms listed in Table 13.

Table 12. Comparison of the best solution obtained by BCA with other algorithms in the literature for the ten-
sion/compression spring design problem.

Algorithm
Optimal Values of Design Variables

Optimal Cost
d D N

BCA 0.05248 0.37594 10.24509 0.01267

PO [47] 0.05248 0.37594 10.24509 0.01267

DEDS [91] 0.05169 0.35672 11.28897 0.01267

HEAA [92] 0.05169 0.35673 11.28829 0.01267

DELC [78] 0.05169 0.35672 11.28897 0.01267

WCA [27] 0.05168 0.35652 11.30041 0.01267

MADE [79] 0.05169 0.35672 11.28897 0.01267

GWO [9] 0.05169 0.35674 11.28885 0.01267

DE [5] 0.05161 0.35471 11.41083 0.01267

HS [81] 0.05115 0.34987 12.07643 0.01267

CPSO [71] 0.05173 0.35764 11.24454 0.01267

WOA [10] 0.05121 0.34522 12.00403 0.01268

GA [72] 0.05199 0.36397 10.89052 0.01268

GSA [23] 0.05028 0.32368 13.52541 0.01270

MFO [14] 0.05000 0.313501 14.03279 0.012753902

MVO [60] 0.05000 0.315956 14.22623 0.012816930

SCA [25] 0.050780 0.334779 12.72269 0.012709667

SSA [17] 0.051207 0.345215 12.004032 0.0126763

Table 13. Comparison of statistical results of BCA with other optimization algorithms in the literature for solving the
tension/compression spring design problem.

Algorithm Worst Mean Best SD #

BCA 0.0127 0.0127 0.0127 0.0000

PO [47] 0.0128 0.0127 0.0127 0.0000

DELC [78] 0.0127 0.0127 0.0127 0.0000

HEAA [92] 0.0127 0.0127 0.0127 0.0000
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Table 13. Cont.

Algorithm Worst Mean Best SD #

PSO–DE [76] 0.0127 0.0127 0.0127 0.0000

MADE [79] 0.0127 0.0127 0.0127 0.0000

AMDE [80] 0.0127 0.0127 0.0127 0.0000

DEDS [91] 0.0127 0.0127 0.0127 0.0000

DE [5] 0.0128 0.0127 0.0127 0.0000

HPSO [87] 0.0127 0.0127 0.0127 0.0000

ABC [83] NA * 0.0127 0.0127 0.0128

CPSO [71] 0.0129 0.0127 0.0127 0.0005

GA [72] 0.0130 0.0127 0.0127 0.0001

WCA [27] 0.0130 0.0127 0.0127 0.0001

G-QPSO [88] 0.0178 0.0135 0.0127 0.0013

CAEP [68] 0.0151 0.0136 0.0127 0.0008

GSA [23] NA 0.0136 NA 0.0026

* NA is Not available, # Standard Deviation.

5.4. Three-Bar Truss Design Problem

This engineering design problem is one of the well-regarded optimization problems
and frequently addressed since it has a very restricted search space. The aim is to find an
optimal design of a truss with three bars such that its weight is minimum. The structural
design parameters of this problem are shown in Figure 10d and the details are given
in Table 7. There are several constraints including stress, deflection, and buckling. The
mathematical representation of this problem is as follows:

Consider x = [x1 x2] = [A1 A2]

Minimize f (x) =
(

2
√

2x1 + x2

)
l

Subject to

g1(x) =
√

2x1+x2√
2x2

1+2x1x2
P− σ ≤ 0,

g2(x) = x2√
2x2

1+2x1x2
P− σ ≤ 0,

g3(x) = 1√
2x2+x1

P− σ ≤ 0,

Variable range 0 ≤ x1, x2 ≤ 1,
where l = 100 cm, P = 2 kN/cm2, σ = 2 kN/cm2

The results of BCA when solving the 3-bar truss design problem are shown in Table 14.
Further, the results of the proposed BCA are compared with other approaches published
in the literature for solving this problem. It is evident that BCA yields competitive re-
sults compared to other algorithms (HHO [12], DEDS [91], PSO–DE [76] and SSA [17]).
Additionally, the proposed BCA outperforms few other algorithms (such as MVO [60],
GOA [93], MFO [14], CS [13], AOA [51]) considerably. The results indicate that BCA has
the capability to deal with constrained spaces as well.
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Table 14. Comparison of the best solution obtained by BCA with other algorithms in the literature for the three-bar truss
design problem.

