

Spectroscopic identification of most suited technical lignin for use in biocomposites

Luísa Scolari^{1*} Florian Zikeli^{2,3}, Sebastian Serna-Loaiza⁴, Cornelia Hofbauer⁴, Luis Zelaya-Lainez⁵, Josef Füssl⁵, Anton Friedl⁴, Michael Harasek⁴, Mar[']kus Lukacevic⁵, Hinrich Grothe¹

¹ Christian Doppler Laboratory for Next-Generation Wood-Based Biocomposite, Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/165, 1060, Vienna, Austria. ² Research Unit of Thermal Process Engineering and Simulation, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/166, 1060, Vienna, Austria. ³ Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Viterbo, Italy.

⁴ Christian Doppler Laboratory for Next-Generation Wood-Based Biocomposite, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/166, 1060, Vienna, Austria. ⁵ Christian Doppler Laboratory for Next-Generation Wood-Based Biocomposite, Institute for Mechanics of Materials and Structures, TU Wien, Karlsplatz 13/202, 1040, Vienna, Austria.

Softwood lignin has more aromatic uncondensed –OH and G units than hardwood's, meaning more C₅ free to recondense. Also, **SW-OS** has more *carboxylic acids*, *aliphatic –OH*, and *hydroxycinnamic acid monomer*s, which hints towards higher recondensation potential as a binder for entirely wood-based biocomposites.

Motivation

A significant portion of wood's potential (50%) is currently lost as by-products in sawmills. However, these by-products can be more effectively utilized by incorporating them into highperformance biocomposites. To identify an appropriate **lignin binder** for a hot-pressed construction material entirely derived from wood products, we conducted a comparison of six

Gr-SP

•	Softwood lignin has more G units	Lignin band (cm ⁻¹)	Vibration	Assignment ^[1]
(31 pr 12 • Ha (31 pr 13 • Gr (³¹ ba pr 12 m	prominent bands in FTIR are the 1280 cm ⁻¹ and 1157 cm ⁻¹ Hardwood lignin has G and S units (³¹ P NMR) and therefore the most prominent bands in FTIR are 1330 cm ⁻¹ , 1230 cm ⁻¹ and 1128 cm ⁻¹ Grass lignin has G, S and H units (³¹ P NMR) and therefore the FTIR band 1280 cm ⁻¹ is just a bit more prominent than the 1330 cm ⁻¹ and 1230 cm ⁻¹ , and the 1128 cm ⁻¹ is more prominent than 1157 cm ⁻¹	1738-1709	v (C=O)	C=O stretch in unconjugated ketone, carbonyl and in ester groups (frequently of carbohydrate origin); conjugated aldehydes and carboxylic acids absorb around and below 1700
		1655-1675	v (C=O)	C=O stretch; in conjugated p-subst, aryl ketones; strong electronegative substituents lower the wavenumber
		1593-1605	v (aromatic skeletal)	aromatic skeletal vibrations plus C=O stretch; S>G; G condensed > G etherified
		1505-1515	v (aromatic skeletal)	aromatic skeletal vibrations, G>S
		1460-1470	δ (С-Н)	C-H deformations, asymmetric in -CH2- and -CH3
		1430-1422	ν (aromatic skeletal) + δ (C-H)	aromatic skeletal vibrations combined with C-H in-plane deformations
		1365-1370	v (C-H) + phenOH	aliphatic C-H stretch in CH3, not in OMe; phen. OH
		1330-1325	v (C-O)	C-O; S ring plus G ring condensed (G ring substituted in pos. 5)
		1270-1266	v (C-O) + v (C=O)	G ring plus C=O stretch
		1221-1230	v (C-O) + v (C=O)	C-C plus C-O plus C=O stretch; G condensed > G etherified
		1166	v (C-O) + v (C=O)	typical for HSG lignins, C=O in ester groups (conj.)
•	HGS units % are what mostly	1140	δ (С-Н)	aromatic C-H in-plane deformation; typical for G units; whereby G condensed > etherified
	defines lignin FTIR spectra shape	1128-1125	δ (C-H) + v (C=O)	aromatic C-H in-plane deformations (typical for S units); plus secondary alcohols plus C=O stretch
		1086	δ (C-O)	C-O deformation in secondary alcohols and aliphatic ethers
		1035-1030	δ (C-H) + δ (C-O) + v (C=O)	aromatic C-H in plane deformations, G > S; plus C-O deform, in primary alcohols, plus C=O stretch (unconj.)

Gr-SP	Gr-OS	HW-EH	HW-OS	SW-Kr	SW-OS
Gra	ass	Hard	wood	Softv	vood

Grass Hardwood Softwood		Gr-OS	r-OS HW-EH	HW-OS	SW-Kr	SW-OS
	Gra	ass	Hardy	wood	Softv	vood

Wavenumber (cm⁻¹

defines lignin FTIR spectra shape

- For softwood and grasses, lignins with more carboxylic groups (³¹P NMR) are the OS ones and have a more intense unconjugated carbonyl band (FTIR)
 - They also have more *p*CA and FA % in relation to HGS units (2D HSQC NMR)
- For hardwoods, the % of oxidized GS units is higher in **HW-EH**, which also have very few carboxylic acids, so the C=O band shifts to the right (conjugated carboxyl 1650 cm⁻¹ peak more intense)
 - HW-OS carbonyl peak (FTIR) has more contributions of other structures (like ester) than carboxylic acids

 Aliphatic –OH (³¹P NMR) and 1° and 2° alcohol bands (FTIR) do not

Conclusion

- correlate
- Total aromatic –OH (³¹P NMR) and phenolic –OH band 1375 cm⁻¹ (FTIR) do **not** correlate
 - Phenolic vibrations are incorporated into the bands in the region 1260-1165 cm⁻¹
- Aromatic uncondensed –OH (³¹P NMR) also does not correlate
- Lignins with more aromatic uncondensed –OH have more reactive carbons (C_5) available
- Grass lignins do not come from wood and therefore are not fit for an entirely wood-based biocomposite.
- Softwood organosolv lignin chemical composition hints towards a more effective binder for wood-based biocomposites.

Reference

^[1] Faix, O. "Classification of Lignins from Different Botanical Origins by FT-IR Spectroscopy" 45, no. s1 (1991): 21–28. https://doi.org/10.1515/hfsg.1991.45.s1.21.

Acknowledgments

The financial support by the Austrian Federal Ministry of Labour and Economy, the National Foundation for Research, Technology and Development and the Christian Doppler Research Association is gratefully acknowledged. Furthermore, the authors would also like to express their gratitude to the CD laboratory company partner HS Timber for their financial support. The Austrian Biorefinery Center Tulln (ABCT) is gratefully acknowledged for financial support.

Luísa Scolari, MSc

└── luisa.scolari@tuwien.ac.at