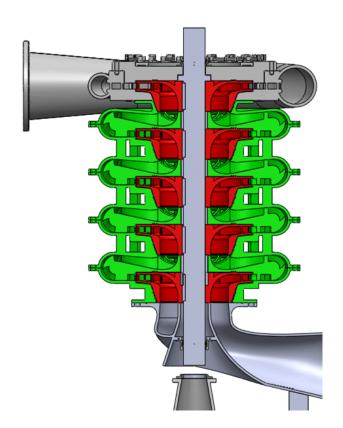


Green power storage – new hydroelectric power

scalable modular pump turbine for electric power of 0.5 MW to 15 MW

The electricity market is being affected by increasing load and price fluctuations. Growing electricity consumption – including for electric mobility and ICT – is coming up against more widespread decentralised energy gene-ration from wind and sun power, which can be subject to major fluctuations.


Grid operators are facing ever greater challenges to stabilise their networks. Attempts are being made to counter load fluctuations and supply bottlenecks by expanding electricity networks. At the same time, major consumers and all electricity suppliers are encountering highly fluctuating electricity prices that are difficult to predict, and are searching for flexible storage options to minimise their risks. Cost-effective, fail-safe storage technologies with high capacities are needed to keep regional grids for electricity supply stable and/or buffer local power fluctuations and improve the cost or revenue situation. Besides new systems such as battery farms, advanced pumped storage technology is particularly well suited to this. However, this technology has only been costeffective to date when used on a large industrial scale. Therefore, the storage facilities are located in distant regions, requiring long transmission lines that cause considerable costs and energy losses.

Objective

The objective of Dr. Eduard Doujak and Professor Christian Bauer at the Institute of Energy Systems and Thermodynamics at TU Wien was to develop a distributed system that can ensure a secure local supply and stable grid operation in the low- and medium-voltage range even with further increasing volatility, without being dependent on higher voltage grid levels. There is enormous potential for the 0.5 MW to 15 MW range if machine manufacturing costs can be lowered.

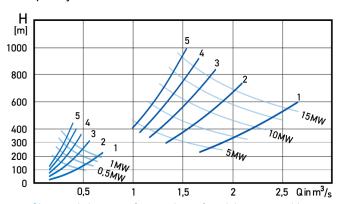
Approach

Pumped storage plants in the low power category of 0.5 MW to 15 MW can function as short-term storage and store energy within a few minutes, or feed the stored energy back intothe grid. In terms of the reservoirs required, snow reservoirs can be used in the

Alpine region, disused mines can be used in former mining regions, and fire protection ponds or other water reservoirs or existing high-pressure plants can be utilised in other areas.

Current large-scale systems in pumped storage power plants can be operated efficiently and cost-effectively by customising the configuration of the machines, which are designed according to local conditions and manufactured individually as a single piece. When it comes to lower power categories, customised design and production generates disproportionately high costs. A way to reduce these costs needs to be found.

A completely new pump turbine concept has been developed at TU Wien to this end. The developers opted for a modular design, both on the hydraulic side and the electrical side, allowing cost-cutting series production and consequently greatly reducing the electromechanical investment costs for the realisation of a plant. This design allows the system to be tailored optimally to local conditions.



The customized machine unit is made up of the necessary number of standardized modules and is adapted to local requirements or adjusted to the power required for the particular regional energy management.

- By varying the number of pump turbine modules, the system can be adapted to the head in question –and therefore to the hydraulic power range.
- The number of motor/generator modules adapts the electrical machine to the required pump/turbine power. This is done by selecting the appropriate number of rotor/stator discs.
- The machine speed required for the flow rate
- can be achieved by procuring suitable frequency converters – which are commonly used in wind power and photovoltaics and thus commercially available in lower power categories.

Results

A series of specific case studies is available on possible application locations and scenarios for the cost-effectiveness of TU Wien's modular pump turbine. Preliminary studies have been completed and the available simulations for the hydraulic component, as well as the calculations for the electrical component, are allowing a machine to be designed in detail and produced for field use quickly.

Characteristic curves for two sizes of modular pump turbine to determine the required number of modules

Industrial companies and utilities using this storage technology will gain significant increases in autonomy, security and cost-effectiveness of their power management at the low and medium voltage level.

Users of the TU Wien system can expect overall efficiency of approx. 70% to 80%, with more specific numbers being possible for each local constellation by simulations available from TU Wien.

Users and application

- energy-intensive large-scale industrial facilities
- grid operators and utilities
- municipal or and decentralized energy supply with need for (semi-)autonomous electricity management
- water management, power generation, mining
- builders and operators of wind power or photovoltaic plants
- industry with highly fluctuating electric power demand or with the potential to supply electric power
- showcase regions, regional and urban planning
- utilization of existing water reservoirs and unused caverns or shut-down mines and pits
- flexibility enhancement of existing high-pressure hydropower plants through retrofitting
- highly efficient system offering large storage capacity for low-cost and rare-earth-metal-reduced hybrid storage solutions

Your benefits

- flexible storage for electrical energy with power ranges from 0.5 to 15 MW
- highly efficient storage system with total efficiency of 70–80%
- short switchover time between power storage and generation
- well suited for combination with other storage technologies - provides a reliable basis for hybridization
- high-capacity storage for full utilization of surplus production from wind and solar power cost-effective, reliable
- 40-year service life an excellent service life for storage systems

Contact

Dr. Eduard Doujak
TU Wien – Research Unit Fluid Flow Machinery
www.iet.tuwien.ac.at/EN
+43 1 58801 302404
eduard.doujak@tuwien.ac.at, rema@tuwien.ac.at