Algorithm
Optimal Values of Design Variables

Optimal Weight
x1 x2

BCA 0.788662816 0.408283133832 263.8958434

HHO [12] 0.788662816 0.408283133832900 263.8958434

DEDS [91] 0.78867513 0.40824828 263.8958434

MVO [60] 0.78860276 0.408453070000000 263.8958499

GOA [93] 0.788897555578973 0.407619570115153 263.895881496069

MFO [14] 0.788244771 0.409466905784741 263.8959797

PSO–DE [76] 0.7886751 0.4082482 263.8958433

SSA [17] 0.788665414 0.408275784444547 263.8958434

MBA [30] 0.7885650 0.4085597 263.8958522

Tsai [94] 0.788 0.408 263.68

Ray and Saini [95] 0.795 0.395 264.3

CS [13] 0.78867 0.40902 263.9716

AOA [51] 0.79369 0.39426 263.9154

5.5. Speed Reducer Design Problem

In the Speed reducer design problem, the aim is to find the optimum values of
design variables such that the weight of the speed reducer is minimum. The schematic
is shown in Figure 10e and the design variables are listed in Table 7. The optimization
is subject to the constraints on stresses in the shafts, transverse deflection of the shafts,
surface stress and bending stress of the gear teeth. The mathematical representation of this
problem is as follows:

Consider x = [x1 x2 x3 x4 x5 x6 x7]

Minimize
f (x) = 0.7854x1x2

2
(
3.3333x2

3 + 14.9334x3 − 43.0934
)
−

1.508x1
(

x2
6 + x2

7
)
+ 7.4777

(
x3

6 + x3
7
)
+ 0.7854

(
x4x2

6 + x5x2
7
)

Subject to

g1(x) = 27
x1x2

2 x3
− 1 ≤ 0,

g2(x) = 397.5
x1x2

2 x2
3
− 1 ≤ 0,

g3(x) = 1.93x3
4

x2x4
6 x3
− 1 ≤ 0,

g4(x) = 1.93x3
5

x2x4
7 x3
− 1 ≤ 0,

g5(x) =

[(
745x4
x2 x3

)2
+(16.9×106)

]1/2

110x3
6

− 1 ≤ 0,

g6(x) =

[(
745x5
x2 x3

)2
+(157.5×106)

]1/2

85x3
7

− 1 ≤ 0,

g7(x) = x2x3
40 − 1 ≤ 0,

g8(x) = 5x2
x1
− 1 ≤ 0,

g9(x) = x1
12x2
− 1 ≤ 0,

g10(x) = 1.5x6+1.9
x4

− 1 ≤ 0,

g11(x) = 1.1x7+1.9
x5

− 1 ≤ 0,

Variable range

2.6 ≤ x1 ≤ 3.6,
0.7 ≤ x2 ≤ 0.8,
17 ≤ x3 ≤ 28,
7.3 ≤ x4 ≤ 8.3,
7.3 ≤ x5 ≤ 8.3,
2.9 ≤ x6 ≤ 3.9,
5.0 ≤ x7 ≤ 5.5



Mathematics 2021, 9, 3011 32 of 40

The results obtained by the proposed algorithm for the speed reducer design problem
are compared with a wide range of other algorithms in the literature as reported in Table 15.
It is clear that the performance of BCA is equivalent to other algorithms and is, therefore,
satisfactory. Moreover, the statistical results for the speed reducer design problem using
BCA and other meta-heuristic algorithms are tabulated in Table 16. The statistical results
indicate that BCA offers very competitive results in addressing this problem.

Table 15. Comparison of the best solution obtained by BCA with other algorithms in the literature for the Speed reducer
design problem.

Algorithm
Optimal Values of Design Variables Optimal

Weightx1 x2 x3 x4 x5 x6 x7

BCA 3.5 0.7 17 7.3 7.7153 3.3502 5.2867 2994.471

PO [47] 3.5 0.7 17 7.3 7.7153 3.3502 5.2867 2994.471

DEDS [91] 3.5 0.7 17 7.3 7.7153 3.3502 5.2867 2994.471

DELC [78] 3.5 0.7 17 7.3 7.7153 3.3502 5.2867 2994.471

WCA [27] 3.5 0.7 17 7.3 7.7153 3.3502 5.2867 2994.471

CapSA [75] 3.500 0.7 17 7.30 7.715320 3.350215 5.286654 2994.4710

HEAA [92] 3.5 0.7 17 7.3004 7.7155 3.3502 5.2867 2994.499

PSO-DE [76] 3.5 0.7 17 7.3 7.8000 3.3502 5.2867 2996.348

MDE [96] 3.5 0.7 17 7.3002 7.8000 3.3502 5.2867 2996.357

MFO [14] 3.497455 0.700 17 7.82775 7.712457 3.351787 5.286352 2998.94083

WSA [97] 3.500 0.7 17 7.3 7.8 3.350215 5.286683 2996.348225

AAO [98] 3.499 0.6999 17 7.3 7.8 3.3502 5.2872 2996.783

GWO [9] 3.501 0.7 17 7.3 7.811013 3.350704 5.287411 2997.81965

APSO [99] 3.501313 0.7 18 8.127814 8.042121 3.352446 5.287076 3187.630486

CS [13] 3.5015 0.7000 17 7.6050 7.8181 3.3520 5.2875 3000.9810

SCA [25] 3.521 0.7 17 8.3 7.923351 3.355911 5.300734 3026.83772

FA [100] 3.507495 0.7001 17 7.719674 8.080854 3.351512 5.287051 3010.137492

AOA [51] 3.50384 0.7 17 7.3 7.72933 3.35649 5.2867 2997.9157

Table 16. Comparison of statistical results of BCA with other optimization algorithms in the literature
for solving the Speed reducer design problem.

Algorithm Worst Mean Best SD #

BCA 2994.471026 2994.471026 2994.471026 0.000003

PO [47] 2994.471057 2994.471051 2994.471047 0.000003

WCA [27] 2994.505578 2994.474392 2994.471066 0.007400

MDE [96] NA * 2996.367220 2996.356689 0.008200

DELC [78] 2994.471066 2994.471066 2994.471066 0.000000

DEDS [91] 2994.471066 2994.471066 2994.471066 0.000000

ABC [83] NA 2997.058000 2997.058000 0.000000

HEAA [92] 2994.752311 2994.613368 2994.499107 0.070000

PSO-DE [76] 2996.348204 2996.348174 2996.348167 0.000006

SC [101] 3009.964736 3001.758264 2994.744241 4.000000

CapSA [75] 2998.09236 2995.12109 2994.47106 0.00002901

* NA is Not available, # Standard Deviation.
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5.6. Gear Train Design Problem

The gear train design problem, introduced in 1990, is a well-known discrete optimiza-
tion problem in the domain of mechanical engineering [102]. The aim is to minimize the
gear ratio (defined by Equation (11)) of a compound gear train consisting of a set of four
gears (see Figure 10f). The parameters are the number of teeth of the gears; hence we have
four integer variables (between 12 and 60). The cost (i.e., objective) function is formulated
mathematically as expressed by Equation (12):

Gear ratio =
Angular velocity o f the output sha f t
Angular velocity o f the input sha f t

(11)

f
(

Ta, Tb, Td, Tf

)
=

(
1

6.931
− TbTd

TaTf

)2

(12)

where Tj represents the number of teeth of the ith gear wheel where j = a, b, d, f . The
objective is to find the number of teeth on the wheels such that the gear ratio reaches
to 1/6.931. This problem has no constraints, but we consider the range of variables as
constraints. The gear design problem has been widely held among researchers and tackled
in a number of studies using different heuristic methods. In the present work, we solve this
problem with BCA and compare the results with other algorithms in the literature. Table 17
presents the results of the gear train design problem with the optimal parameters and the
best value of the objective function obtained by BCA and other algorithms. Table 17 reveals
that the BCA offers competitive results and it computes the same optimal function value
as other algorithms (such as MFO, ABC, MBA, CS, and ISA). Thus, BCA can be used to
effectively solve discrete problems as well.

Table 17. Comparison of results for Gear train design problem.

Approach
Optimal Values of Variables

fmin Ref.
Ta Tb Td Tf

BCA 43 16 19 49 2.7009× 10−12 -

CAPSO 49 19 16 43 2.701 × 10−12 [103]

MFO 43 19 16 49 2.7009× 10−12 [14]

ABC 49 16 19 43 2.7009× 10−12 [30]

MBA 43 16 19 49 2.7009× 10−12 [30]

GeneAS 33 14 17 50 1.362× 10−9 [104]

CS 43 16 19 49 2.7009× 10−12 [13]

PSO 43 16 19 49 2.701× 10−12 [105]

Sequential linearization
approach 42 16 19 50 0.23× 10−6 [106]

Mixed-discrete nonlinear
optimization with SA 52 15 30 60 2.36× 10−9 [107]

Nonlinear integer and discrete
programming 45 22 18 60 5.712× 10−6 [102]

Mixed integer discrete
continuous optimization 33 15 13 41 2.146× 10−8 [108]

Mixed-variable evolutionary
programming 52 15 30 60 2.36× 10−9 [109]
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Table 17. Cont.

Approach
Optimal Values of Variables

fmin Ref.
Ta Tb Td Tf

GA NA * NA NA NA 2.33× 10−7 [110]

Mixed integer discrete
continuous programming 47 29 14 59 4.5× 10−6 [111]

BOA 43 16 19 49 2.701× 10−12 [11]

ISA NA NA NA NA 2.7009× 10−12 [29]

* NA is not available.

6. BCA for Falsification of Cyber-Physical System

Falsification of the Cyber-physical system helps to discover defect-leading system
parameters (i.e., counterexamples) to system specification, thereby enabling effective fault
detection. The input with a minimal robustness (counterexample) is a good candidate to
violate the specification. Here, we consider the Automatic Transmission example consisting
of a Simulink®/Stateflow™ model of an automatic transmission controller [112]. Figure 11
shows the corresponding top level Simulink model. The model has two input signals
(the throttle and the brake). These signals represent the user’s throttle input through the
accelerator pedal and the brake input. There are two outputs that represent the speed of
the vehicle v (kmph) and the speed of the engine ω (RPM).
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6.1. The Problem

We are interested in finding if the system always satisfies the temporal property ϕAT
1 :

the speed should always remain below v kmph and the engine speed should remain below
ω RPM. In other words, the engine and the vehicle speed never reach ω and v, respectively.
The requirement is specified in formal temporal logic specification and described by means
of Signal Temporal Logic (STL) formulae given by:

ϕAT
1 (v, ω ) = G ((v < v) ∧ (ω < ω))

To violate this property, we search for input signals that cause the vehicle speed or the
engine RPM to exceed their prescribed limits. In this work, we consider v = 120 kmph and
ω = 4500 RPM. The total simulation time is T = 30 s.

Usually, given a formula ϕ, the robustness of a trace x w.r.t ϕ is defined as a real-valued
quantity denoted r : R(x, ϕ). It is a measure of satisfaction of the trace w.r.t the property
such that negative values of robustness indicate that the trace satisfies the negation of the
property (if r < 0, then x � ¬ ϕ). The falsification approach is a simple optimization



Mathematics 2021, 9, 3011 35 of 40

problem of minimizing the objective function over the decision variables z (that define the
input signal(s)) such that the resulting trace x has a negative value of robustness: find z
such that R(x, ϕ) < 0. Here, the robustness is treated as the objective function which is
minimized using various meta-heuristic approaches.

6.2. Simulation Results

We use the MoonLight tool (developed to monitor temporal and spatial-temporal
properties of Cyber-Physical systems) [113] to find a counterexample for ϕAT

1 . Since we
need robustness value for solving the optimization problem, we consider the quantitative
semantics (or the minmax semantics) in this work. We try to falsify the STL formula ϕAT

1 by
taking the Brake input (kept constant = 0) and taking throttle i.e., input signal u(t) as a step
signal. We consider the throttle input as a step signal defined by the step time, the initial
value and the final value. Moreover, we utilize BCA to solve the optimization problem and
compare its performance with three well-known meta-heuristic techniques: GA, DE and
PSO. The parameter settings for these algorithms are provided in Table 4.

Using the MoonLight tool, we obtain counterexamples by each optimization algorithm.
Figure 12 shows the input throttle and the output speed and RPM corresponding to the
counterexample for ϕAT

1 obtained by BCA. The obtained counterexample corresponds to
the input with (step time, initial value, final value) = (1, 10, 69). The robustness values
acquired by BCA and other algorithms are tabulated in Table 18. The results reveal that the
proposed BCA is competitive enough for solving the falsification problem of Cyber-physical
systems, demonstrating its applicability in real-world optimization problems.
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Table 18. Results for the falsification problem of the automatic transmission controller system.

Approach Robustness Value

BCA −0.3564

PSO −0.7236

GA −1.6134

DE −1.7380

Altogether, the results of this work validate that the proposed BCA serves as a power-
ful and reliable substitute to the existing meta-heuristic approaches.

7. Conclusions and Future Directions

This paper presented a novel bio-inspired population-based optimization algorithm
called Blood Coagulation Algorithm (BCA). The proposed BCA mimics the process of blood
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coagulation in the human body. To investigate the performance of the proposed optimizer,
we performed an extensive study on 23 mathematical benchmark functions and utilized
12 state-of-the-art algorithms for comparison. The intensification, diversification, local
optima avoidance, and convergence behavior of BCA was investigated using unimodal and
multimodal functions. We also analyzed the computational (time and space) complexity of
BCA. The simulation and statistical results show that BCA is competitive with other well-
regarded algorithms. Besides, the reliable performance of BCA for the high-dimensional
functions paves the way for researchers to explore its applicability to diverse optimization
tasks. Further, the analysis of six constrained and unconstrained engineering design tasks
also demonstrated that BCA provided very competitive and outstanding results against
other meta-heuristic algorithms. Moreover, the applicability of BCA on real world problems
was also tested by employing it for the falsification of Cyber-Physical Systems. On the
whole, it can be identified and may be asserted that BCA confirms its proficiency over other
powerful meta-heuristic algorithms and is worth applying to solve other benchmark and
real-world problems.

Numerous research directions can be proposed for future works. It would be interest-
ing to extend BCA and develop its binary version, which could be a useful contribution to
tackle real-world applications. Further, the extension of BCA to deal with multi-objective
along with many-objective optimization problems would be noteworthy and can also
be addressed in future works. Also, the performance of BCA with different constraint
handling approaches for solving constrained optimization problems is worth researching.
The capability of BCA to deal with highly constrained problems also needs to be explored.
Further research is to be undertaken to check the effectiveness of the proposed algorithm in
complex real-life applications (with complex search spaces) for handling various problems
in multidisciplinary areas. In this work, we propose a very simple BCA with few mech-
anisms for intensification and diversification. Hence, the inclusion of other mechanisms
(such as evolutionary updating structures, and chaos-based updating strategy) would be
useful for future works.
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Appendix A

Table A1. p-Values of the Wilcoxon rank-sum test with 5% significance for BCA versus other algorithms for the benchmark
functions with 30 independent runs. (p-values ≥ 0.05 are indicated in bold face. NaN indicates “Not a Number” reported
by the test).

F DE PSO GA CS GWO MFO FPA FA BAT GSA AOA BBO

f1 3.52× 10−11 2.73× 10−11 3.62× 10−11 3.53× 10−11 3.49× 10−11 3.29 × 10−11 2.78× 10−11 3.28× 10−11 2.06× 10−11 3.19× 10−11 3.45× 10−11 2.87× 10−11

f2 2.78× 10−11 2.67× 10−11 4.31× 10−11 2.71× 10−11 2.91× 10−11 2.48× 10−11 3.89× 10−11 2.91× 10−11 2.49× 10−11 2.48× 10−11 2.28× 10−11 4.45× 10−11

f3 4.31× 10−11 2.91× 10−11 3.18× 10−11 4.37× 10−11 4.65× 10−11 4.81× 10−11 2.98× 10−11 3.27× 10−11 3.21× 10−11 3.46× 10−11 4.01× 10−11 2.78× 10−11

f4 2.38× 10−11 2.65× 10−11 1.27× 10−11 2.32× 10−11 2.42× 10−11 2.20× 10−11 1.91× 10−11 1.99× 10−11 1.94× 10−11 2.29× 10−11 2.84× 10−11 2.56× 10−11

f5 2.71× 10−11 2.71× 10−11 2.89× 10−11 2.79× 10−11 2.68× 10−11 2.09× 10−11 3.02× 10−11 3.00× 10−11 2.39× 10−11 2.16× 10−11 2.36× 10−11 2.98× 10−11

f6 4.27× 10−11 2.84× 10−11 2.63× 10−11 4.20× 10−11 4.30× 10−11 4.71× 10−11 2.03× 10−11 3.67× 10−11 3.61× 10−11 3.28× 10−11 4.39× 10−11 5.91× 10−11

f7 2.33× 10−11 2.42× 10−11 2.63× 10−11 2.36× 10−11 2.29× 10−11 2.67× 10−11 1.07× 10−11 3.01× 10−11 5.28× 10−11 2.87× 10−11 2.93× 10−11 2.77× 10−11

f8 2.90× 10−10 2.79× 10−11 2.48× 10−10 2.99× 10−10 2.85× 10−10 2.82× 10−10 2.22× 10−11 2.76× 10−10 2.90× 10−10 2.39× 10−10 2.96× 10−10 2.91× 10−10

f9 3.16× 10−12 2.45× 10−11 1.66× 10−12 3.11× 10−12 3.41× 10−12 3.56× 10−12 3.00× 10−11 3.91× 10−12 2.50× 10−12 3.71× 10−12 3.55× 10−12 3.97× 10−12
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Table A1. Cont.

F DE PSO GA CS GWO MFO FPA FA BAT GSA AOA BBO

f10 2.87× 10−12 1.19× 10−12 1.66× 10−12 2.86× 10−12 2.84× 10−12 2.49× 10−12 2.37× 10−11 2.45× 10−12 1.79× 10−12 2.05× 10−12 2.13× 10−12 4.67× 10−12

f11 3.01× 10−11 1.56× 10−13 1.31× 10−12 3.05× 10−11 3.60× 10−11 3.91× 10−11 3.61× 10−11 3.11× 10−11 2.00× 10−11 2.78× 10−11 3.06× 10−11 2.14× 10−11

f12 2.81× 10−11 1.87× 10−11 2.18× 10−11 2.05× 10−11 2.87× 10−11 2.48× 10−11 1.76× 10−11 2.92× 10−11 1.99× 10−11 2.47× 10−11 3.05× 10−11 2.66× 10−11

f13 2.28× 10−11 2.54× 10−11 2.18× 10−11 2.82× 10−11 2.61× 10−11 2.29× 10−11 1.55× 10−11 1.08× 10−11 3.07× 10−11 2.81× 10−11 2.10× 10−11 2.41× 10−11

f14 2.39× 10−9 5.21× 10−8 6.32×10−2 6.16× 10−14 7.27× 10−8 3.24× 10−8 1.81×10−1 1.48× 10−9 1.37× 10−12 9.23× 10−5 1.63× 10−6 3.25× 10−6

f15 1.92× 10−11 7.39× 10−11 9.67× 10−11 3.34× 10−11 8.69× 10−11 5.29× 10−11 2.78× 10−11 3.92× 10−10 2.56× 10−11 1.37× 10−11 1.67× 10−8 2.82× 10−9

f16 NaN 1.93× 10−13 2.35× 10−12 NaN NaN NaN NaN NaN 4.61× 10−10 NaN 3.92× 10−10 2.66× 10−12

f17 1.27×10−1 1.84× 10−12 3.28× 10−11 1.27×10−1 1.27×10−1 1.27×10−1 1.27×10−1 1.27×10−1 1.27×10−1 2.71× 10−12 1.39× 10−12 1.55× 10−11

f18 8.29× 10−11 2.59× 10−13 4.36× 10−10 3.28× 10−18 2.16× 10−11 1.99× 10−10 3.29× 10−12 1.09× 10−10 2.27× 10−12 6.82× 10−13 3.05× 10−9 3.84× 10−10

f19 3.05× 10−11 2.48× 10−10 2.39× 10−9 2.29× 10−11 2.76× 10−10 1.66× 10−12 8.69× 10−11 3.01× 10−11 2.48× 10−10 5.48× 10−9 3.64× 10−11 3.52× 10−11

f20 3.42× 10−4 7.21× 10−5 3.93× 10−5 NaN 4.39× 10−5 2.16× 10−4 1.07× 10−15 8.27× 10−14 2.29× 10−5 1.01× 10−4 2.49× 10−5 3.27× 10−4

f21 1.64× 10−7 8.11× 10−6 3.46× 10−11 7.37× 10−10 1.07× 10−8 1.44× 10−5 5.28× 10−10 1.05× 10−12 2.45× 10−8 2.91× 10−8 1.38× 10−8 2.16× 10−9

f22 1.34× 10−11 6.47× 10−11 1.98× 10−11 5.71× 10−11 5.37× 10−11 3.59× 10−11 2.46× 10−11 2.04× 10−10 2.38× 10−11 4.28× 10−12 1.09× 10−8 1.89× 10−9

f23 NaN 1.28× 10−12 2.05× 10−10 2.51× 10−11 1.94× 10−8 4.85× 10−9 8.37× 10−8 1.39× 10−9 4.37× 10−12 3.61× 10−8 2.57× 10−10 3.08× 10−8
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